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Elliptic nonlocal operators

Let δ ∈ (0,∞] be the horizon,Ω ⊂ Rd a bounded open domain, define the interaction domain

ΩI := {y ∈ Rd \ Ω : |x − y| ≤ δ, for x ∈ Ω}.

We want to numerically solve equations involving the nonlocal operator

Lu(x) = p.v.

∫
Ω∪ΩI

(u(y)− u(x))γ(x, y)dy, x ∈ Ω,

with

γ(x, y) = φ(x, y) |x − y|−β(x,y) X|x−y|≤δ, x, y ∈ Ω ∪ ΩI,

φ(x, y) > 0.

Examples:

Integral fractional Laplacian: φ ∼ const, β = d+ 2s, s ∈ (0, 1), δ = ∞
Tempered fractional Laplacian: φ(x, y) ∼ exp(−λ|x − y|)
Truncated fractional Laplacian: δ finite
Variable order fractional Laplacians with varying coefficient: β(x, y) = d+ 2s(x, y),
φ(x, y) > 0
Integrable kernels: constant kernel (β = 0), “peridynamic” kernel (β = 1)

Assumptions (for now):

γ is symmetric.
Interaction domain is defined wrt `2-norm.
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Nonlocal Poisson’s equation:

−Lu = f inΩ,

u = 0 inΩI.

Nonlocal heat equation:

ut − Lu = f in (0, T)× Ω,

u = 0 in (0, T)× ΩI,

u = u0 on {0} × Ω.

Source control

Parameter learning:

min
u,s,δ,...

1

2
||u− ud||2L2 +R(s, δ, . . . )

subject to nonlocal equation.

Remark: Homogeneous Dirichlet “boundary” condition for simplicity.

Goal

Assemble and solve nonlocal equations in similar complexity & memory as their local

counterparts, i.e. O(n log n).

3 / 27



Bilinear form

We consider

a(u, v) =
1

2

∫
Ω
dx

∫
Ω
dy [(u (x)− u (y)) (v (x)− v (y))] γ(x, y)

+

∫
Ω
dx

∫
ΩI

dy u (x) v (x) γ(x, y).

posed on H̃s (Ω) or L2(Ω) respectively, where

Hs (Ω) :=
{
u ∈ L2 (Ω) | ||u||Hs(Ω) <∞

}
, H̃s (Ω) : =

{
u ∈ Hs

(
Rd

)
| u = 0 inΩc

}
,

and

||u||2Hs(Ω) = ||u||2
L2(Ω) +

∫
Ω
dx

∫
Ω
dy

(u(x)− u(y))2

|x − y|d+2s
,

||u||2
H̃s(Ω)

=

∫
Rd

dx

∫
Rd

dy
(u(x)− u(y))2

|x − y|d+2s
.

For δ = ∞, if γ(x, y) = ∇y · Γ(x, y), can reduce integral fromΩ× Ωc toΩ× ∂Ω.
(E.g. Γ(x, y) ∼ x−y

|x−y|d+2s for the constant-order fractional kernel.)
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Finite element approximation

Partition domain into shape-regular mesh Ph = {K} with edges e on the boundary ∂Ω.
Set Vh ⊂ H̃s (Ω) the space of continuous, piecewise linear functions.

a(u, v) =
1

2

∑
K

∑
K̃

∫
K

dx

∫
K̃

dy (u (x)− u (y)) (v (x)− v (y)) γ(x, y)

+
∑
K

∑
e

∫
K

dx u (x) v (x)

∫
e

dy ne · Γ(x, y).

dim Vh =: n

Approximate cut elements with simplices,O(h2K ) error
1

1Marta D’Elia, Max Gunzburger, and Christian Vollmann. “A cookbook for approximating Euclidean balls and for quadrature

rules in finite element methods for nonlocal problems”. In: Mathematical Models and Methods in Applied Sciences 31.08

(2021), pp. 1505–1567.
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Quadrature

In subassembly procedure, use quadrature to evaluate element pair contributions:

aK×K̃(φi, φj) =
1

2

∫
K

dx

∫
K̃

dy (φi(x)− φi(y)) (φj(x)− φj(y)) γ(x, y)

Treatment for element pairs K ∩ K̃ 6= ∅:

split K × K̃ into sub-simplices,

Duffy transform onto a hypercube, with Jacobian canceling the singularity.

Choose quadrature order so that quadrature error≤ discretization error
2
:

|log hK | if the elements coincide (red),
|log hK |2 if the elements share only an edge (yellow),
|log hK |3 if the elements share only a vertex (blue),
|log hK |4 if the elements are “near neighbours” (green), and
C if the elements are well separated.

2Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori

and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics

and Engineering (2017).
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O(n log n) approximations to the stiffness matrix
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s = 0.25

s = 0.75

Figure: Left: Fractional kernels in d = 1 dimensions. Right: Magnitude of matrix entries.

Depending on δ and h:

Straightforward discretization can lead to a fully dense matrix.

Assembly and solve would have at leastO(n2) complexity and memory requirement.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

Find low-rank representations of off-diagonal matrix blocks.

Lots of methods for computing a structurally sparse approximation, varying level of

intrusiveness. I will show what I use: panel clustering.

Important: we don’t want to assemble a dense matrix and then compress it.

Approximation incurs error. The game is to control it so that it is dominated by

discretization error.
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Cluster method: admissible clusters

First question: Which sub-blocks of the matrix do we want to compress?

Build tree of clusters of DoFs.

root contains all unknowns

subdivision based on coordinates

distributed computations: first level given

by partition of unknowns

Figure: A cluster tree in d = 1 dimensions.

Find cluster pairs (P,Q) that are
admissible for approximation: sufficient

separation compared to sizes.

Matrix entries that are not part of any

admissible cluster pair are assembled

directly into the sparse near-field matrix

Anear.
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Figure: Elements of admissible cluster pairs in blue.

Overlaps in dark blue.

8 / 27



Cluster method –H-matrices
Let P,Q ⊂ Ω, P and Q admissible.
Let φ, ψ be FE basis functions with suppφ ⊂ P, suppψ ⊂ Q.

a (φ, ψ) = −
∫
Ω

∫
Ω
γ (x, y)φ (x)ψ (y) .

Let ξPα be Chebyshev nodes in P and L
P
α the associated Lagrange polynomials. Then

γ (x, y) ≈
md∑

α,β=1

γ
(
ξPα, ξ

Q
β

)
LPα (x) LQβ (y) , x ∈ P, y ∈ Q.

and

a (φ, ψ) ≈ −
md∑

α,β=1

γ
(
ξPα, ξ

Q
β

)∫
P

φ (x) LPα (x) dx

∫
Q

ψ (y) LQβ (y) dy.

Decouples φ and ψ, “sparsifies” off-diagonal matrix blocks.

Replaces subblock of a(·, ·) with a low rank approximation UPΣ(P,Q)U
T
Q with tall and

skinny UP, UQ.

If we stop now, we have constructed a so-calledH-matrix approximation:

A ≈ Anear + Afar = Anear +
∑

(P,Q) admissible

UPΣ(P,Q)U
T
Q.
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Cluster method –H2-matrices
For x in a sub-cluster P of Q, i.e. P ⊂ Q,

LQα (x) =
md∑
β=1

LQα

(
ξPβ

)
LPβ (x) .

Need to compute

Far-field coefficients
∫
P
φ (x) LPα (x) dx only for leaves of the cluster tree,

shift coefficients LQα

(
ξPβ

)
,

kernel approximations γ
(
ξPα, ξ

Q
β

)
,

near-field entries.

H2-matrix approximation34

FE assembly and matrix-vector product inO
(
n log2d n

)
operations.

Finite δ: need to be able to form clusters that fit within the horizon.

Less intrusive but more costly way of computing far-field interactions via entry sampling:

Adaptive Cross Approximation (ACA)
3Mark Ainsworth and Christian Glusa. “Towards an efficient finite element method for the integral fractional Laplacian on

polygonal domains”. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan. Springer,

2018, pp. 17–57.
4Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori

and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics

and Engineering (2017).
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Operator interpolation5,6

Parameter learning problem requires operators for different values of s and δ.

Piecewise Chebyshev interpolation in s:

Lemma

Let s ∈ [smin, smax] ⊂ (0, 1), δ ∈ (0,∞), and let η > 0. Assume that u(s) ∈ H
s+1/2−
Ω (Rn),

v ∈ HsΩ(R
n). There exists a partition of [smin, smax] into sub-intervals Sk and interpolation

orders Mk such that the piecewise Chebyshev interpolant ã(·, ·; s, δ) satisfies:

|a(u(s), v; s, δ)− ã(u(s), v; s, δ)| ≤ η ||u(s)||
H
s2(s)
Ω (Rn)

||v||HsΩ(Rn) ,

and the total number of interpolation nodes satisfies

K∑
k=1

(Mk + 1) ≤ C |log η| .

The constant C depends on δ and smax.

Combined with hierarchical matrix approach: O(n log2d+1 n) complexity & memory.

Also allows to evaluate derivatives wrt s.

Assembly for different values of δ is achieved by splitting the kernel into infinite horizon,
singular part, and δ-dependent regular part.

5Olena Burkovska and Max Gunzburger. “Affine approximation of parametrized kernels and model order reduction for

nonlocal and fractional Laplace models”. In: SIAM Journal on Numerical Analysis 58.3 (2020), pp. 1469–1494.
6Olena Burkovska, Christian Glusa, and Marta D’Elia. “An optimization-based approach to parameter learning for fractional

type nonlocal models”. In: Computers & Mathematics with Applications (2021).
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Conditioning and scalable solvers

O(n log n)matrix-vector product in all cases→ can explore iterative solvers

Steady-state:

Fractional kernel, δ = ∞7
: κ(A) ∼ h

−2s ∼ n
2s/d

Fractional kernel, δ ≤ δ0
8
: κ(A) ∼ δ2s−2

h
−2s ∼ δ2s−2

n
2s/d

Constant kernel, δ finite8: κ(A) ∼ δ−2

Time-dependent:

κ(M+ ∆tA) ∼ 1 + ∆t κ(A)
Depending on time-stepper and CFL condition, this is well-conditioned for small s, large δ.

Scalable solver options:

Multigrid

Geometric (GMG)

Algebraic (AMG)

Domain decomposition

Substructuring

Schwarz methods

Krylov methods
The matrix is well-conditioned in the certain parameter regimes, e.g.

constant kernel, δ large, or
or fractional kernel, s small, δ large.

7Mark Ainsworth, William McLean, and Thanh Tran. “The conditioning of boundary element equations on locally refined

meshes and preconditioning by diagonal scaling”. In: SIAM Journal on Numerical Analysis 36.6 (1999), pp. 1901–1932.
8Burak Aksoylu and Zuhal Unlu. “Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces”. In: SIAM

Journal on Numerical Analysis 52.2 (2014), pp. 653–677.
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Geometric multigrid (GMG)

Hierarchy of meshes from uniform or adaptive refinement

Restriction / prolongation given by nesting of FE spaces

Assembly into hierarchical or CSR matrix format on every level

Smoothers:

Jacobi,

Chebyshev,

Gauss-Seidel when CSR matrix format is used.

Coarse solve: convert to dense or CSR matrix
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Numerical Examples in 2D – Timings
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Figure: Timings for assembly of the stiffness matrix for fractional kernels, δ = ∞, solution of linear system

using GMG and computation of the error indicators for the two-dimensional problem. s = 0.25 on the left,
s = 0.75 on the right.
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Fractional kernel, variable order9
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f ≡ 1, δ = 0.5

s(x, y) =
1

2
(σ(x1) + σ(y1))

σ(z) =


1/5 if z < −1/2,

2/5 if − 1/2 ≤ z < 0,

3/5 if 0 ≤ z < 1/2,

4/5 if 1/2 ≤ z.

f ≡ 1, δ = ∞

s(x, y) =


0.25 if x, y ∈ islands,

0.75 if x, y 6∈ islands,

0.75 else.

9Marta D’Elia and Christian A. Glusa. A fractional model for anomalous diffusion with increased variability. Analysis,

algorithms and applications to interface problems. (Accepted in Numerical Methods for Partial Differential Equations). 2021.

15 / 27



FEM convergence for variable s
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Figure: Convergence in L
2
and energy norm for a 1D example (left) and a 2D example with four material

layers (right).

Rate of convergence, fractional kernels

|||e||| ||e||L2
constant kernels (literature) h1/2−ε hmin{1,1/2+s}−ε

variable kernels (observed) h1/2−ε hmin{1,1/2+s}−ε

s = mins(x, y)

⇒ Possibly straightforward extension of regularity theory?
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Solvers for Time-Dependent Problems: CG and GMG
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Figure: Fractional kernel. Number of iterations for CG and GMG depending on∆t for s = 0.25 (left) and
s = 0.75 (right). ∆t

L2 is the time-step that balances discretisation errors in time and space with respect to

the L
2
-norm.

Conjugate gradient is a competitive solver when the fractional order s is small and the time

step∆t is not too large.
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Algebraic multigrid (WIP)
Motivation:

Adaptively refined / graded meshes can make geometric multigrid painful.

Use of established algebraic multigrid framework: Trilinos/MueLu

Lots of features (more smoothers, coarse solvers, multigrid cycles, etc)

Able to handle coefficient and mesh variations

Runs on lots of different computing architectures (CPU, threads, GPUs, etc)

Approach:

Algebraic multigrid constructs coarse problems using sparsity patterns and matrix entries

→ Cannot directly use matrix A when δ � h and hierarchical matrix format is used.

Construct hierarchy for an auxiliary operator:

PDE operators, e.g. (∇u,∇v),
(distance) Graph Laplacian wrt mesh,

near field part of hierarchical matrix after some filtering.

Triple matrix products Ac = RAP where R and P are sparse and A anH- orH2-matrix

Recompression of coarse matrix Ac

memory (finest level) iterations (time)

unknowns # MPI ranks dense H2 CG+AMG

11,193 4 0.93 GB 0.18 GB 7 (0.22s)

45,169 18 15.2 GB 0.89 GB 9 (0.82s)

181,473 72 245 GB 5.1 GB 15 (2.1s)

727,489 288 3,943 GB 17.8 GB 9 (3.75s)

n ∼ n ∼ n2 ∼ n log4 n constant # iterations?

Table: 2d fractional Poisson problem, s = 0.75, δ = ∞, smoothed aggregation
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Substructuring10,11,12

ΩI

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Assume δ = O(h).

Cover with overlapping subdomains

Ω ∪ ΩI =
⋃

Ωi, diam (Ωi ∩ Ωj) ∼ δ for adjacent
subdomains.

Duplicate unknowns in overlaps:

Au = f ⇔
(

Aεε MT

M 0

)(
uε
λ

)
=

(
fε
0

)
Aεε is block diagonal by subdomain,

partition-of-unity type scaling included.

For floating subdomains, local matrix Ap is singular.

M has entries {±1, 0}, encodes the identity
constraints on the overlaps (non-redundant).

10Giacomo Capodaglio, Marta D’Elia, Pavel Bochev, and Max Gunzburger. “An energy-based coupling approach to nonlocal

interface problems”. In: Computers & Fluids 207 (2020), p. 104593.
11Xiao Xu, Christian Glusa, Marta D’Elia, and John T. Foster. “A FETI approach to domain decomposition for meshfree

discretizations of nonlocal problems”. In: Computer Methods in Applied Mechanics and Engineering 387 (2021), p. 114148.
12WIP with Bochev, Capodaglio, D’Elia, Gunzburger, Klar, Vollmann
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Reduced system and Dirichlet preconditioner

Let nullspace of Aεε be given by Z.

Eliminate primal variables from(
Aεε MT

M 0

)(
uε
λ

)
=

(
fε
0

)
and obtain

P0Kλ = P0(MA
†
εεfε)

GTλ = ZT fε,

where K = MA
†
εεM

T , G = MZ, P0 = I− G(GTG)†GT .

Use projected CG to solve system.

P0 acts as a “coarse grid”.

Preconditioner for K:

Let Ap,Mp be local parts of Aεε andM.

Write K =
∑

P
p=1 MpA

†
pM

T
p =

∑
P
p=1 M̃pS

†
p M̃

T

p .

Dirichlet preconditioner: Q =
∑

P
p=1 M̃pSpM̃

T

p .

Results shown use Manuel Klar’s (U of Trier) assembly code

https://gitlab.uni-trier.de/klar/nonlocal-assembly
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Weak scaling – 2D, constant kernel
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Figure: δ = 8e− 3→ κ ∼ const
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Weak scaling – 2D, fractional kernel, s = 0.4
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s
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Strong scaling, 2D
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Figure: constant kernel, δ = 8h.
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Figure: fractional kernel, s = 0.4, δ = 8h.
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Schwarz methods (WIP, with Pierre Marchand (INRIA)

Drawback of substructuring: cannot handle δ � h.

Schwarz method

overlapping subdomain restrictions {Rp}, local matrices Ap = RpAR
T
p

partition of unity
∑

P
p=1 R

T
pDpRp = I, with {Dp} diagonal

additive Schwarz preconditioner: Q1 :=
∑

P
p=1 R

T
pA

−1
p Rp, or restricted additive Schwarz

No global information exchange→ need a coarse grid

GenEO approach:

Span coarse space using solutions of subdomain eigenvalue problems

DpApDpvp,k = λp,kBpvp,k , where Bp is similar to Ap, but assembled over a modified local
mesh.

DistributedH-matrix is built using Pierre Marchand’s Htool library
https://github.com/htool-ddm/htool

HPDDM library for DD and GenEO https://github.com/hpddm/hpddm

2D fractional Poisson problem, s = 0.75, δ = ∞
memory (finest level) iterations (time)

unknowns # MPI ranks dense H GMRES+DD

65,025 72 31.5 GB 5.4 GB 21 (1.34s)

261,121 288 508 GB 12.6 GB 23 (0.96s)

1,046,529 1152 8,160 GB 86 GB 24 (2.4s)

Caveats:

solver setup needs improvement, working on alternative low-rank approximations

direct solves (subdomain, coarse) and eigenvalue problems in dense format
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Advertisement: PyNucleus, a FEM code for nonlocal problems

Written in Python, lots of optimized kernels compiled to C via Cython.

Compatible with NumPy/SciPy

Simplical meshes in 1D, 2D, (3D); uniform refinement with boundary snapping options

Mesh (re)partitioning using (PAR)METIS

Finite Element discretizations: discontinuous P0, continuous P1, P2, P3

Assembly of local differential operators

Lots of solvers (direct, Krylov, simple preconditioners),

and in particular geometric multigrid

WIP: AMG (Trilinos/MueLu), DD (Htool&HPDDM)

MPI distributed computations via mpi4py

Assembly of the nonlocal operators in weak form:

a(u, v) =
1

2

∫∫
(Ω∪ΩI)2

(u(x)− u(y))(v(x)− v(y))γ(x, y)dydx

into

CSR sparse matrix (δ ∼ h),

dense matrix (δ � h),

H2
hierarchical matrix (δ � h; only tested for fractional kernels)

For fractional kernels: quadrature orders are tuned for optimal convergence.

Code: https://github.com/sandialabs/PyNucleus

Documentation and examples: https://sandialabs.github.io/PyNucleus
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Code example

1 from PyNucleus import (kernelFactory, nonlocalMeshFactory, dofmapFactory,
2 functionFactory, HOMOGENEOUS_DIRICHLET, solverFactory)
3

4 # Infinite horizon fractional kernel
5 kernel = kernelFactory('fractional', dim=2, s=0.75, horizon=inf)
6

7 # Mesh for unit disc, no interaction domain for homogeneous Dirichlet
8 mesh, _ = nonlocalMeshFactory('disc', kernel=kernel,
9 boundaryCondition=HOMOGENEOUS_DIRICHLET,
10 hTarget=0.15)
11

12 dm = dofmapFactory('P1', mesh) # P1 finite elements
13 f = functionFactory('constant', 1.) # constant forcing
14 b = dm.assembleRHS(f) #

∫
Ω fφi

15 A = dm.assembleNonlocal(kernel, matrixFormat='h2') # a(φi, φj), hierarchical
16 u = dm.zeros() # solution vector
17

18 # solve with diagonally preconditioned CG
19 solver = solverFactory('cg-jacobi', A=A, setup=True)
20 solver(b, u)
21 u.plot()

The documentation contains two examples of how to setup and solve local and nonlocal

problems with a lot more explanations.

The repository contains several drivers that demonstrate some of the code capabilities.
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Conclusion

Discretized fractional equations are dense, but not structurally dense.

→ approximation of off-diagonal matrix blocks

Multigrid and domain decomposition solvers are optimal for nonlocal problems.

Resulting approaches have essentially the same complexity as PDE case, allow for complex

domains.

Thanks for listening!

Funding:

The MATNIP LDRD project (PI: Marta D’Elia) develops for the first time a rigorous nonlocal

interface theory based on physical principles that is consistent with the classical theory of

partial differential equations when the nonlocality vanishes and is mathematically well-posed.

This will improve the predictive capability of nonlocal models and increase their usability at

Sandia and, more in general, in the computational-science and engineering community.

Furthermore, this theory will provide the groundwork for the development of nonlocal solvers,

reducing the burden of prohibitively expensive computations.
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