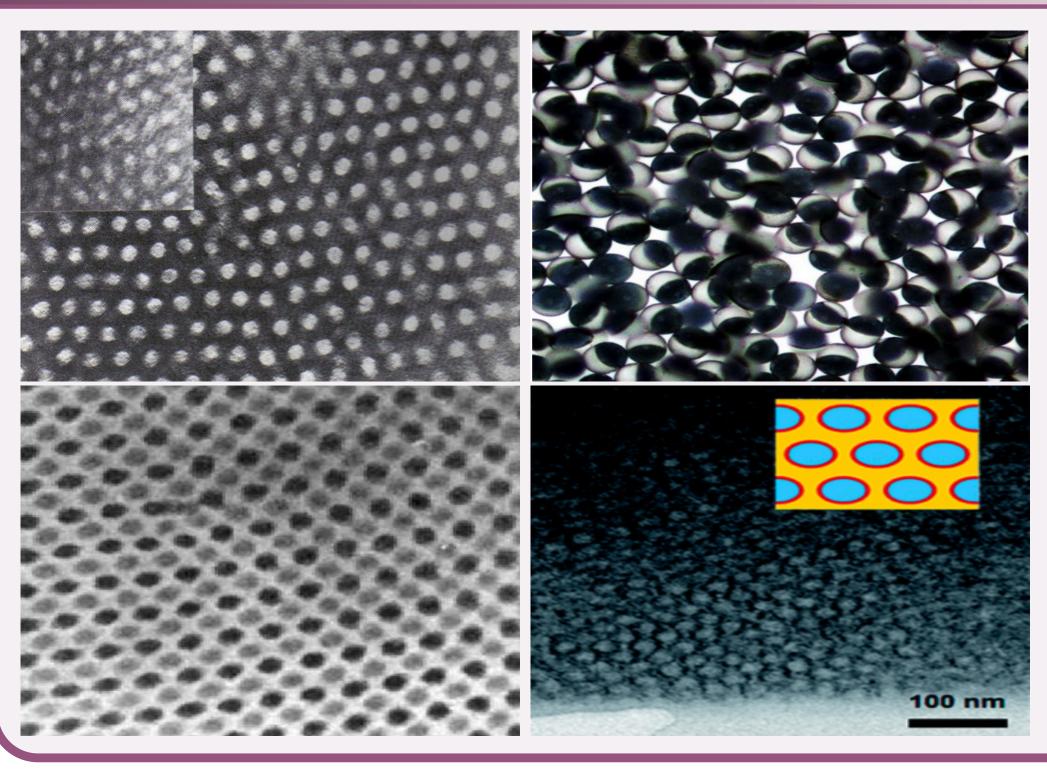


## **DIVERSE PATTERNS**



## **BLOCK COPOLYMERS**

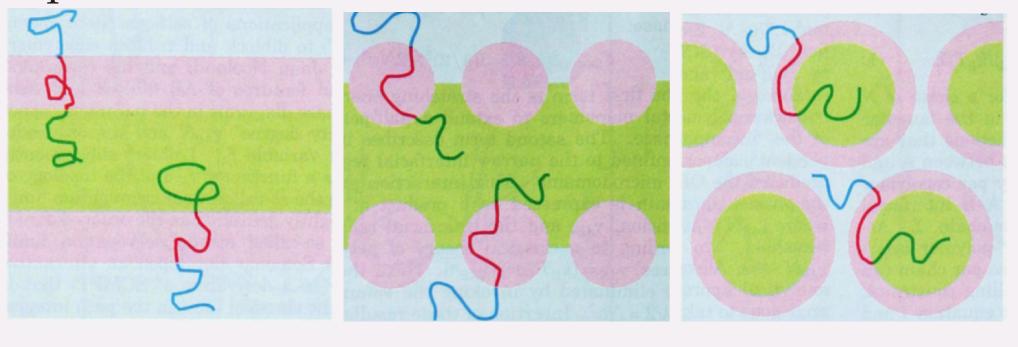
When two or different monomers unite together to polymerize, their result is called a **copolymer**. Copolymers can be classified based on how the monomers are arranged along the chain.

- Alternating copolymers
- Random copolymers Black conclumore

| • block copolymers        |
|---------------------------|
| — A— B— A— B— A— B— A— B— |

| — A— B— B— B— A— B— A— B— A— A— |
|---------------------------------|
|                                 |

Due to the repulsion between the unlike monomers, the different type sub-chains tend to segregate, but as they are chemically bonded in chain molecules, segregation of sub-chains cannot lead to a macroscopic phase separation. Only a local micro-phase separation occurs.



## COMMERCIAL USES

Wine Bottle Stoppers, Jelly Candles, Outdoor Covering for Optical Fibre Cables, Adhesives, Bitumen Modifiers, or in Artificial Organ Technology

# **Periodic Minimizers of a Ternary Non-Local Isoperimetric Problem Presenter**: Chong Wang **Collaborators**: Stanley Alama, Lia Bronsard, Xinyang Lu

### **ISOPERIMETRIC PROBLEMS**

#### An Isoperimetric Problem:

Find a subset  $\Omega$  of D, such that  $|\Omega| = \omega |D|$  and the perimeter of  $\Omega$  in D,  $\mathcal{P}_D(\Omega)$ , is the smallest. (Here  $D \subset \mathbb{R}^n$ : a bounded domain.  $\omega \in (0, 1)$ : a parameter.  $\mathcal{P}_D(\Omega) := \int_D |\nabla \chi_\Omega|$ , where

$$\int_{D} |\nabla \chi_{\Omega}| := \sup \left\{ \int_{D} \chi_{\Omega} \operatorname{div} \mathbf{g} \, dx : \mathbf{g} = (g_1, \cdots, g_n) \in C_c^1(D, \mathbb{R}) \right\}$$

#### **A Binary Non-Local Isoperimetric Problem:**

Find a subset  $\Omega$  of *D*, such that  $|\Omega| = \omega |D|$  to minimize

$$\mathcal{J}_B(\Omega) = \mathcal{P}_D(\Omega) + \frac{\gamma}{2} \int_D \int_D G(x, y) (\chi_\Omega(x) - \omega) (\chi_\Omega(y) - \omega) \, dx \, dy.$$

(Here  $D \subset \mathbb{R}^n$ : a bounded domain.  $\omega \in (0,1), \gamma > 0$ : two parameters. G(x,y): the Green's function of  $-\Delta$ .  $-\triangle G(\cdot, y) = \delta(\cdot - y) - \frac{1}{|D|} \text{ in } D, \ \partial_{\nu} G(\cdot, y) = 0 \text{ on } \partial D, \int_{D} G(x, y) dx = 0.)$ 

A Ternary Non-Local Isoperimetric Problem: Find  $\Omega_1 \subset D, \Omega_2 \subset D$ , such that  $|\Omega_1| = \omega_1 |D|, |\Omega_2| = \omega_2 |D|, |\Omega_1 \cap \Omega_2| = 0$ , to minimize

$$\mathcal{J}_T(\Omega_1, \Omega_2) = \frac{1}{2} \sum_{i=1}^3 \mathcal{P}_D(\Omega_i) + \sum_{i,j=1}^2 \frac{\gamma_{ij}}{2} \int_D \int_D G(x)$$

(Here  $D \subset \mathbb{R}^n$ : a bounded domain.  $\omega_1$ ,  $\omega_2$  both in (0,1). Moreover  $\omega_3 = 1 - (\omega_1 + \omega_2) \in (0,1)$ .  $\gamma =$  $\begin{vmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{12} & \gamma_{22} \end{vmatrix}$  : a 2 by 2 symmetric matrix. )

#### RESCALING

$$\mathcal{E}(u) = \frac{1}{2} \sum_{i=0}^{2} \int_{\mathbb{T}^2} |\nabla u_i| + \sum_{i,j=1}^{2} \frac{\gamma_{ij}}{2} \int_{\mathbb{T}^2} \int_{\mathbb{T}^2} G(x-y) \ u_i(x) \ u_j(y) dx dy.$$

Regime with two vanishing minority constituents:  $\int_{\mathbb{T}^2} u_i = \eta^2 M_i$ ,  $i = 1, 2, \eta \ll 1$ . Rescale  $u_i$  as  $v_{i,\eta} = \eta^{-2} u_i$ . Thus  $\int_{\mathbb{T}^2} v_{i,\eta} = M_i$ . Choose  $\gamma_{ij} = \frac{1}{|\log \eta| n^3} \Gamma_{ij}$ . Rescaled Energy:

$$E_{\eta}(v_{\eta}) = \frac{1}{\eta} \mathcal{E}(u) = \frac{\eta}{2} \sum_{i=0}^{2} \int_{\mathbb{T}^{2}} |\nabla v_{i,\eta}| + \sum_{i,j=1}^{2} \frac{\Gamma_{ij}}{2|\log \eta|} \int_{\mathbb{T}^{2}} |\nabla v_{i,\eta}| + \sum_{i,j=1}^{2} \frac{|\nabla v_{i,\eta}|}{2|\log \eta|} \int_{\mathbb{T}^{2}} |\nabla v_{i,\eta}|^{2} + \sum_{i,j=1}^{2} \frac{|\nabla v_{i,\eta}|}{2|\log \eta|} \int_{\mathbb{T}^{2}} |\nabla$$

Let  $z_{i,n}^k(x) = \eta^2 v_{i,n}^k(\eta x + \xi^k)$ , calculation yields

$$E_{\eta}(v_{\eta}) = \sum_{k=1}^{\infty} \left( \frac{1}{2} \sum_{i=0}^{2} \int_{\mathbb{R}^{2}} |\nabla z_{i,\eta}^{k}| + \sum_{i,j=1}^{2} \frac{\Gamma_{ij}}{4\pi} m_{i}^{k} m_{j}^{k} \right) + O(|\log \eta|^{-1}).$$

Consider  $\overline{e_0}(M) = \inf \left\{ \sum_{k=1}^{\infty} e_0(m^k) : m^k = (m_1^k, m_2^k), \ m_i^k \ge 0, \sum_{k=1}^{\infty} m_i^k = M_i, i = 1, 2 \right\}, \text{ where } e_0(m) = 0$  $p(m_1, m_2) + \sum_{i,j=1}^2 \frac{\Gamma_{ij} m_i m_j}{4\pi}, \ m = (m_1, m_2).$ 

 $\mathbb{R}^n$ , and  $|\mathbf{g}(x)| \leq 1$  for  $x \in D$ .)

 $(x, y)(\chi_{\Omega_i}(x) - \omega_i)(\chi_{\Omega_j}(y) - \omega_j) dxdy.$ 

 $\int_{\mathbb{T}^2} G(x-y) v_{i,\eta}(x) v_{j,\eta}(y) dx dy.$ 

## DIFFICULITIES

bles.

## RESULTS

Behaviour as  $\eta \rightarrow 0$ :

Minimizers at  $\eta$  level:

Let  $v_{\eta}^* = \eta^{-2} \chi_{\Omega_{\eta}}$  be minimizers of  $E_{\eta}$  for all  $\eta > 0$ . Then, there exists a subsequence  $\eta \to 0$  and  $K \in \mathbb{N}$ such that:

There exist connected clusters  $A^1, \ldots, A^K$  in  $\mathbb{R}^2$  and points  $x_{\eta}^k \in \mathbb{T}^2$ ,  $k = 1, \ldots, K$ , for which  $\eta^{-2} \left| \Omega_{\eta} \bigtriangleup \bigcup_{k=1}^{K} \left( \eta A^{k} + x_{\eta}^{k} \right) \right| \xrightarrow{\eta \to 0} 0;$ 

2. Each  $A^k$ , k = 1, ..., K is a minimizer of  $e_0(m^k)$ ,  $m^k = |A^k|$ ; Moreover,  $\overline{e_0}(M) = \lim_{\eta \to 0} E_\eta(v_\eta) =$  $\sum_{k=1}^{K} e_0(m^k).$ 

3.  $x_{\eta}^k \xrightarrow{\eta \to 0} x^k$ ,  $\forall k = 1 \dots, K$ .  $\{x^1, \dots, x^K\}$  attains the minimum of  $\mathcal{F}_K(y^1, \dots, y^K; \{m^1, \dots, m^K\})$  over all  $\{y^1, \ldots, y^K\}$  in  $\mathbb{T}^2$ .



No explicit formula for the perimeter of double bub-

(Coexistence) Given  $\Gamma_{11}$ ,  $\Gamma_{22}$ ,  $K_1$  and  $K_2 > 0$ , and  $\Gamma_{12} = 0$ , there exist  $M_1$  and  $M_2$  such that any minimizing configuration has at least  $K_1$  double bubbles and  $K_2$  single bubbles.

(All single bubbles) Given  $\Gamma_{11} > 0$ ,  $\Gamma_{22} > 0$ ,  $M_1 > 4M_1^*, M_2 > 4M_2^*$ , there exists a threshold  $\Gamma_{12}^*$  such that for all  $\Gamma_{12} > \Gamma_{12}^*$ , any minimizing configuration has no double bubbles.

(One double bubble) Given  $\Gamma_{ii}$ ,  $M_i$  $\min\{m_i^*, \pi\Gamma_{ii}^{-2/3}\}, i = 1, 2, \text{ and sufficiently small}$  $\Gamma_{12} > 0$  such that  $\frac{\Gamma_{12}}{2\pi}M_1M_2 + p(M_1, M_2) < 0$  $2\sqrt{\pi}(\sqrt{M_1} + \sqrt{M_2})$ , then there is a unique minimizer made of one double bubble.

• First level:  $E_{\eta} \xrightarrow{\Gamma} E_0$ .

• Second level:  $F_{\eta} \xrightarrow{\Gamma} F_{0}$ .

# CURRENT AND FUTURE WORK

Quaternary systems. Higher dimensions.