

Scalable methods for nonlocal models

Christian Glusa

Elliptic nonlocal operators

Let $\delta \in(0, \infty]$ be the horizon, $\Omega \subset \mathbb{R}^{d}$ a bounded open domain, define the interaction domain

$$
\Omega_{l}:=\left\{\boldsymbol{y} \in \mathbb{R}^{d} \backslash \Omega:|\boldsymbol{x}-\boldsymbol{y}| \leq \delta, \text { for } \mathbf{x} \in \Omega\right\}
$$

We want to numerically solve equations involving the nonlocal operator

$$
\mathcal{L} u(x)=\text { p.v. } \int_{\Omega \cup \Omega_{1}}(u(\boldsymbol{y})-u(\boldsymbol{x})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}, \quad \boldsymbol{x} \in \Omega
$$

with

$$
\begin{aligned}
& \gamma(\boldsymbol{x}, \boldsymbol{y})=\phi(\boldsymbol{x}, \boldsymbol{y})|\boldsymbol{x}-\boldsymbol{y}|^{-\beta(\boldsymbol{x}, \boldsymbol{y})} \mathcal{X}_{|\mathbf{x}-\boldsymbol{y}| \leq \delta}, \quad \boldsymbol{x}, \boldsymbol{y} \in \Omega \cup \Omega_{l}, \\
& \phi(\boldsymbol{x}, \boldsymbol{y})>0
\end{aligned}
$$

- Examples:

■ Integral fractional Laplacian: $\phi \sim$ const, $\beta=d+2 s, s \in(0,1), \delta=\infty$

- Tempered fractional Laplacian: $\phi(\boldsymbol{x}, \boldsymbol{y}) \sim \exp (-\lambda|\boldsymbol{x}-\boldsymbol{y}|)$
- Truncated fractional Laplacian: δ finite

■ Variable order fractional Laplacians with varying coefficient: $\beta(\mathbf{x}, \boldsymbol{y})=d+2 s(\boldsymbol{x}, \boldsymbol{y})$, $\phi(\boldsymbol{x}, \boldsymbol{y})>0$
■ Integrable kernels: constant kernel $(\beta=0)$, "peridynamic" kernel $(\beta=1)$

- Assumptions (for now):

■ γ is symmetric.

- Interaction domain is defined wrt ℓ_{2}-norm.

■ Nonlocal Poisson's equation:

$$
\begin{aligned}
-\mathcal{L} u & =f & & \text { in } \Omega, \\
u & =0 & & \text { in } \Omega_{1} .
\end{aligned}
$$

■ Nonlocal heat equation:

$$
\begin{aligned}
u_{t}-\mathcal{L} u & =f & & \text { in }(0, T) \times \Omega, \\
u & =0 & & \text { in }(0, T) \times \Omega_{1}, \\
u & =u_{0} & & \text { on }\{0\} \times \Omega .
\end{aligned}
$$

- Source control
- Parameter learning:

$$
\min _{u, s, \delta, \ldots} \frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}}^{2}+\mathcal{R}(s, \delta, \ldots)
$$

subject to nonlocal equation.
■ Remark: Homogeneous Dirichlet "boundary" condition for simplicity.

Goal

Assemble and solve nonlocal equations in similar complexity \& memory as their local counterparts, i.e. $\mathcal{O}(n \log n)$.

■ We consider

$$
\begin{aligned}
a(u, v)= & \frac{1}{2} \int_{\Omega} d \boldsymbol{x} \int_{\Omega} d \boldsymbol{y}[(u(x)-u(\boldsymbol{y}))(v(\mathbf{x})-v(\boldsymbol{y}))] \gamma(\boldsymbol{x}, \boldsymbol{y}) \\
& +\int_{\Omega} d \boldsymbol{x} \int_{\Omega_{I}} d \boldsymbol{y} u(\boldsymbol{x}) v(\boldsymbol{x}) \gamma(\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

posed on $\widetilde{H}^{s}(\Omega)$ or $L^{2}(\Omega)$ respectively, where
$H^{s}(\Omega):=\left\{u \in L^{2}(\Omega) \mid\|u\|_{H^{s}(\Omega)}<\infty\right\}, \quad \widetilde{H}^{s}(\Omega):=\left\{u \in H^{s}\left(\mathbb{R}^{d}\right) \mid u=0\right.$ in $\left.\Omega^{c}\right\}$, and

$$
\begin{aligned}
& \|u\|_{H^{s}(\Omega)}^{2}=\|u\|_{L^{2}(\Omega)}^{2}+\int_{\Omega} d \boldsymbol{x} \int_{\Omega} d \boldsymbol{y} \frac{(u(\boldsymbol{x})-u(\boldsymbol{y}))^{2}}{|\boldsymbol{x}-\boldsymbol{y}|^{d+2 s}} \\
& \|u\|_{\tilde{H}^{s}(\Omega)}^{2}=\int_{\mathbb{R}^{d}} d \boldsymbol{x} \int_{\mathbb{R}^{d}} d \boldsymbol{y} \frac{(u(\boldsymbol{x})-u(\boldsymbol{y}))^{2}}{|\boldsymbol{x}-\boldsymbol{y}|^{d+2 s}}
\end{aligned}
$$

\square For $\delta=\infty$, if $\gamma(\boldsymbol{x}, \boldsymbol{y})=\nabla_{\boldsymbol{y}} \cdot \boldsymbol{\Gamma}(\boldsymbol{x}, \boldsymbol{y})$, can reduce integral from $\Omega \times \Omega^{c}$ to $\Omega \times \partial \Omega$. (E.g. $\Gamma(\boldsymbol{x}, \boldsymbol{y}) \sim \frac{\boldsymbol{x}-\boldsymbol{y}}{|\boldsymbol{x}-\boldsymbol{y}|^{d+2 s}}$ for the constant-order fractional kernel.)

Finite element approximation

- Partition domain into shape-regular mesh $\mathcal{P}_{h}=\{K\}$ with edges e on the boundary $\partial \Omega$.
$■$ Set $V_{h} \subset \widetilde{H}^{s}(\Omega)$ the space of continuous, piecewise linear functions.

$$
\begin{aligned}
a(u, v)= & \frac{1}{2} \sum_{K} \sum_{\tilde{K}} \int_{K} d \boldsymbol{x} \int_{\tilde{K}} d \boldsymbol{y}(u(x)-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) \\
& +\sum_{K} \sum_{e} \int_{K} d \boldsymbol{x} u(\boldsymbol{x}) v(\boldsymbol{x}) \int_{e} d \boldsymbol{y} \boldsymbol{n}_{e} \cdot \Gamma(\boldsymbol{x}, \boldsymbol{y}) .
\end{aligned}
$$

$\operatorname{dim} V_{h}=: n$

- Approximate cut elements with simplices, $\mathcal{O}\left(h_{K}^{2}\right)$ error ${ }^{1}$

[^0]
Quadrature

- In subassembly procedure, use quadrature to evaluate element pair contributions:

$$
a^{K \times \tilde{K}}\left(\phi_{i}, \phi_{j}\right)=\frac{1}{2} \int_{K} d \boldsymbol{x} \int_{\tilde{K}} d \boldsymbol{y}\left(\phi_{i}(\boldsymbol{x})-\phi_{i}(\boldsymbol{y})\right)\left(\phi_{j}(\boldsymbol{x})-\phi_{j}(\boldsymbol{y})\right) \gamma(\boldsymbol{x}, \boldsymbol{y})
$$

- Treatment for element pairs $K \cap \tilde{K} \neq \emptyset$:

- split $K \times \tilde{K}$ into sub-simplices,
- Duffy transform onto a hypercube, with Jacobian canceling the singularity.
- Choose quadrature order so that quadrature error \leq discretization error ${ }^{2}$:

■ $\left|\log h_{K}\right|$ if the elements coincide (red),

- $\left|\log h_{K}\right|^{2}$ if the elements share only an edge (yellow),
- $\left|\log h_{K}\right|^{3}$ if the elements share only a vertex (blue),
- $\left|\log h_{K}\right|^{4}$ if the elements are "near neighbours" (green), and
- C if the elements are well separated.

[^1]
$\mathcal{O}(n \log n)$ approximations to the stiffness matrix

Figure: Left: Fractional kernels in $d=1$ dimensions. Right: Magnitude of matrix entries.

Depending on δ and h :

- Straightforward discretization can lead to a fully dense matrix.

■ Assembly and solve would have at least $\mathcal{O}\left(n^{2}\right)$ complexity and memory requirement.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

■ Find low-rank representations of off-diagonal matrix blocks.
■ Lots of methods for computing a structurally sparse approximation, varying level of intrusiveness. I will show what I use: panel clustering.

■ Important: we don't want to assemble a dense matrix and then compress it.
■ Approximation incurs error. The game is to control it so that it is dominated by discretization error.

Cluster method: admissible clusters

First question: Which sub-blocks of the matrix do we want to compress?

Build tree of clusters of DoFs.

- root contains all unknowns

■ subdivision based on coordinates
■ distributed computations: first level given by partition of unknowns

Figure: A cluster tree in $d=1$ dimensions.

■ Find cluster pairs (P, Q) that are admissible for approximation: sufficient separation compared to sizes.
■ Matrix entries that are not part of any admissible cluster pair are assembled directly into the sparse near-field matrix $A_{\text {near }}$.

Figure: Elements of admissible cluster pairs in blue. Overlaps in dark blue.

Cluster method - \mathcal{H}-matrices

Let $P, Q \subset \Omega, P$ and Q admissible.
Let ϕ, ψ be FE basis functions with $\operatorname{supp} \phi \subset P, \operatorname{supp} \psi \subset Q$.

$$
a(\phi, \psi)=-\int_{\Omega} \int_{\Omega} \gamma(\mathbf{x}, \boldsymbol{y}) \phi(\mathbf{x}) \psi(\boldsymbol{y})
$$

Let $\boldsymbol{\xi}_{\alpha}^{P}$ be Chebyshev nodes in P and L_{α}^{P} the associated Lagrange polynomials. Then

$$
\gamma(\boldsymbol{x}, \boldsymbol{y}) \approx \sum_{\alpha, \beta=1}^{m^{d}} \gamma\left(\boldsymbol{\xi}_{\alpha}^{P}, \boldsymbol{\xi}_{\beta}^{Q}\right) L_{\alpha}^{P}(\boldsymbol{x}) L_{\beta}^{Q}(\boldsymbol{y}), \quad \boldsymbol{x} \in P, \boldsymbol{y} \in Q
$$

and

$$
a(\phi, \psi) \approx-\sum_{\alpha, \beta=1}^{m^{d}} \gamma\left(\boldsymbol{\xi}_{\alpha}^{P}, \boldsymbol{\xi}_{\beta}^{Q}\right) \int_{P} \phi(\boldsymbol{x}) L_{\alpha}^{P}(\boldsymbol{x}) d \boldsymbol{x} \int_{Q} \psi(\boldsymbol{y}) L_{\beta}^{Q}(\boldsymbol{y}) d \boldsymbol{y}
$$

■ Decouples ϕ and ψ, "sparsifies" off-diagonal matrix blocks.
■ Replaces subblock of $a(\cdot, \cdot)$ with a low rank approximation $U_{P} \Sigma_{(P, Q)} U_{Q}^{T}$ with tall and skinny U_{P}, U_{Q}.
■ If we stop now, we have constructed a so-called \mathcal{H}-matrix approximation:

$$
A \approx A_{\text {near }}+A_{\text {far }}=A_{\text {near }}+\sum_{(P, Q) \text { admissible }} U_{P} \Sigma_{(P, Q)} U_{Q}^{T}
$$

Cluster method - \mathcal{H}^{2}-matrices

For \boldsymbol{x} in a sub-cluster P of Q, i.e. $P \subset Q$,

$$
L_{\alpha}^{Q}(\boldsymbol{x})=\sum_{\beta=1}^{m^{d}} L_{\alpha}^{Q}\left(\boldsymbol{\xi}_{\beta}^{p}\right) L_{\beta}^{P}(\boldsymbol{x})
$$

Need to compute
■ Far-field coefficients $\int_{P} \phi(x) L_{\alpha}^{P}(\mathbf{x}) d \boldsymbol{x}$ only for leaves of the cluster tree,
■ shift coefficients $L_{\alpha}^{Q}\left(\boldsymbol{\xi}_{\beta}^{P}\right)$,
$■$ kernel approximations $\gamma\left(\boldsymbol{\xi}_{\alpha}^{P}, \boldsymbol{\xi}_{\beta}^{Q}\right)$,
■ near-field entries.

\mathcal{H}^{2}-matrix approximation ${ }^{34}$

FE assembly and matrix-vector product in $\mathcal{O}\left(n \log ^{2 d} n\right)$ operations.

■ Finite δ : need to be able to form clusters that fit within the horizon.
■ Less intrusive but more costly way of computing far-field interactions via entry sampling: Adaptive Cross Approximation (ACA)

[^2]
Operator interpolation ${ }^{5,6}$

Parameter learning problem requires operators for different values of s and δ.
■ Piecewise Chebyshev interpolation in s:

Lemma

Let $s \in\left[s_{\min }, s_{\max }\right] \subset(0,1), \delta \in(0, \infty)$, and let $\eta>0$. Assume that $u(s) \in H_{\Omega}^{s+1 / 2-}\left(\mathbb{R}^{n}\right)$, $v \in H_{\Omega}^{s}\left(\mathbb{R}^{n}\right)$. There exists a partition of [$\left.s_{\text {min }}, s_{\text {max }}\right]$ into sub-intervals \mathcal{S}_{k} and interpolation orders M_{k} such that the piecewise Chebyshev interpolant $\tilde{a}(\cdot, \cdot ; s, \delta)$ satisfies:

$$
|a(u(s), v ; s, \delta)-\tilde{a}(u(s), v ; s, \delta)| \leq \eta\|u(s)\|_{H_{\Omega}^{\bar{s}_{2}(s)}\left(\mathbb{R}^{n}\right)}\|v\|_{H_{\Omega}^{s}\left(\mathbb{R}^{n}\right)},
$$

and the total number of interpolation nodes satisfies

$$
\sum_{k=1}^{K}\left(M_{k}+1\right) \leq C|\log \eta|
$$

The constant C depends on δ and $s_{\text {max }}$.

- Combined with hierarchical matrix approach: $\mathcal{O}\left(n \log ^{2 d+1} n\right)$ complexity \& memory.
- Also allows to evaluate derivatives wrt s.
- Assembly for different values of δ is achieved by splitting the kernel into infinite horizon, singular part, and δ-dependent regular part.

[^3]
Conditioning and scalable solvers

- $\mathcal{O}(n \log n)$ matrix-vector product in all cases \rightarrow can explore iterative solvers
- Steady-state:
- Fractional kernel, $\delta=\infty^{7}: \kappa(\boldsymbol{A}) \sim h^{-2 s} \sim n^{2 s / d}$
- Fractional kernel, $\delta \leq \delta_{0}{ }^{8}: \kappa(\mathbf{A}) \sim \delta^{2 s-2} h^{-2 s} \sim \delta^{2 s-2} n^{2 s / d}$
- Constant kernel, δ finite ${ }^{8}: \kappa(\mathbf{A}) \sim \delta^{-2}$

■ Time-dependent:
■ $\kappa(\mathbf{M}+\Delta t \mathbf{A}) \sim 1+\Delta t \kappa(\mathbf{A})$

- Depending on time-stepper and CFL condition, this is well-conditioned for small s, large δ.

■ Scalable solver options:
■ Multigrid

- Geometric (GMG)
- Algebraic (AMG)
- Domain decomposition

■ Substructuring

- Schwarz methods
- Krylov methods

The matrix is well-conditioned in the certain parameter regimes, e.g.

- constant kernel, δ large, or
- or fractional kernel, s small, δ large.

[^4]
Geometric multigrid (GMG)

■ Hierarchy of meshes from uniform or adaptive refinement

- Restriction / prolongation given by nesting of FE spaces

■ Assembly into hierarchical or CSR matrix format on every level
■ Smoothers:

- Jacobi,
- Chebyshev,

■ Gauss-Seidel when CSR matrix format is used.
■ Coarse solve: convert to dense or CSR matrix

Numerical Examples in 2D - Timings

Figure: Timings for assembly of the stiffness matrix for fractional kernels, $\delta=\infty$, solution of linear system using GMG and computation of the error indicators for the two-dimensional problem. $s=0.25$ on the left, $s=0.75$ on the right.

$$
\begin{aligned}
& f \equiv 1, \delta=0.5 \\
& s(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{2}\left(\sigma\left(\boldsymbol{x}_{1}\right)+\sigma\left(\boldsymbol{y}_{1}\right)\right)
\end{aligned}
$$

$$
\sigma(z)= \begin{cases}1 / 5 & \text { if } z<-1 / 2 \\ 2 / 5 & \text { if }-1 / 2 \leq z<0 \\ 3 / 5 & \text { if } 0 \leq z<1 / 2 \\ 4 / 5 & \text { if } 1 / 2 \leq z\end{cases}
$$

$$
\begin{aligned}
& f \equiv 1, \delta=\infty \\
& s(\boldsymbol{x}, \boldsymbol{y})= \begin{cases}0.25 & \text { if } \boldsymbol{x}, \boldsymbol{y} \in \text { islands }, \\
0.75 & \text { if } \boldsymbol{x}, \boldsymbol{y} \notin \text { islands }, \\
0.75 & \text { else } .\end{cases}
\end{aligned}
$$

[^5]
FEM convergence for variable s

Figure: Convergence in L^{2} and energy norm for a 1D example (left) and a 2D example with four material layers (right).

Rate of convergence, fractional kernels

	$\\|e\\|$	$\\|e\\|_{L^{2}}$
constant kernels (literature)	$h^{1 / 2-\varepsilon}$	$h^{\min \{1,1 / 2+s\}-\varepsilon}$
variable kernels (observed)	$h^{1 / 2-\varepsilon}$	$h^{\min \{1,1 / 2+\underline{s}\}-\varepsilon}$
$\underline{s}=\operatorname{mins}(\boldsymbol{x}, \boldsymbol{y})$		
\Rightarrow Possibly straightforward extension of regularity theory?		

Solvers for Time-Dependent Problems: CG and GMG

4 -	A	$\triangle \triangle$
G, $h=0.516$	- CG, $h=0.13$	$\bigcirc-\mathrm{CG}, h=0.0341$
$\triangle \mathrm{MG}, h=0.266$	$\triangle \triangle \mathrm{MG}, h=0.06$	$\triangle \mathrm{MG}, h=0.0171$
- CG, $h=0.266$	$\bigcirc \mathrm{CG}, h=0.0679$	$\bigcirc \bigcirc \mathrm{CG}, h=0.0171$

- \pm MG,$h=0.516$	\triangle -	$\triangle \triangle \mathrm{MG}, h=0.0341$
G, $h=0.516$. 13	$\bigcirc \mathrm{CG}, h=0.0341$
$\triangle \mathrm{MG}, h=0.266$	$\triangle \triangle \mathrm{MG}, h=0.067$	$\triangle \triangle \mathrm{MG}, h=0.0171$
- CG, $h=0.266$	$\bigcirc \mathrm{CG}, h=0.0679$	$\bigcirc \bigcirc \mathrm{CG}, h=0.0171$

Figure: Fractional kernel. Number of iterations for CG and GMG depending on Δt for $s=0.25$ (left) and $s=0.75$ (right). $\Delta t_{L^{2}}$ is the time-step that balances discretisation errors in time and space with respect to the L^{2}-norm.

Conjugate gradient is a competitive solver when the fractional order s is small and the time step Δt is not too large.

Algebraic multigrid (WIP)

Motivation:

- Adaptively refined / graded meshes can make geometric multigrid painful.
- Use of established algebraic multigrid framework: Trilinos/MueLu

■ Lots of features (more smoothers, coarse solvers, multigrid cycles, etc)

- Able to handle coefficient and mesh variations
- Runs on lots of different computing architectures (CPU, threads, GPUs, etc)

Approach:
■ Algebraic multigrid constructs coarse problems using sparsity patterns and matrix entries \rightarrow Cannot directly use matrix \boldsymbol{A} when $\delta \gg h$ and hierarchical matrix format is used.

- Construct hierarchy for an auxiliary operator:
- PDE operators, e.g. $(\nabla u, \nabla v)$,

■ (distance) Graph Laplacian wrt mesh,

- near field part of hierarchical matrix after some filtering.

■ Triple matrix products $\boldsymbol{A}_{c}=\boldsymbol{R A P}$ where \boldsymbol{R} and \mathbf{P} are sparse and \mathbf{A} an \mathcal{H} - or \mathcal{H}^{2}-matrix

- Recompression of coarse matrix $\boldsymbol{A}_{\boldsymbol{c}}$

		memory (finest level)		iterations (time)
unknowns	\# MPI ranks	dense	\mathcal{H}^{2}	CG+AMG
11,193	4	0.93 GB	0.18 GB	$7(0.22 \mathrm{~s})$
45,169	18	15.2 GB	0.89 GB	$9(0.82 \mathrm{~s})$
181,473	72	245 GB	5.1 GB	$15(2.1 \mathrm{~s})$
727,489	288	$3,943 \mathrm{~GB}$	17.8 GB	$9(3.75 \mathrm{~s})$
n	$\sim n$	$\sim n^{2}$	$\sim n \log ^{4} n$	constant \# iterations?

Table: 2d fractional Poisson problem, $s=0.75, \delta=\infty$, smoothed aggregation

- Assume $\delta=\mathcal{O}(h)$.
- Cover with overlapping subdomains $\Omega \cup \Omega_{I}=\bigcup \Omega_{\mathrm{i}}$, diam $\left(\Omega_{i} \cap \Omega_{j}\right) \sim \delta$ for adjacent subdomains.

■ Duplicate unknowns in overlaps:

$$
\mathbf{A} \mathbf{u}=\mathbf{f} \Leftrightarrow\left(\begin{array}{cc}
\mathbf{A}_{\epsilon \epsilon} & \mathbf{M}^{\top} \\
\mathbf{M} & 0
\end{array}\right)\binom{\mathbf{u}_{\epsilon}}{\boldsymbol{\lambda}}=\binom{\mathbf{f}_{\epsilon}}{0}
$$

- $\boldsymbol{A}_{\epsilon \epsilon}$ is block diagonal by subdomain, partition-of-unity type scaling included.
- For floating subdomains, local matrix A_{p} is singular.
- \boldsymbol{M} has entries $\{ \pm 1,0\}$, encodes the identity constraints on the overlaps (non-redundant).

[^6]
Reduced system and Dirichlet preconditioner

■ Let nullspace of $\boldsymbol{A}_{\epsilon \epsilon}$ be given by \mathbf{Z}.
■ Eliminate primal variables from

$$
\left(\begin{array}{cc}
\mathbf{A}_{\epsilon \epsilon} & \mathbf{M}^{\top} \\
\mathbf{M} & 0
\end{array}\right)\binom{\mathbf{u}_{\epsilon}}{\boldsymbol{\lambda}}=\binom{\mathbf{f}_{\epsilon}}{0}
$$

and obtain

$$
\begin{aligned}
\boldsymbol{P}_{0} K \lambda & =\boldsymbol{P}_{0}\left(\mathbf{M A}_{\epsilon \epsilon}^{\dagger} \boldsymbol{f}_{\epsilon}\right) \\
\boldsymbol{G}^{\top} \boldsymbol{\lambda} & =\boldsymbol{Z}^{\top} \boldsymbol{f}_{\epsilon},
\end{aligned}
$$

where $\boldsymbol{K}=\mathbf{M A}_{\epsilon \epsilon}^{\dagger} \mathbf{M}^{\boldsymbol{\top}}, \mathbf{G}=\mathbf{M Z}, \mathbf{P}_{0}=\mathbf{I}-\mathbf{G}\left(\mathbf{G}^{\boldsymbol{T}} \mathbf{G}\right)^{\dagger} \mathbf{G}^{\boldsymbol{\top}}$.
■ Use projected CG to solve system.

- P_{0} acts as a "coarse grid".
- Preconditioner for \boldsymbol{K} :
- Let $\boldsymbol{A}_{p}, \mathbf{M}_{p}$ be local parts of $\boldsymbol{A}_{\epsilon \epsilon}$ and \mathbf{M}.
- Write $\boldsymbol{K}=\sum_{p=1}^{P} \mathbf{M}_{p} \boldsymbol{A}_{p}^{\dagger} \boldsymbol{M}_{p}^{\top}=\sum_{p=1}^{P} \widetilde{\mathbf{M}}_{p} \boldsymbol{S}_{p}^{\dagger} \widetilde{\mathbf{M}}_{p}^{\top}$.

■ Dirichlet preconditioner: $\mathbf{Q}=\sum_{p=1}^{P} \widetilde{\mathbf{M}}_{p} \mathbf{S}_{p} \widetilde{\mathbf{M}}_{p}^{\top}$.

- Results shown use Manuel Klar's (U of Trier) assembly code https://gitlab.uni-trier.de/klar/nonlocal-assembly

Weak scaling - 2D, constant kernel

Figure: $\delta=8 e-3 \rightarrow \kappa \sim$ const

Figure: $\delta=4 h \rightarrow \kappa \sim N$

Weak scaling - 2D, fractional kernel, $s=0.4$

Figure: $\delta=8 e-3 \rightarrow \kappa \sim N^{s}$

Figure: $\delta=4 h \rightarrow \kappa \sim N$

Figure: constant kernel, $\delta=8$ h.

Figure: fractional kernel, $s=0.4, \delta=8 h$.

Schwarz methods (WIP, with Pierre Marchand (INRIA)

- Drawback of substructuring: cannot handle $\delta \gg h$.
- Schwarz method

■ overlapping subdomain restrictions $\left\{\boldsymbol{R}_{p}\right\}$, local matrices $\boldsymbol{A}_{p}=\boldsymbol{R}_{p} \boldsymbol{A} \boldsymbol{R}_{p}^{T}$
■ partition of unity $\sum_{p=1}^{P} \boldsymbol{R}_{p}^{\top} \boldsymbol{D}_{p} \boldsymbol{R}_{p}=\boldsymbol{I}$, with $\left\{\boldsymbol{D}_{p}\right\}$ diagonal

- additive Schwarz preconditioner: $\mathbf{Q}_{1}:=\sum_{p=1}^{p} \boldsymbol{R}_{p}^{\top} \boldsymbol{A}_{p}^{-1} \boldsymbol{R}_{p}$, or restricted additive Schwarz

■ No global information exchange \rightarrow need a coarse grid

- GenEO approach:

Span coarse space using solutions of subdomain eigenvalue problems
$\boldsymbol{D}_{p} \boldsymbol{A}_{p} \boldsymbol{D}_{p} \boldsymbol{v}_{p, k}=\lambda_{p, k} \boldsymbol{B}_{p} \boldsymbol{v}_{p, k}$, where \boldsymbol{B}_{p} is similar to \boldsymbol{A}_{p}, but assembled over a modified local mesh.

- Distributed \mathcal{H}-matrix is built using Pierre Marchand's Htool library
https://github.com/htool-ddm/htool
- HPDDM library for DD and GenEO https://github. com/hpddm/hpddm
- 2D fractional Poisson problem, $s=0.75, \delta=\infty$

		memory (finest level)		iterations (time)
unknowns	\# MPI ranks	dense	\mathcal{H}	GMRES+DD
65,025	72	31.5 GB	5.4 GB	$21(1.34 \mathrm{~s})$
261,121	288	508 GB	12.6 GB	$23(0.96 \mathrm{~s})$
$1,046,529$	1152	$8,160 \mathrm{~GB}$	86 GB	$24(2.4 \mathrm{~s})$

■ Caveats:
■ solver setup needs improvement, working on alternative low-rank approximations
■ direct solves (subdomain, coarse) and eigenvalue problems in dense format

Advertisement: PyNucleus, a FEM code for nonlocal problems

■ Written in Python, lots of optimized kernels compiled to C via Cython.
■ Compatible with NumPy/SciPy
■ Simplical meshes in 1D, 2D, (3D); uniform refinement with boundary snapping options
■ Mesh (re)partitioning using (PAR)METIS
■ Finite Element discretizations: discontinuous P_{0}, continuous P_{1}, P_{2}, P_{3}

- Assembly of local differential operators

■ Lots of solvers (direct, Krylov, simple preconditioners), and in particular geometric multigrid WIP: AMG (Trilinos/MueLu), DD (Htool\&HPDDM)
■ MPI distributed computations via mpi4py
■ Assembly of the nonlocal operators in weak form:

$$
a(u, v)=\frac{1}{2} \iint_{\left(\Omega \cup \Omega_{1}\right)^{2}}(u(x)-u(y))(v(x)-v(y)) \gamma(x, y) d y d x
$$

into
■ CSR sparse matrix ($\delta \sim h$),

- dense matrix ($\delta \gg h$),
- \mathcal{H}^{2} hierarchical matrix ($\delta \gg h$; only tested for fractional kernels)

■ For fractional kernels: quadrature orders are tuned for optimal convergence.
■ Code: https://github.com/sandialabs/PyNucleus
■ Documentation and examples: https://sandialabs.github.io/PyNucleus

Code example

```
from PyNucleus import (kernelFactory, nonlocalMeshFactory, dofmapFactory,
                functionFactory, HOMOGENEOUS_DIRICHLET, solverFactory)
# Infinite horizon fractional kernel
kernel = kernelFactory('fractional', dim=2, s=0.75, horizon=inf)
# Mesh for unit disc, no interaction domain for homogeneous Dirichlet
mesh, _ = nonlocalMeshFactory('disc', kernel=kernel,
                                    boundaryCondition=HOMOGENEOUS_DIRICHLET,
                        hTarget=0.15)
dm = dofmapFactory('P1', mesh) # P1 finite elements
f = functionFactory('constant', 1.) # constant forcing
b = dm.assembleRHS(f)
# \mp@subsup{\int}{\Omega}{}f\mp@subsup{\phi}{i}{}
A = dm.assembleNonlocal(kernel, matrixFormat='h2') #a(\phii, 价), hierarchical
u = dm.zeros() # solution vector
# solve with diagonally preconditioned CG
solver = solverFactory('cg-jacobi', A=A, setup=True)
solver(b, u)
u.plot()
```

■ The documentation contains two examples of how to setup and solve local and nonlocal problems with a lot more explanations.
■ The repository contains several drivers that demonstrate some of the code capabilities.

- Discretized fractional equations are dense, but not structurally dense.
\rightarrow approximation of off-diagonal matrix blocks
- Multigrid and domain decomposition solvers are optimal for nonlocal problems.
- Resulting approaches have essentially the same complexity as PDE case, allow for complex domains.

Thanks for listening!

MATNIP

Funding:
The MATNIP LDRD project (PI: Marta D'Elia) develops for the first time a rigorous nonlocal interface theory based on physical principles that is consistent with the classical theory of partial differential equations when the nonlocality vanishes and is mathematically well-posed. This will improve the predictive capability of nonlocal models and increase their usability at Sandia and, more in general, in the computational-science and engineering community. Furthermore, this theory will provide the groundwork for the development of nonlocal solvers, reducing the burden of prohibitively expensive computations.

References I

[1] Mark Ainsworth and Christian Glusa. "Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver". In: Computer Methods in Applied Mechanics and Engineering (2017).
[2] Mark Ainsworth and Christian Glusa. "Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains". In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan. Springer, 2018.
[3] Mark Ainsworth, William McLean, and Thanh Tran. "The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling". In: SIAM Journal on Numerical Analysis 36.6 (1999).
[4] Burak Aksoylu and Zuhal Unlu. "Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces". In: SIAM Journal on Numerical Analysis 52.2 (2014).
[5] Olena Burkovska, Christian Glusa, and Marta D'Elia. "An optimization-based approach to parameter learning for fractional type nonlocal models". In: Computers \& Mathematics with Applications (2021).
[6] Olena Burkovska and Max Gunzburger. "Affine approximation of parametrized kernels and model order reduction for nonlocal and fractional Laplace models". In: SIAM Journal on Numerical Analysis 58.3 (2020).
[7] Giacomo Capodaglio et al. "An energy-based coupling approach to nonlocal interface problems". In: Computers \& Fluids 207 (2020).

References II

[8] Marta D'Elia and Christian A. Glusa. A fractional model for anomalous diffusion with increased variability. Analysis, algorithms and applications to interface problems. 2021.
[9] Marta D'Elia, Max Gunzburger, and Christian Vollmann. "A cookbook for approximating Euclidean balls and for quadrature rules in finite element methods for nonlocal problems". In: Mathematical Models and Methods in Applied Sciences 31.08 (2021).
[10] Xiao Xu et al. "A FETI approach to domain decomposition for meshfree discretizations of nonlocal problems". In: Computer Methods in Applied Mechanics and Engineering 387 (2021).

[^0]: ${ }^{1}$ Marta D'Elia, Max Gunzburger, and Christian Vollmann. "A cookbook for approximating Euclidean balls and for quadrature rules in finite element methods for nonlocal problems". In: Mathematical Models and Methods in Applied Sciences 31.08 (2021), pp. 1505-1567.

[^1]: ${ }^{2}$ Mark Ainsworth and Christian Glusa. "Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver". In: Computer Methods in Applied Mechanics and Engineering (2017).

[^2]: ${ }^{3}$ Mark Ainsworth and Christian Glusa. "Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains". In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan. Springer, 2018, pp. 17-57.
 ${ }^{4}$ Mark Ainsworth and Christian Glusa. "Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver". In: Computer Methods in Applied Mechanics and Engineering (2017).

[^3]: ${ }^{5}$ Olena Burkovska and Max Gunzburger. "Affine approximation of parametrized kernels and model order reduction for nonlocal and fractional Laplace models". In: SIAM Journal on Numerical Analysis 58.3 (2020), pp. 1469-1494.
 ${ }^{6}$ Olena Burkovska, Christian Glusa, and Marta D'Elia. "An optimization-based approach to parameter learning for fractional type nonlocal models". In: Computers \& Mathematics with Applications (2021).

[^4]: ${ }^{7}$ Mark Ainsworth, William McLean, and Thanh Tran. "The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling". In: SIAM Journal on Numerical Analysis 36.6 (1999), pp. 1901-1932.
 ${ }^{8}$ Burak Aksoylu and Zuhal Unlu. "Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces". In: SIAM Journal on Numerical Analysis 52.2 (2014), pp. 653-677.

[^5]: ${ }^{9}$ Marta D'Elia and Christian A. Glusa. A fractional model for anomalous diffusion with increased variability. Analysis, algorithms and applications to interface problems. (Accepted in Numerical Methods for Partial Differential Equations). 2021.

[^6]: ${ }^{10}$ Giacomo Capodaglio, Marta D'Elia, Pavel Bochev, and Max Gunzburger. "An energy-based coupling approach to nonlocal interface problems". In: Computers \& Fluids 207 (2020), p. 104593.
 ${ }^{11}$ Xiao Xu, Christian Glusa, Marta D'Elia, and John T. Foster. "A FETI approach to domain decomposition for meshfree discretizations of nonlocal problems". In: Computer Methods in Applied Mechanics and Engineering 387 (2021), p. 114148.
 ${ }^{12}$ WIP with Bochev, Capodaglio, D'Elia, Gunzburger, Klar, Vollmann

