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Gaussian measure

dyi(x) = 712 g on R

@ Probability measure: /dfyl(x) = 1. Malliavin Calculus.
R
@ The Ornstein—Uhlenbeck operator
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is symmetric with respect to dvi: /(Lu)v dy = / u(Lv)dy
R R

Lu=—

Pablo Radl Stinga (lowa State University) Fractional powers and inverse measures July 19, 2022 3/16



Gaussian measure
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@ The Ornstein—Uhlenbeck operator
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Lu=—
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Gaussian measure

dyi(x) = 726 gy on R

Probability measure: / dy1(x) = 1. Malliavin Calculus.

R
@ The Ornstein—Uhlenbeck operator
ﬂ + 2)(ﬂ
dx? dx
is symmetric with respect to dvi: /(Lu)v dy = / u(Lv)dy
R R

@ Hermite polynomials

Lu=—
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Ho(x) = (~1)"e*

are eigenfuctions of L with LH, = 2nH,
Hermite polynomials form an orthogonal basis of L2(R, dv:)
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Gaussian measure

dyi(x) = 726 gy on R

o Probability measure: /d”yl(x) = 1. Malliavin Calculus.

R
@ The Ornstein—Uhlenbeck operator
d?’u du

R, Wi
dx? + de

is symmetric with respect to dv;: /(Lu)v dy = / u(Lv)dvy
R R

@ Hermite polynomials

Lu=

dn
dx”
are eigenfuctions of L with LH, = 2nH,

Ho(x) = (-1)"e=—(e™) n>0

@ Hermite polynomials form an orthogonal basis of L2(R, dv:)

@ Gaussian harmonic analysis: dv; is nondoubling and non-Ahlfors regular,
so classical CZ theory on metric measure spaces does not directly apply.
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Inverse Gaussian measure

dy-1(x) = /26X dx
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Inverse Gaussian measure

dy-1(x) = /26X dx

o Infinite measure: /dv_l(x) =00
R

@ The operator

B d?u 4 9x du
T dx? dx

is symmetric with respect to dy_i: /(ﬁu)v dy_1 = / u(Lv)dy_1
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Inverse Gaussian measure

dy-1(x) = /26X dx

o Infinite measure: /dv_l(x) =00
R

@ The operator

d?u 5 du

EU:W-F Xa

is symmetric with respect to dy_i: /(ﬁu)v dy_1 = / u(Lv)dy_1
R R

@ Are there polynomial eigenfunctions? LH, = A\, H,?
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Inverse Gaussian measure

dy-1(x) = /26X dx

Infinite measure: / dy-1(x) = o0
R

The operator

B d?u 4 9x du
T dx? dx

is symmetric with respect to dy_i: /(ﬁu)v dy_1 = / u(Lv)dy_1
R R

Are there polynomial eigenfunctions? LH, = A H,?

Lu

@ Orthonormal basis of L2(R, dvy_1)? Not polynomials anymore!
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Inverse Gaussian measure

dy-1(x) = /26X dx

Infinite measure: / dy-1(x) = o0
R

The operator

B d?u 4 9x du
T dx? dx

is symmetric with respect to dy_i: /(ﬁu)v dy_1 = / u(Lv)dy_1
R R

Are there polynomial eigenfunctions? LH, = A H,?

Lu

Orthonormal basis of L?(R, dv_1)? Not polynomials anymore!

Inverse Gaussian harmonic analysis: similar obstructions.
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Inverse Gaussian measure in geometry

A hypersurface ¥ in R"*! is a self-expander if

1
HZ = EXJ_

Hy: mean curvature vector on ¥; x: orthogonal projection of x onto the normal.
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Inverse Gaussian measure in geometry

A hypersurface ¥ in R"*! is a self-expander if

1
HZ = EXJ_

Hy: mean curvature vector on ¥; x: orthogonal projection of x onto the normal.
Equivalently, ¥; = VEE, t >0, is a mean curvature flow:

() -

Pablo Radl Stinga (lowa State University) Fractional powers and inverse measures July 19, 2022



Inverse Gaussian measure in geometry

A hypersurface ¥ in R"*! is a self-expander if

1
HZ = EXJ_

Hy: mean curvature vector on ¥; x: orthogonal projection of x onto the normal.
Equivalently, ¥; = VEE, t >0, is a mean curvature flow:

() -

» Self-expanders describe the asymptotic behavior and the local structure of
mean curvature flow after singularities for short times.
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Inverse Gaussian measure in geometry

A hypersurface ¥ in R"*! is a self-expander if

1
HZ = EXJ_

Hy: mean curvature vector on ¥; x: orthogonal projection of x onto the normal.

Equivalently, ¥, = +/t¥, t > 0, is a mean curvature flow:

()’ -

» Self-expanders describe the asymptotic behavior and the local structure of
mean curvature flow after singularities for short times.

A self-expander M is a critical point of the weighted volume functional
F(M) _ / e\X|2/4 dHn_l
M

Reference. T. llmanen, Lectures on mean curvature flow and related equations (1995)
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Fractional derivatives and integrals

For u:R — R, let

Dierru(x) = lim ——+——~
€ () t—0+ t t—0+t t

where the left translation semigroup is e~ tPetu(x) = u(x — t).
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Fractional derivatives and integrals

For u:R — R, let

Dierru(x) = lim ——+——~
€ () t—0+ t t—0+t t

where the left translation semigroup is e~ tPetu(x) = u(x — t).
For0 < a <1,

(Drefe)*u(x) = ﬁ /0°° (e_tD/efLu(X) _ U(X)) %

co [ U,

—00 (X - t)1+a

is the Marchaud fractional derivative;
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Fractional derivatives and integrals

For u:R — R, let

Dierru(x) = lim ——+——~
€ () t—0+ t t—0+t t

where the left translation semigroup is e~ tPetu(x) = u(x — t).
For0<a<1,
a 1 < Dt dt
(D)) = g [ (€7 u() = u(0) iz
x —u(t
oo (x—t)H

is the Marchaud fractional derivative; and

—« _ L o e—tD/e&u x dt
(D) () = 5 /0 (%)

Mo tl-o

“en [ g

is the Weyl fractional integral.
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Marchaud fractional derivative: PDE results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).
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Marchaud fractional derivative: PDE results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).
@ Using

/R((D/eft)au)v dx = /Ru((D,;ght)“v) dx

and one-sided test functions, we can define (D) u in the sense of
distributions.
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Marchaud fractional derivative: PDE results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).
@ Using

/R((D/eft)au)v dx = /Ru((D,;ght)“v) dx

and one-sided test functions, we can define (D) u in the sense of
distributions.

e Maximum principle. If (Der)*u < 0in (0, T] and u < 0 in (—00, 0] then
Sup(ﬂxﬂ—] u = Sup(ioo’O] u.
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Marchaud fractional derivative: PDE results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).
@ Using

/R((D/eft)au)v dx = /Ru((D,;ght)“v) dx

and one-sided test functions, we can define (Djr)®u in the sense of
distributions.

e Maximum principle. If (Der)*u < 0in (0, T] and u < 0 in (—00, 0] then
SUP(_ oo, 7] U = SUP(_ oo 0] U-

o Extension problem. If U = U(x,y) solves

y

—DierU + 22U, + Uy, =0 forxeR, y>0
U(x,0) = u(x) on R

then —d,yl=2® Uy(x,y)}y:(J = (Djefr)*u(x).
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Marchaud fractional derivative: PDE results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).
@ Using

/R((D/eft)au)v dx = /Ru((D,;ght)“v) dx

and one-sided test functions, we can define (Djr)®u in the sense of
distributions.

e Maximum principle. If (Der)*u < 0in (0, T] and u < 0 in (—00, 0] then
SUP(—oo,T] u= Sup(foo,ol u.
o Extension problem. If U = U(x,y) solves

—DierU + 522U, + Uy, =0 forx€R, y>0
U(x,0) = u(x ) on R
then —d,y! =2 Uy(x,y)}y:0 = (Djefr)*u(x).
e Harnack inequality. If u > 0in R, and (Djet)*u =0 in (0, 1), then

sup u<C inf wu.
(1/4,1/3) (1/2,3/4)
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Marchaud fractional derivative: real analysis results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).
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Marchaud fractional derivative: real analysis results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).

@ One-sided fractional Sobolev spaces. For 1 < p < oo and w € A (R)
(one-sided Sawyer weight)

WP(wP) = {u = (Dier)~%f : f € LP(wP)}

Characterizations with left fractional derivatives.
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Marchaud fractional derivative: real analysis results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).

@ One-sided fractional Sobolev spaces. For 1 < p < oo and w € A, (R)

(one-sided Sawyer weight)
WP(wP) = {u = (D)~ f : f € LP(wP)}

Characterizations with left fractional derivatives.

o Bourgain—Brezis—Mironescu-type result. For

WP(w) = {u € LP(w) : Dierrt € LP(w)}
we have
;@1(Dleft)au = Dipru in LP(w), 1 < p< oo, and a.e.

lim (Djese)*u = e.
lim (Diere) " u=u  ae

July 19, 2022
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Marchaud fractional derivative: real analysis results

References. Bernardis—Martin-Reyes—S.—Torrea (2016); S.—Vaughan (2020).

@ One-sided fractional Sobolev spaces. For 1 < p < oo and w € A, (R)
(one-sided Sawyer weight)

WP(wP) = {u = (D)~ f : f € LP(wP)}
Characterizations with left fractional derivatives.
o Bourgain—Brezis—Mironescu-type result. For
WYP(w) = {u € LP(w) : Dierets € LP(w)}
we have
Iiml(D,eft)“u = Dipru in LP(w), 1 < p< oo, and a.e.
a—r
lim (Djert)*u = .e.
lim (Diere) " u=u  ae
@ Fundamental Theorem of Fractional Calculus.

u(x) = !i_fPO(D/eft)?(D/eft)_au(X) in LP(wP) and a.e.
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First order differential operators

For a(x) continuous, let

Diefr,at(x) = Diert + a(x)u
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First order differential operators

For a(x) continuous, let
Diefr,at(x) = Diert + a(x)u

Fix xg € R and define

E(x) = Exa(x) = exp {— /X a(y) dy}
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First order differential operators

For a(x) continuous, let
Diefr,at(x) = Diert + a(x)u
Fix xg € R and define
X
() = 000 o0 |~ [ aty)ay]
X
It can be checked that

Diefr,ati(x) = E(x) D/eft(é’_l u)(x)
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First order differential operators

For a(x) continuous, let
Dleft,atl(x) = Dierrtr + a(x)u
Fix xg € R and define
X
E(x) = Expa(x) = exp {— / a(y) dy}
X0
It can be checked that

Diefr,ati(x) = E(x) D/eft(é’_l u)(x)

Lemma (Semigroup)

o tDkr.a u(x) = g(x)e_tD’e”(g_lU)(X)
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Fractional powers of first order differential operators

Positive fractional power is a modulation of Marchaud:

(Q/eft,a)aU(X) = ﬁ /000 (eft”D/eft,a U(X) _ U(X)) t](i'fa

e [ (00,

(X _ t)1+a

= E(X)(Drert)*(E ) (x)

—00
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Fractional powers of first order differential operators

Positive fractional power is a modulation of Marchaud:

(Deft,a)* u(x) = ﬁ /Ooo (eimm'a“(x) - U(X)) tl+a

e [ (00,

—o0 (X - t)1+a

= E(X)(Drert)*(E ) (x)

Negative fractional power is a modulation of Weyl:

(Diefr,a) “u(x) = ﬁ /OOO e~ ia y(x) tldfa
et [ i
= g(X)(D/eft)ia(gilu)(x)
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Fractional powers of first order differential operators

Positive fractional power is a modulation of Marchaud:

() ) = 2y [ (P00l - u() 5

e [ (00,

—o0 (X - t)1+a

= E(X)(Drert)*(E ) (x)

Negative fractional power is a modulation of Weyl:

(@/eft a)_ 0[)/ _tgkmau( )
X 1u
= C_ag( )/ ((f—t))l(()ldt

= E(x)(Drere) (€ u)(x)

» We can transfer results from (Djert) T to (Deft,n) T using modulation
(semigroup, distributions, maximum principle, extension, BBM-type results, etc)
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Sobolev spaces

Recall that, for w € A;(R) and a =0,

WhP(w) = {u € LP(w) : D € LP(w)}
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Sobolev spaces

Recall that, for w € A;(R) and a =0,

WhP(w) = {u € LP(w) : D € LP(w)}

Since, for any a(x),
E(X) ' Diefr, 2t = Diere (€ u)(x)

then the correct definition of Sobolev space associated with D ef 5 is

WEP(w {u € LP(E7PW) : Dieprau € L”(é'_pw)}
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Sobolev spaces

Recall that, for w € A;(R) and a =0,
WhP(w) = {u € LP(w) : D € LP(w)}

Since, for any a(x),
E(X) ' Diefr, 2t = Diere (€ u)(x)

then the correct definition of Sobolev space associated with D ef 5 is
WEP(w {u € LP(E7PW) : Dieprau € L”(é'_pw)}

Similarly,
WHP(wP) = {u- (Dierr,a) f 1 f € Lp(é'_pwp)}
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Sobolev spaces

Recall that, for w € A;(R) and a =0,
WhP(w) = {u € LP(w) : D € LP(w)}

Since, for any a(x),
E(X) ' Diefr, 2t = Diere (€ u)(x)

then the correct definition of Sobolev space associated with D ef 5 is
WEP(w {u € LP(E7PW) : Dieprau € L”(é'_pw)}
Similarly,
WHP(wP) = {u = (Diefr,a) “f: f € Lp(S_pwp)}
Conclusion. The natural LP space for analysis of (@[eft7a):ta is

LP(EP)={u:R—=R:Eue LP(R)}
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An important example

When a(x) = x,
Diert,all = Diert + xu

@ This is the natural derivative in harmonic analysis of Hermite expansions:

d? d D D
~ o T Xge = (Drere + x)(Dright)
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An important example

When a(x) = x,
Diert,all = Diert + xu

@ This is the natural derivative in harmonic analysis of Hermite expansions:

d? d D D
~ o T Xge = (Drere + x)(Dright)

By taking xg = 0,

E(x)7H =exp (/OX a(y) dy> = )2

and we end up with the inverse Gaussian space

22 ={u:R>R: e Puc 2(R)} = [2(R, dy_1)

Pablo Radl Stinga (lowa State University)

Fractional powers and inverse measures July 19, 2022



Eigenpolynomials for inverse Gaussian

Theorem (Mazzitelli-S.—Torrea, 2022)
The polynomials given by the Rodrigues formula

H(x) = (~1)"e ;’(n(exz) n>0

are eigenfunctions of L = dixzz < 2X% with LH, = 2nH,.
oo

. . 2_
Generating function formula: e~ = ZHH(X)—

n!
n=0

Three-term recurrence relation: Hn+1(x)il- 2xHp(x) —2nH,—1 =0 n>1.

There is a unique moment functional F such that

F(1)=1, F(H,Hm)=0 and F(H3)#0.
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Eigenpolynomials for inverse Gaussian

Theorem (Mazzitelli-S.—Torrea, 2022)
The polynomials given by the Rodrigues formula

H(x) = (~1)"e ;’(n(exz) n>0

are eigenfunctions of L = dixzz < 2X% with LH, = 2nH,.
oo

. . 2_
Generating function formula: e~ = ZHH(X)—

n!
n=0

Three-term recurrence relation: Hn+1(x)il- 2xHp(x) —2nH,—1 =0 n>1.

There is a unique moment functional F such that

F(1)=1, F(H,Hm)=0 and F(H3)#0.

@ Notice that H(x) are not orthogonal with respect to dy_1, but with respect
to a moment functional F.
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Orthogonal basis for inverse Gaussian

Theorem

Consider the classical Hermite polynomials given by the Rodrigues formula

Ha(x) = (—1)"ex2di)l<(e_x2) n>0.

Then ,
H(x) = e™™ Hp(x)

forms an orthogonal basis of L?(R, dy_1). Moreover,

LH = —(2n+ 2)H;.

RENEILS

| \

We also prove L%(R, dv_1) boundedness of singular integrals associated to
ll_: j’—; + 2xd% (maximal sem'igroup oper'ator,_ Riesz trtansform _dixll_l/ e
Littlewood—Paley square functions). The idea is to conjugate with the

2
corresponding operators related to L = —% + 2x£.
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Other inverse polynomial systems

e Laguerre polynomials: orthonormal basis of L2((0, ), x¥e™ dx), a > —1.
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Other inverse polynomial systems

e Laguerre polynomials: orthonormal basis of L2((0, ), x¥e™ dx), a > —1.
Take the Laguerre derivative

(07
Dieft,all = Dierrti — (; - 1) u,

choose xp = 1 and compute

EHx) =exp [— /lx (% - 1) dy} = %x‘aex.
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Other inverse polynomial systems

e Laguerre polynomials: orthonormal basis of L2((0, ), x¥e™ dx), a > —1.
Take the Laguerre derivative

@
Dieft,all = Dierrti — (; - 1) u,
choose xp = 1 and compute

EHx) =exp [— /lx (% - 1) dy} = %x“’ex.

This is the inverse Laguerre measure.
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Other inverse polynomial systems

e Laguerre polynomials: orthonormal basis of L2((0, ), x¥e™ dx), a > —1.
Take the Laguerre derivative

(07
Dieft,all = Dierrti — (; - 1) u,

choose xp = 1 and compute

EHx) =exp [— /lx (% - 1) dy} = %x“’ex.

This is the inverse Laguerre measure.
We found the eigenpolynomials for the corresponding Laplacian:
x“e ™ d"

Lan(¥) = — g

(x""%e¥) n>0.
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Other inverse polynomial systems

e Laguerre polynomials: orthonormal basis of L2((0, ), x¥e™ dx), a > —1.
Take the Laguerre derivative

(07
Dleft,all = Dieri — (; - 1) u,

choose xg = 1 and compute

EX) =exp [— /lx (% - 1) dy} = %x“’ex.

This is the inverse Laguerre measure.
We found the eigenpolynomials for the corresponding Laplacian:

Lon(x) = x%e ™ d

n—o X
7 = e (x""%e¥) n>0.

@ We also construct eigenpolynomials for the inverse Jacobi measure

(1—x)"(1+x)"Pdx in (=1,1), for a, 8 > —1.
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Other inverse polynomial systems

e Laguerre polynomials: orthonormal basis of L2((0, ), x¥e™ dx), a > —1.
Take the Laguerre derivative

(07
Dleft,all = Dieri — (; - 1) u,

choose xg = 1 and compute

EX) =exp [— /lx (% - 1) dy} = %x“’ex.

This is the inverse Laguerre measure.
We found the eigenpolynomials for the corresponding Laplacian:

Lon(x) = x%e ™ d

n—o X
7 = e (x""%e¥) n>0.

@ We also construct eigenpolynomials for the inverse Jacobi measure

(1—x)"(1+x)"Pdx in (=1,1), for a, 8 > —1.

@ We obtain boundedness of singular integrals in L? of the inverse measures.
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Thank you for your attention!

Pablo Radl Stinga (lowa State University Fractional powers and inverse measures July 19, 2022 16 / 16



