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Classical Nonlinear Elasticity (A.-L. Cauchy, G. Green)
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Classical Nonlinear Elasticity (A.-L. Cauchy, G. Green)

QCR? u Q) CR®
reference configuration deformed configuration

Total energy of elastic deformation

/QW(DU(X))dx—/Qf-udx.

~~

elastic external force

where W : R3%3 5 R stored energy function.
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Peridynamics

Silling 00 proposed a reformulation of classical continuum

mechanics. In its bond based variant the elastic energy is

I(u) = /Q /Q w(x — X', u(x) — u(x')) dx’ dx.
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Peridynamics

Silling 00 proposed a reformulation of classical continuum

mechanics. In its bond based variant the elastic energy is

_ /Q /Q wix — X', u(x) — u(x')) dx’ dx.

» non-local: points at a positive distance exert a force upon

Features:

each other.
> absence of gradients.

> main example: //| ; ()PP dx’ dx
x—x\a

» deformations with discontinuities do not require a separate

treatment.
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Existence of minimizers
The existence theory for models based on
/ / w(x — x', u(x) — u(x")) dx’ dx
QJQ

is relatively well-understood, via direct method of Calculus of

Variations. (Bellido & C.M-C. 14)
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Existence of minimizers

The existence theory for models based on

/ / w(x — X', u(x) — u(x')) dx’ dx
QJQ
is relatively well-understood, via direct method of Calculus of

Variations. (Bellido & C.M-C. 14)
Based on previous results:

Lower semicontinuity: Boulanger, Elbau, Pontow & Scherzer 11

Coercivity: Bourgain, Brezis & Mironescu 02,
Ponce 04,

Andreu, Mazdn, Rossi & Toledo 08, 09,
Aksoylu & Mengesha 10,

Aksoylu & Parks 11,

Hinds & Radu 12,

Hurri-Syrjanen & Vahakangas 13.
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Nonlocal — local as horizon § — 0

(Bellido, C.M.-C., Pedregal 15)

L ! —u(x"))dx’ dx & u(x)) dx
W/Q/QOB(X’&W(X—X,U(X) (x")dx"d —>/QW(D (x)) dx.

Use Bourgain, Brezis & Mironescu 01, Ponce 04.

Apparently, we recover the classical model, but this limit passage
retrieves very few stored energies W. No Mooney-Rivlin is
recovered via this method. (Bellido, Cueto & C.M.-C. 20)
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Models based on nonlocal gradients

Based on Mengesha & Spector 15, Mengesha & Du 15, Shieh & Spector
15, 18, we adopt the model

I(u):/QW(gu(x))dx

where W : R™" — R is a typical stored-energy function in

hyperelasticity, and Gu is a nonlocal gradient:

Gu(x) = /Q u(x) = u(x’) ® —— X p(x — x')dx'.

|x — x| |x — x|

for a suitable kernel p.
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We adopt the functional setting of Shieh & Spector 15, 18: Q = R”",

Cn,s

/ —
p(x - X ) - |x _X/’n-&-s—l

for0<s <1, so
Gu(x) = D°u(x) = c,,js/
R

is Riesz' s-fractional gradient.

u(x) —u(x)  x—x
'

dx’

nolx = X|Ts T |x —x
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The functional space
H>P(R") = {u € LP(R™) : D°u € LP(R")}

coincides with Bessel potential space.
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R

is Riesz' s-fractional gradient.

u(x) —u(x)  x—x
'

dx’

nolx = X|Ts T |x —x

The functional space

H>P(R") = {u € LP(R™) : D°u € LP(R")}
coincides with Bessel potential space.
We have analogues of:

> Sobolev-Gagliardo-Nirenberg: ||ul[ ;- (gny < C|[D*ul|p(wn)-
» Rellich—-Kondrachov: H*P(R") with u = ug in R"\ Q is
compactly embedded in LP(R").
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The dual operator of D? is the s-fractional divergence div®, so that

integration by parts hold (Mengesha & Spector 15)

/ D*u(x) - g(x) dx = — / u(x) div’ 6(x) dx.

8/15



The dual operator of D? is the s-fractional divergence div®, so that

integration by parts hold (Mengesha & Spector 15)
/ D?u(x) - ¢(x)dx = / u(x) div® ¢(x) dx.

We have the functional-analytic tools to start an existence theory

parallel to the classical theory.

8/15



Existence theory
For W polyconvex: Bellido, Cueto & C.M.-C. 20.

For W quasiconvex: Kreisbeck & Schonberger 21.
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Existence theory

For W polyconvex: Bellido, Cueto & C.M.-C. 20.
For W quasiconvex: Kreisbeck & Schonberger 21.
Two methods of proof:

» Adapt the proofs of classical case.

» Exploit the fact that every nonlocal gradient is a gradient: For
every u € HP there exists v € WP such that Dv = D*u,

and vice versa.
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A model for bounded domains

Main drawback of model

W(D?u(x)) dx, u=upin R"\ Q.
Rn
Interactions are assumed over whole R"; energy is calculated over

whole R”".
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A model for bounded domains

Main drawback of model
W(D?u(x)) dx, u=upin R"\ Q.
Rn
Interactions are assumed over whole R"; energy is calculated over

whole R”".

Go back to general nonlocal gradient

Gu(x) = /Q u(x) = u(x) ® X:‘ p(x — x")dx'.

|x — x| |x — x

Choose

with ws € C2°(B(0,0)) cut-off function, so p is a truncated Riesz

kernel.
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Framework

Nonlocal gradient

u(x) —uly)  x—y ws(x—y)
D3 u(x :c,,s/ ® dy.
R S o B P | P e

Energy
/ W(Dju(x)) dx.
Q

Domain for u: Q5 = Q + B(0, 6) ‘nonlocal clousure'.
Domain for D§u: €2 ‘nonlocal interior’.

Boundary conditions: u = ug in Qg s = €25\ Q ‘nonlocal boundary’.

Qps
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Funcional analysis framework

Functional space:

HSPO(Q) = {u € LP(Qs) : Diu € LP(Q)}.
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Funcional analysis framework

Functional space:

HSP3(Q) = {u € LP(Qs) : Dfu € LP(Q)}.
Subspace of homogeneous Dirichlet boundary conditions:
HEPO(Q_g) = {u € H¥P9(Q) : u=0in Q5 \ Q_(g} .
Poincaré inequality:

s,p,0
lull oy < CIDSull oy, u € HyP*(Qs).

Compactness: Hg’p’é(Q_g) is compactly embedded in LP(Q).
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Main tools

P Integration by parts:

Fractional: / D°u-¢ = —/ udiv® ¢.
Rn n

Nonlocal: /D§u~q§_—/udiv§¢.
Q Q
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Main tools

P Integration by parts:

Fractional: / D°u-¢ = —/ udiv® ¢.
Nonlocal: / Diu-¢ = —/ udivj ¢.
Q Q

» Fundamental Theorem of Calculus:

1 —
Classical: u(x) = / Du(y) - XY dy.

On—-1 ‘X _yw

Xy

Fractional: u(x) = Cn,—s/ D2u(y) - m dy.
X=Yy

n

Nonlocal: u(x) = / D5u(y) - V5 (x —y)dy.
Q
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Main tools

P Integration by parts:

Fractional: / D°u-¢ = —/ udiv® ¢.
Nonlocal: / Diu-¢ = —/ udivj ¢.
Q Q

» Fundamental Theorem of Calculus:

1 —
Classical: u(x) = / Du(y) - XY dy.
On—1 Jgn |x — y|"
Fractional: u(x) = D? A
ractional: u(x) = cp s ) u(y) - =y .

Nonlocal: u(x) = / Diu(y) - V5(x —y)dy.
Q
» Nonlocal and classical gradients:
Fractional: Every D°u is a Dv and vice versa.

Nonlocal: Every Dju is a Dv and vice versa.
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Existence theory
For polyconvex W': Bellido, Cueto & C.M.-C. 22.

For quasiconvex W': Cueto, Kreisbeck & Schonberger 22.
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Recent attempts of unifying theories based on nonlocal

gradients
D'Elia, Gulian, Olson & Karniadakis 21

D’Elia, Gulian, Mengesha & Scott 22
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