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Introduction

The Boltzmann equation models the particle density f (t, x , v) ≥ 0 of a
diffuse gas.

∂t f + v · ∇x f = Q(f , f ).

We are interested in local existence of large-data (i.e. far-from
equilibrium) solutions on [0,T ]× R3

x × R3
v for the non-cutoff model.

Our goal is to treat initial data that may have low regularity, slow decay
for large |v |, vacuum regions, and no decay for large |x |.
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Boltzmann collision operator

Q(f , g)(v) =

∫
R3

∫
S2
B(|v − v∗|, σ)

[
f (v ′∗)g(v ′)− f (v∗)g(v)

]
dσ dv∗

Gain Loss

Pre- and post-collisional velocities are related as follows:

v ′ v ′∗

v

v∗

σ

θ

v ′ =
v + v∗

2
+
|v − v∗|

2
σ

v ′∗ =
v + v∗

2
− |v − v∗|
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cos θ = σ · v − v∗
|v − v∗|



Collision kernel

Q(f , g)(v) =

∫
R3

∫
S2
B(|v − v∗|, σ)

[
f (v ′∗)g(v ′)− f (v∗)g(v)

]
dσ dv∗

We take the non-cutoff collision kernel: for γ > −3 and s ∈ (0, 1),

B(|v − v∗|, σ) = |v − v∗|γb(cos θ),

where
b(cos θ) ≈ θ−2−2s as θ → 0.

Singularity at θ = 0 induces fractional differentiation of order 2s in the v
variable.
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Soft potentials

In our main result, we assume

γ < 0,

but otherwise do not place any restrictions on γ and s.

There are fewer results dealing with γ close to −3.
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Regularizing effect

Because of the singularity in Q(f , f ), the Boltzmann equation has a
hypoelliptic smoothing effect.

This smoothing effect has been understood in several ways. For the
large-data, inhomogeneous case, we have:

Entropy dissipation estimates of
[Alexandre-Desvillettes-Villani-Wennberg, ARMA 2000].

Smoothing via iteration of hypoelliptic estimates [Chen-He, ARMA
2012].

Conditional regularity in terms of mass/energy/entropy bounds,
culminating in [Imbert-Silvestre, JAMS 2022].
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Local existence

It is natural to expect that the smoothing properties of the equation could
be leveraged to construct smooth solutions for low-regularity initial data.

This has been done for close-to-equilibrium solutions: see e.g.
[Alonso-Morimoto-Sun-Yang, preprint, 2020], [Duan-Liu-Sakamoto Strain,
CPAM, 2021], [Zhang, preprint, 2020], [Silvestre-S, Math. Eng. 2023].

In the space homogeneous case, local existence for irregular initial data has
been understood for some time: see e.g. [Desvillettes-Wennberg, CPDE
2005], [Chen-He, ARMA 2011].
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Local existence

By contrast, prior existence results for non-pertubative classical solutions
require nice initial data.

Most require fin to have at least 4 Sobolev derivatives in (x , v) and
Gaussian or high polynomial decay in v , e.g. [Alexandre-Morimoto-Ukai-
Xu-Yang, ARMA 2010 and KRM 2011], [Morimoto-Yang, Anal. Appl.
2015], [Henderson-S-Tarfulea, KRM 2020], [Henderson-Wang, SIMA, to
appear].

The only results that need less than four derivatives are restricted to the
case s ∈ (0, 12): [Alexandre-Morimoto-Ukai-Xu-Yang, KRM 2013], [another
theorem in Henderson-Wang, SIMA, to appear].
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Main result

Recall the notation 〈v〉 = (1 + |v |2)1/2.

Theorem (Henderson-S-Tarfulea, preprint 2022)

Suppose the initial data fin ≥ 0 satisfies

〈v〉qfin ∈ L∞(R6) for some q > 2s + 3, and

fin ≥ δ in Br (x0)× Br (v0) for some δ, r > 0 and (x0, v0) ∈ R6.

Then there exists T > 0 depending on ‖fin‖L∞q and a classical solution f

of the Boltzmann equation such that 〈v〉qf ∈ L∞([0,T ]× R6) and f is
locally Hölder continuous of order 2s+ (in the kinetic scaling).

The solution agrees with fin in a weak sense (integration against test
functions).

If, in addition, fin is continous, then we can show fin = limt↓0 f (t).
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What do we mean by classical solution?

Our solutions are locally C 2s+α with respect to a distance d` that is
adapted to the scaling and translation symmetries of kinetic equations
with v -diffusion of order 2s.

This is enough to make pointwise sense of (∂t + v · ∇x)f and Q(f , f ).

If fin has more decay in v , then f has more regularity: for any
multi-index k = (kt , kx , kv ), there exists q(k) so that Dk f exists
pointwise whenever 〈v〉q(k)fin ∈ L∞.

If fin decays faster than any polynomial, then the solution f is C∞.
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Local positivity assumption

In our main theorem, we need to assume

fin ≥ δ in Br (x0)× Br (v0),

for some δ, r > 0 and (x0, v0) ∈ R6. (This is automatically true if fin is
continuous and not identically zero, but our fin may be discontinuous.)

This local lower bound for fin spreads to the entire domain for t > 0
[Henderson-S-Tarfulea, CVPDE, 2020].

Without quantitative lower bounds for f , we cannot access the smoothing
properties of Q(f , ·).
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Weak solutions

Theorem (Henderson-S-Tarfulea, preprint 2022)

Suppose the initial data fin ≥ 0 satisfies

(1 + |v |q)fin ∈ L∞(R6) for some q > γ + 2s + 3.

Then there exists a weak solution f of the Boltzmann equation with
(1 + |v |q)f ∈ L∞([0,T ]× R6).

Weak solution: for any compactly supported ϕ ∈ C 1
t,xC

2
v ([0,T )× R6),∫

R6

finϕdv dx =

∫ T

0

∫
R6

[f (∂t + v · ∇x)ϕ+ W (f , f , ϕ)]dv dx dt,

where W (f , f , ϕ) =

1

2

∫
R3

∫
S2
B(v − v∗, σ)f (v)f (v∗)[ϕ(v ′∗) + ϕ(v ′)− ϕ(v∗)− ϕ(v)]dσ dv∗

is Maxwell’s weak form of the collision operator.
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Lower bound condition necessary?

Interesting challenge: understand the regularity (or irregularity) of our
weak solutions when fin is not uniformly positive in any ball in R6.

This would likely require new a priori regularity estimates that do not need
as strong positivity properties for the solution f .
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Existence of classical solutions

Ingredients of our proof:

An approximation procedure based on smoothing the initial data and
cutting off large velocities, giving solutions f ε.

Weighted L∞ estimates: if 〈v〉qf εin ∈ L∞, then 〈v〉qf ε(t) ∈ L∞ up to
some time T > 0.

Apply [Henderson-S-Tarfulea, CVPDE 2020] to conclude f ε satisfies
good lower bounds for positive times.

Regularity estimates as in [Imbert-Silvestre, JAMS 2022] that are
sufficient to take the limit in ε.
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Why work in weighted L∞x ,v spaces?

The method of L2-based energy estimates does not seem compatible with
working in a zeroth-order space.

Multiply the equation by ψ(x)f and
integrate over R6:

1

2

d

dt

∫
R6

ψf 2 dx dv =

∫
R6

(
−1

2
f 2v · ∇xψ + ψfQ(f , f )

)
dx dv

First problem: cannot bound the last term using an L2 norm of f , because
it is cubic in f and because higher integrability in v is needed to control
the |v − v∗|γ singularity.

In order to stay in L2-based spaces, must bound derivatives of f and use
Sobolev embedding.

This forces one to work in a higher-order space.
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There are also terms from Q(f , f ) that grow for large |v |, depending on γ
and s.

A common solution is to divide f by e(ρ−κt)|v |
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, but this requires Gaussian

decay for fin. More intricate methods (e.g. [Morimoto-Yang 2015,
Henderson-Wang 2021]) also require relatively high polynomial decay.
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Decay estimates

Instead of the energy method, we prove weighted L∞ estimates via a
barrier argument.

In the γ < 0 case, the decay of f in v is limited by the decay of fin.

To show g = Neβt |v |−q is a valid barrier, need the functional inequality

Q(f , 〈v〉−q) ≤ C‖〈v〉qf ‖L∞〈v〉−q.

Decay of order q is needed for both the solution f and the barrier g .

This is reminiscent of the decay estimates of [Imbert-Mouhot-Silvestre, J.
Ecole Poly. 2020], who showed that decay estimates at t = 0 are
propagated for as long as the mass, energy, and entropy densities are
under control.

Unlike their result, our estimates hold only up to a finite time T , but we
obtain an upper bound for ‖〈v〉qf ‖L∞ depending only on the initial data
and T .
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Side note about barriers

Since Q(·, ·) is nonlocal in both arguments, bounding Q(f , g) needs to use
information about f and g in all of R3

v .

We previously established an existence result for the Landau equation in a
similar spirit to this one. [Henderson-S-Tarfulea, Annales IHP 2020].

In that study, barrier arguments were more convenient because the Landau
collision operator QL(f , g) is local in g . To bound QL(f , g) at the point
where f and g cross, one only needs information about g at the crossing
point.
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More subtle decay estimates

In our approximation argument, we also need to propagate higher decay
norms ‖〈v〉qf ‖L∞ up to a uniform time interval [0,T ] independent of q.

Why is this needed? Recall that we approximate fin by compactly
supported f εin and apply prior existence results to obtain solutions f ε on
[0,Tε].

We want to continue f ε up to a uniform time interval, but the available
continuation criteria require the qualitative assumption of rapid decay.

Even though f εin decays faster than any polynomial rate, no available prior
results ensure the same is true for f ε for t > 0, except when γ > −3

2 .
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More subtle decay estimates

Returning to our barrier argument, we want to use Neβt〈v〉−q as a barrier
even when f does not have pointwise decay of order q.

This requires a sharper functional estimate

Q(f , 〈v〉−q) ≤ C‖〈v〉q0f ‖L∞〈v〉−q for q0 ≤ q ≤ q0 + |γ|.

This can be used to show 〈v〉qf ∈ L∞([0,T ]× R6) where T > 0 depends
only on ‖〈v〉q0fin‖L∞ .

By carefully iterating this argument, after finitely many steps we reach any
q > 0 such that ‖〈v〉qfin‖L∞ <∞.
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Regularity estimates

To establish regularity of our solutions for positive times, we use the global
regularity theory of [Imbert-Silvestre, JAMS 2022], and our decay
estimates.

There are obstacles (some technical, some not-so-technical) to applying
these estimates in our setting.

In particular, when γ + 2s < 0, we have to modify the change of variables
used to pass from local to global regularity estimates.

These estimates give us enough compactness to take ε→ 0 and obtain f .
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Uniqueness

Nothing in the above argument guarantees that the solution is unique.

For a uniqueness result for non-cutoff Boltzmann in a related setting, see
the talk from Andrei Tarfulea on Wednesday.
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Thank you!
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