Fractional powers of first order differential operators and inverse measures

Pablo Raúl Stinga
Iowa State University
Theoretical and Applied Aspects for Nonlocal Models Banff International Research Station

$$
\text { July 19, } 2022
$$

Reference

- Joint work with Martín Mazzitelli (Instituto Balseiro, Argentina) and José L. Torrea (Universidad Autónoma de Madrid), arXiv 2022.

Gaussian measure

$$
d \gamma_{1}(x)=\pi^{-1 / 2} e^{-x^{2}} d x \quad \text { on } \mathbb{R}
$$

Gaussian measure

$$
d \gamma_{1}(x)=\pi^{-1 / 2} e^{-x^{2}} d x \quad \text { on } \mathbb{R}
$$

- Probability measure: $\int_{\mathbb{R}} d \gamma_{1}(x)=1$. Malliavin Calculus.

Gaussian measure

$$
d \gamma_{1}(x)=\pi^{-1 / 2} e^{-x^{2}} d x \quad \text { on } \mathbb{R}
$$

- Probability measure: $\int_{\mathbb{R}} \boldsymbol{d} \gamma_{1}(x)=1$. Malliavin Calculus.
- The Ornstein-Uhlenbeck operator

$$
L u=-\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{1}: \int_{\mathbb{R}}(L u) v d \gamma_{1}=\int_{\mathbb{R}} u(L v) d \gamma_{1}$

Gaussian measure

$$
d \gamma_{1}(x)=\pi^{-1 / 2} e^{-x^{2}} d x \quad \text { on } \mathbb{R}
$$

- Probability measure: $\int_{\mathbb{R}} \boldsymbol{d} \gamma_{1}(x)=1$. Malliavin Calculus.
- The Ornstein-Uhlenbeck operator

$$
L u=-\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{1}: \int_{\mathbb{R}}(L u) v d \gamma_{1}=\int_{\mathbb{R}} u(L v) d \gamma_{1}$

- Hermite polynomials

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right) \quad n \geq 0
$$

are eigenfuctions of L with $L H_{n}=2 n H_{n}$

Gaussian measure

$$
d \gamma_{1}(x)=\pi^{-1 / 2} e^{-x^{2}} d x \quad \text { on } \mathbb{R}
$$

- Probability measure: $\int_{\mathbb{R}} d \gamma_{1}(x)=1$. Malliavin Calculus.
- The Ornstein-Uhlenbeck operator

$$
L u=-\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{1}: \int_{\mathbb{R}}(L u) v d \gamma_{1}=\int_{\mathbb{R}} u(L v) d \gamma_{1}$

- Hermite polynomials

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right) \quad n \geq 0
$$

are eigenfuctions of L with $L H_{n}=2 n H_{n}$

- Hermite polynomials form an orthogonal basis of $L^{2}\left(\mathbb{R}, d \gamma_{1}\right)$

Gaussian measure

$$
d \gamma_{1}(x)=\pi^{-1 / 2} e^{-x^{2}} d x \quad \text { on } \mathbb{R}
$$

- Probability measure: $\int_{\mathbb{R}} d \gamma_{1}(x)=1$. Malliavin Calculus.
- The Ornstein-Uhlenbeck operator

$$
L u=-\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{1}: \int_{\mathbb{R}}(L u) v d \gamma_{1}=\int_{\mathbb{R}} u(L v) d \gamma_{1}$

- Hermite polynomials

$$
H_{n}(x)=(-1)^{n} e^{x^{x^{2}}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right) \quad n \geq 0
$$

are eigenfuctions of L with $L H_{n}=2 n H_{n}$

- Hermite polynomials form an orthogonal basis of $L^{2}\left(\mathbb{R}, d \gamma_{1}\right)$
- Gaussian harmonic analysis: $d \gamma_{1}$ is nondoubling and non-Ahlfors regular, so classical CZ theory on metric measure spaces does not directly apply.

Inverse Gaussian measure

$$
d \gamma_{-1}(x)=\pi^{1 / 2} e^{x^{2}} d x
$$

Inverse Gaussian measure

$$
d \gamma_{-1}(x)=\pi^{1 / 2} e^{x^{2}} d x
$$

- Infinite measure: $\int_{\mathbb{R}} d \gamma_{-1}(x)=\infty$

Inverse Gaussian measure

$$
d \gamma_{-1}(x)=\pi^{1 / 2} e^{x^{2}} d x
$$

- Infinite measure: $\int_{\mathbb{R}} d \gamma_{-1}(x)=\infty$
- The operator

$$
\mathcal{L} u=\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{-1}: \int_{\mathbb{R}}(\mathcal{L} u) v d \gamma_{-1}=\int_{\mathbb{R}} u(\mathcal{L} v) d \gamma_{-1}$

Inverse Gaussian measure

$$
d \gamma_{-1}(x)=\pi^{1 / 2} e^{x^{2}} d x
$$

- Infinite measure: $\int_{\mathbb{R}} d \gamma_{-1}(x)=\infty$
- The operator

$$
\mathcal{L} u=\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{-1}: \int_{\mathbb{R}}(\mathcal{L} u) v d \gamma_{-1}=\int_{\mathbb{R}} u(\mathcal{L} v) d \gamma_{-1}$

- Are there polynomial eigenfunctions? $\mathcal{L H}_{n}=\lambda_{n} \mathcal{H}_{n}$?

Inverse Gaussian measure

$$
d \gamma_{-1}(x)=\pi^{1 / 2} e^{x^{2}} d x
$$

- Infinite measure: $\int_{\mathbb{R}} d \gamma_{-1}(x)=\infty$
- The operator

$$
\mathcal{L} u=\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{-1}: \int_{\mathbb{R}}(\mathcal{L} u) v d \gamma_{-1}=\int_{\mathbb{R}} u(\mathcal{L} v) d \gamma_{-1}$

- Are there polynomial eigenfunctions? $\mathcal{L H}_{n}=\lambda_{n} \mathcal{H}_{n}$?
- Orthonormal basis of $L^{2}\left(\mathbb{R}, d \gamma_{-1}\right)$? Not polynomials anymore!

Inverse Gaussian measure

$$
d \gamma_{-1}(x)=\pi^{1 / 2} e^{x^{2}} d x
$$

- Infinite measure: $\int_{\mathbb{R}} d \gamma_{-1}(x)=\infty$
- The operator

$$
\mathcal{L} u=\frac{d^{2} u}{d x^{2}}+2 x \frac{d u}{d x}
$$

is symmetric with respect to $d \gamma_{-1}: \int_{\mathbb{R}}(\mathcal{L} u) v d \gamma_{-1}=\int_{\mathbb{R}} u(\mathcal{L} v) d \gamma_{-1}$

- Are there polynomial eigenfunctions? $\mathcal{L H}_{n}=\lambda_{n} \mathcal{H}_{n}$?
- Orthonormal basis of $L^{2}\left(\mathbb{R}, d \gamma_{-1}\right)$? Not polynomials anymore!
- Inverse Gaussian harmonic analysis: similar obstructions.

Inverse Gaussian measure in geometry

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$$
\mathbf{H}_{\Sigma}=\frac{1}{2} \mathbf{x}^{\perp}
$$

\mathbf{H}_{Σ} : mean curvature vector on $\Sigma ; \mathbf{x}^{\perp}$: orthogonal projection of \mathbf{x} onto the normal.

Inverse Gaussian measure in geometry

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$$
\mathbf{H}_{\Sigma}=\frac{1}{2} \mathbf{x}^{\perp}
$$

\mathbf{H}_{Σ} : mean curvature vector on $\Sigma ; \mathbf{x}^{\perp}$: orthogonal projection of \mathbf{x} onto the normal. Equivalently, $\Sigma_{t}=\sqrt{t} \Sigma, t>0$, is a mean curvature flow:

$$
\left(\frac{\partial \mathbf{x}}{\partial t}\right)^{\perp}=\mathbf{H}_{\Sigma_{t}}
$$

Inverse Gaussian measure in geometry

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$$
\mathbf{H}_{\Sigma}=\frac{1}{2} \mathbf{x}^{\perp}
$$

\mathbf{H}_{Σ} : mean curvature vector on $\Sigma ; \mathbf{x}^{\perp}$: orthogonal projection of \mathbf{x} onto the normal. Equivalently, $\Sigma_{t}=\sqrt{t} \Sigma, t>0$, is a mean curvature flow:

$$
\left(\frac{\partial \mathbf{x}}{\partial t}\right)^{\perp}=\mathbf{H}_{\Sigma_{t}}
$$

- Self-expanders describe the asymptotic behavior and the local structure of mean curvature flow after singularities for short times.

Inverse Gaussian measure in geometry

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$$
\mathbf{H}_{\Sigma}=\frac{1}{2} \mathbf{x}^{\perp}
$$

\mathbf{H}_{Σ} : mean curvature vector on $\Sigma ; \mathbf{x}^{\perp}$: orthogonal projection of \mathbf{x} onto the normal. Equivalently, $\Sigma_{t}=\sqrt{t} \Sigma, t>0$, is a mean curvature flow:

$$
\left(\frac{\partial \mathbf{x}}{\partial t}\right)^{\perp}=\mathbf{H}_{\Sigma_{t}}
$$

- Self-expanders describe the asymptotic behavior and the local structure of mean curvature flow after singularities for short times.

A self-expander M is a critical point of the weighted volume functional

$$
F(M)=\int_{M} e^{|x|^{2} / 4} d \mathcal{H}^{n-1}
$$

Reference. T. Ilmanen, Lectures on mean curvature flow and related equations (1995)

Fractional derivatives and integrals

For $u: \mathbb{R} \rightarrow \mathbb{R}$, let

$$
D_{\text {left }} u(x)=\lim _{t \rightarrow 0^{+}} \frac{u(x)-u(x-t)}{t}=-\lim _{t \rightarrow 0^{+}} \frac{e^{-t D_{\text {eft }}} u(x)-u(x)}{t}
$$

where the left translation semigroup is $e^{-t D_{\text {leff }}} u(x)=u(x-t)$.

Fractional derivatives and integrals

For $u: \mathbb{R} \rightarrow \mathbb{R}$, let

$$
D_{\text {left }} u(x)=\lim _{t \rightarrow 0^{+}} \frac{u(x)-u(x-t)}{t}=-\lim _{t \rightarrow 0^{+}} \frac{e^{-t D_{\text {eft }}} u(x)-u(x)}{t}
$$

where the left translation semigroup is $e^{-t D_{\text {left }}} u(x)=u(x-t)$. For $0<\alpha<1$,

$$
\begin{aligned}
\left(D_{\text {left }}\right)^{\alpha} u(x) & =\frac{1}{\Gamma(-\alpha)} \int_{0}^{\infty}\left(e^{-t D_{\text {left }}} u(x)-u(x)\right) \frac{d t}{t^{1+\alpha}} \\
& =c_{\alpha} \int_{-\infty}^{x} \frac{u(x)-u(t)}{(x-t)^{1+\alpha}} d t
\end{aligned}
$$

is the Marchaud fractional derivative;

Fractional derivatives and integrals

For $u: \mathbb{R} \rightarrow \mathbb{R}$, let

$$
D_{\text {left }} u(x)=\lim _{t \rightarrow 0^{+}} \frac{u(x)-u(x-t)}{t}=-\lim _{t \rightarrow 0^{+}} \frac{e^{-t D_{\text {left }}} u(x)-u(x)}{t}
$$

where the left translation semigroup is $e^{-t D_{\text {left }}} u(x)=u(x-t)$. For $0<\alpha<1$,

$$
\begin{aligned}
\left(D_{\text {left }}\right)^{\alpha} u(x) & =\frac{1}{\Gamma(-\alpha)} \int_{0}^{\infty}\left(e^{-t D_{\text {left }}} u(x)-u(x)\right) \frac{d t}{t^{1+\alpha}} \\
& =c_{\alpha} \int_{-\infty}^{x} \frac{u(x)-u(t)}{(x-t)^{1+\alpha}} d t
\end{aligned}
$$

is the Marchaud fractional derivative; and

$$
\begin{aligned}
\left(D_{\text {left }}\right)^{-\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-t D_{\text {left }}} u(x) \frac{d t}{t^{1-\alpha}} \\
& =c_{-\alpha} \int_{-\infty}^{x} \frac{u(t)}{(x-t)^{1-\alpha}} d t
\end{aligned}
$$

is the Weyl fractional integral.

Marchaud fractional derivative: PDE results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

Marchaud fractional derivative: PDE results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

- Using

$$
\int_{\mathbb{R}}\left(\left(D_{\text {left }}\right)^{\alpha} u\right) v d x=\int_{\mathbb{R}} u\left(\left(D_{\text {right }}\right)^{\alpha} v\right) d x
$$

and one-sided test functions, we can define $\left(D_{\text {left }}\right)^{\alpha} u$ in the sense of distributions.

Marchaud fractional derivative: PDE results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

- Using

$$
\int_{\mathbb{R}}\left(\left(D_{\text {left }}\right)^{\alpha} u\right) v d x=\int_{\mathbb{R}} u\left(\left(D_{\text {right }}\right)^{\alpha} v\right) d x
$$

and one-sided test functions, we can define $\left(D_{\text {left }}\right)^{\alpha} u$ in the sense of distributions.

- Maximum principle. If $\left(D_{\text {left }}\right)^{\alpha} u \leq 0$ in $(0, T]$ and $u \leq 0$ in $(-\infty, 0$] then $\sup _{(-\infty, T]} u=\sup _{(-\infty, 0]} u$.

Marchaud fractional derivative: PDE results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

- Using

$$
\int_{\mathbb{R}}\left(\left(D_{\text {left }}\right)^{\alpha} u\right) v d x=\int_{\mathbb{R}} u\left(\left(D_{\text {right }}\right)^{\alpha} v\right) d x
$$

and one-sided test functions, we can define $\left(D_{\text {left }}\right)^{\alpha} u$ in the sense of distributions.

- Maximum principle. If $\left(D_{\text {left }}\right)^{\alpha} u \leq 0$ in $(0, T]$ and $u \leq 0$ in $(-\infty, 0$] then $\sup _{(-\infty, T]} u=\sup _{(-\infty, 0]} u$.
- Extension problem. If $U=U(x, y)$ solves

$$
\begin{cases}-D_{\text {left }} U+\frac{1-2 \alpha}{y} U_{y}+U_{y y}=0 & \text { for } x \in \mathbb{R}, y>0 \\ U(x, 0)=u(x) & \text { on } \mathbb{R}\end{cases}
$$

then $-\left.d_{\alpha} y^{1-2 \alpha} U_{y}(x, y)\right|_{y=0}=\left(D_{\text {left }}\right)^{\alpha} u(x)$.

Marchaud fractional derivative: PDE results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

- Using

$$
\int_{\mathbb{R}}\left(\left(D_{\text {left }}\right)^{\alpha} u\right) v d x=\int_{\mathbb{R}} u\left(\left(D_{\text {right }}\right)^{\alpha} v\right) d x
$$

and one-sided test functions, we can define $\left(D_{\text {left }}\right)^{\alpha} u$ in the sense of distributions.

- Maximum principle. If $\left(D_{\text {left }}\right)^{\alpha} u \leq 0$ in $(0, T]$ and $u \leq 0$ in $(-\infty, 0$] then $\sup _{(-\infty, T]} u=\sup _{(-\infty, 0]} u$.
- Extension problem. If $U=U(x, y)$ solves

$$
\begin{cases}-D_{\text {left }} U+\frac{1-2 \alpha}{y} U_{y}+U_{y y}=0 & \text { for } x \in \mathbb{R}, y>0 \\ U(x, 0)=u(x) & \text { on } \mathbb{R}\end{cases}
$$

then $-\left.d_{\alpha} y^{1-2 \alpha} U_{y}(x, y)\right|_{y=0}=\left(D_{\text {left }}\right)^{\alpha} u(x)$.

- Harnack inequality. If $u \geq 0$ in \mathbb{R}, and $\left(D_{\text {left }}\right)^{\alpha} u=0$ in $(0,1)$, then

$$
\sup _{(1 / 4,1 / 3)} u \leq C \inf _{(1 / 2,3 / 4)} u
$$

Marchaud fractional derivative: real analysis results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

Marchaud fractional derivative: real analysis results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

- One-sided fractional Sobolev spaces. For $1 \leq p<\infty$ and $\omega \in A_{p}^{-}(\mathbb{R})$ (one-sided Sawyer weight)

$$
W^{\alpha, p}\left(\omega^{p}\right)=\left\{u=\left(D_{\text {left }}\right)^{-\alpha} f: f \in L^{p}\left(\omega^{p}\right)\right\}
$$

Characterizations with left fractional derivatives.

Marchaud fractional derivative: real analysis results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

- One-sided fractional Sobolev spaces. For $1 \leq p<\infty$ and $\omega \in A_{p}^{-}(\mathbb{R})$ (one-sided Sawyer weight)

$$
W^{\alpha, p}\left(\omega^{p}\right)=\left\{u=\left(D_{l e f t}\right)^{-\alpha} f: f \in L^{p}\left(\omega^{p}\right)\right\}
$$

Characterizations with left fractional derivatives.

- Bourgain-Brezis-Mironescu-type result. For

$$
W^{1, p}(\omega)=\left\{u \in L^{p}(\omega): D_{l e f t} u \in L^{p}(\omega)\right\}
$$

we have

$$
\begin{aligned}
\lim _{\alpha \rightarrow 1}\left(D_{\text {left }}\right)^{\alpha} u= & D_{\text {left } u} \quad \text { in } L^{p}(\omega), 1<p<\infty, \text { and a.e. } \\
& \lim _{\alpha \rightarrow 0}\left(D_{\text {left }}\right)^{\alpha} u=u \quad \text { a.e. }
\end{aligned}
$$

Marchaud fractional derivative: real analysis results

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

- One-sided fractional Sobolev spaces. For $1 \leq p<\infty$ and $\omega \in A_{p}^{-}(\mathbb{R})$ (one-sided Sawyer weight)

$$
W^{\alpha, p}\left(\omega^{p}\right)=\left\{u=\left(D_{\text {left }}\right)^{-\alpha} f: f \in L^{p}\left(\omega^{p}\right)\right\}
$$

Characterizations with left fractional derivatives.

- Bourgain-Brezis-Mironescu-type result. For

$$
W^{1, p}(\omega)=\left\{u \in L^{p}(\omega): D_{l e f t} u \in L^{p}(\omega)\right\}
$$

we have

$$
\begin{aligned}
\lim _{\alpha \rightarrow 1}\left(D_{\text {left }}\right)^{\alpha} u= & D_{\text {left }} u \quad \text { in } L^{p}(\omega), 1<p<\infty, \text { and a.e. } \\
& \lim _{\alpha \rightarrow 0}\left(D_{\text {left }}\right)^{\alpha} u=u \quad \text { a.e. }
\end{aligned}
$$

- Fundamental Theorem of Fractional Calculus.

$$
u(x)=\lim _{\varepsilon \rightarrow 0}\left(D_{\text {left }}\right)_{\varepsilon}^{\alpha}\left(D_{\text {left }}\right)^{-\alpha} u(x) \quad \text { in } L^{p}\left(\omega^{p}\right) \text { and a.e. }
$$

First order differential operators

For $a(x)$ continuous, let

$$
\mathfrak{D}_{\text {left }, a} u(x)=D_{\text {left }} u+a(x) u
$$

First order differential operators

For $a(x)$ continuous, let

$$
\mathfrak{D}_{\text {left }, a} u(x)=D_{\text {left }} u+a(x) u
$$

Fix $x_{0} \in \mathbb{R}$ and define

$$
\mathcal{E}(x)=\mathcal{E}_{x_{0}, a}(x)=\exp \left[-\int_{x_{0}}^{x} a(y) d y\right]
$$

First order differential operators

For $a(x)$ continuous, let

$$
\mathfrak{D}_{\text {left }, a} u(x)=D_{\text {left }} u+a(x) u
$$

Fix $x_{0} \in \mathbb{R}$ and define

$$
\mathcal{E}(x)=\mathcal{E}_{x_{0}, a}(x)=\exp \left[-\int_{x_{0}}^{x} a(y) d y\right]
$$

It can be checked that

$$
\mathfrak{D}_{\text {left }, \mathrm{a}} u(x)=\mathcal{E}(x) D_{\text {left }}\left(\mathcal{E}^{-1} u\right)(x)
$$

First order differential operators

For $a(x)$ continuous, let

$$
\mathfrak{D}_{\text {left }, a} u(x)=D_{\text {left }} u+a(x) u
$$

Fix $x_{0} \in \mathbb{R}$ and define

$$
\mathcal{E}(x)=\mathcal{E}_{x_{0}, a}(x)=\exp \left[-\int_{x_{0}}^{x} a(y) d y\right]
$$

It can be checked that

$$
\mathfrak{D}_{\text {left }, \mathrm{a}} u(x)=\mathcal{E}(x) D_{\text {left }}\left(\mathcal{E}^{-1} u\right)(x)
$$

Lemma (Semigroup)

$$
e^{-t \mathfrak{D}_{\text {left,a }}} u(x)=\mathcal{E}(x) e^{-t D_{\text {left }}}\left(\mathcal{E}^{-1} u\right)(x)
$$

Fractional powers of first order differential operators

Positive fractional power is a modulation of Marchaud:

$$
\begin{aligned}
\left(\mathfrak{D}_{\text {left }, a}\right)^{\alpha} u(x) & =\frac{1}{\Gamma(-\alpha)} \int_{0}^{\infty}\left(e^{\left.-t \mathfrak{D}_{\text {left }, a} u(x)-u(x)\right) \frac{d t}{t^{1+\alpha}}}\right. \\
& =c_{\alpha} \mathcal{E}(x) \int_{-\infty}^{x} \frac{\left(\mathcal{E}^{-1} u\right)(x)-\left(\mathcal{E}^{-1} u\right)(t)}{(x-t)^{1+\alpha}} d t \\
& =\mathcal{E}(x)\left(D_{\text {left }}\right)^{\alpha}\left(\mathcal{E}^{-1} u\right)(x)
\end{aligned}
$$

Fractional powers of first order differential operators

Positive fractional power is a modulation of Marchaud:

$$
\begin{aligned}
\left(\mathfrak{D}_{\text {left }, a}\right)^{\alpha} u(x) & =\frac{1}{\Gamma(-\alpha)} \int_{0}^{\infty}\left(e^{\left.-t \mathfrak{D}_{\text {left }, a} u(x)-u(x)\right) \frac{d t}{t^{1+\alpha}}}\right. \\
& =c_{\alpha} \mathcal{E}(x) \int_{-\infty}^{x} \frac{\left(\mathcal{E}^{-1} u\right)(x)-\left(\mathcal{E}^{-1} u\right)(t)}{(x-t)^{1+\alpha}} d t \\
& =\mathcal{E}(x)\left(D_{\text {left }}\right)^{\alpha}\left(\mathcal{E}^{-1} u\right)(x)
\end{aligned}
$$

Negative fractional power is a modulation of Weyl:

$$
\begin{aligned}
\left(\mathfrak{D}_{\text {left }, a}\right)^{-\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-t \mathcal{D}_{\text {left }, a} u(x)} \frac{d t}{t^{1-\alpha}} \\
& =c_{-\alpha} \mathcal{E}(x) \int_{-\infty}^{x} \frac{\left(\mathcal{E}^{-1} u\right)(t)}{(x-t)^{1-\alpha}} d t \\
& =\mathcal{E}(x)\left(D_{\text {left }}\right)^{-\alpha}\left(\mathcal{E}^{-1} u\right)(x)
\end{aligned}
$$

Fractional powers of first order differential operators

Positive fractional power is a modulation of Marchaud:

$$
\begin{aligned}
\left(\mathfrak{D}_{\text {left }, a}\right)^{\alpha} u(x) & =\frac{1}{\Gamma(-\alpha)} \int_{0}^{\infty}\left(e^{\left.-t \mathfrak{D}_{\text {left }, a} u(x)-u(x)\right) \frac{d t}{t^{1+\alpha}}}\right. \\
& =c_{\alpha} \mathcal{E}(x) \int_{-\infty}^{x} \frac{\left(\mathcal{E}^{-1} u\right)(x)-\left(\mathcal{E}^{-1} u\right)(t)}{(x-t)^{1+\alpha}} d t \\
& =\mathcal{E}(x)\left(D_{\text {left }}\right)^{\alpha}\left(\mathcal{E}^{-1} u\right)(x)
\end{aligned}
$$

Negative fractional power is a modulation of Weyl:

$$
\begin{aligned}
\left(\mathfrak{D}_{\text {left }, a}\right)^{-\alpha} u(x) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-t \mathcal{D}_{\text {left }, a} u(x)} \frac{d t}{t^{1-\alpha}} \\
& =c_{-\alpha} \mathcal{E}(x) \int_{-\infty}^{x} \frac{\left(\mathcal{E}^{-1} u\right)(t)}{(x-t)^{1-\alpha}} d t \\
& =\mathcal{E}(x)\left(D_{\text {left }}\right)^{-\alpha}\left(\mathcal{E}^{-1} u\right)(x)
\end{aligned}
$$

- We can transfer results from $\left(D_{\text {left }}\right)^{ \pm \alpha}$ to $\left(\mathfrak{D}_{\text {left }, a}\right)^{ \pm \alpha}$ using modulation (semigroup, distributions, maximum principle, extension, BBM-type results, etc)

Sobolev spaces

Recall that, for $\omega \in A_{p}^{-}(\mathbb{R})$ and $a \equiv 0$,

$$
W^{1, p}(\omega)=\left\{u \in L^{p}(\omega): D_{\text {left }} u \in L^{p}(\omega)\right\}
$$

Sobolev spaces

Recall that, for $\omega \in A_{p}^{-}(\mathbb{R})$ and $a \equiv 0$,

$$
W^{1, p}(\omega)=\left\{u \in L^{p}(\omega): D_{\text {left }} u \in L^{p}(\omega)\right\}
$$

Since, for any $a(x)$,

$$
\mathcal{E}(x)^{-1} \mathfrak{D}_{\text {left }, a} u=D_{\text {left }}\left(\mathcal{E}^{-1} u\right)(x)
$$

then the correct definition of Sobolev space associated with $\mathfrak{D}_{\text {left }, a}$ is

$$
W_{a}^{1, p}(\omega)=\left\{u \in L^{p}\left(\mathcal{E}^{-p} \omega\right): \mathfrak{D}_{\text {left }, a} u \in L^{p}\left(\mathcal{E}^{-p} \omega\right)\right\}
$$

Sobolev spaces

Recall that, for $\omega \in A_{p}^{-}(\mathbb{R})$ and $a \equiv 0$,

$$
W^{1, p}(\omega)=\left\{u \in L^{p}(\omega): D_{\text {left }} u \in L^{p}(\omega)\right\}
$$

Since, for any $a(x)$,

$$
\mathcal{E}(x)^{-1} \mathfrak{D}_{\text {left }, a} u=D_{\text {left }}\left(\mathcal{E}^{-1} u\right)(x)
$$

then the correct definition of Sobolev space associated with $\mathfrak{D}_{\text {left }, a}$ is

$$
W_{a}^{1, p}(\omega)=\left\{u \in L^{p}\left(\mathcal{E}^{-p} \omega\right): \mathfrak{D}_{\text {left }, a} u \in L^{p}\left(\mathcal{E}^{-p} \omega\right)\right\}
$$

Similarly,

$$
W_{a}^{\alpha, p}\left(\omega^{p}\right)=\left\{u=\left(\mathfrak{D}_{\text {left }, a}\right)^{-\alpha} f: f \in L^{p}\left(\mathcal{E}^{-p} \omega^{p}\right)\right\}
$$

Sobolev spaces

Recall that, for $\omega \in A_{p}^{-}(\mathbb{R})$ and $a \equiv 0$,

$$
W^{1, p}(\omega)=\left\{u \in L^{p}(\omega): D_{\text {left }} u \in L^{p}(\omega)\right\}
$$

Since, for any $a(x)$,

$$
\mathcal{E}(x)^{-1} \mathfrak{D}_{\text {left }, a} u=D_{\text {left }}\left(\mathcal{E}^{-1} u\right)(x)
$$

then the correct definition of Sobolev space associated with $\mathfrak{D}_{\text {left }, a}$ is

$$
W_{a}^{1, p}(\omega)=\left\{u \in L^{p}\left(\mathcal{E}^{-p} \omega\right): \mathfrak{D}_{\text {left }, a} u \in L^{p}\left(\mathcal{E}^{-p} \omega\right)\right\}
$$

Similarly,

$$
W_{a}^{\alpha, p}\left(\omega^{p}\right)=\left\{u=\left(\mathfrak{D}_{\text {left }, a}\right)^{-\alpha} f: f \in L^{p}\left(\mathcal{E}^{-p} \omega^{p}\right)\right\}
$$

Conclusion. The natural L^{p} space for analysis of $\left(\mathfrak{D}_{\text {left }, a}\right)^{ \pm \alpha}$ is

$$
L^{p}\left(\mathcal{E}^{-p}\right)=\left\{u: \mathbb{R} \rightarrow \mathbb{R}: \mathcal{E}^{-1} u \in L^{p}(\mathbb{R})\right\}
$$

An important example

When $a(x)=x$,

$$
\mathfrak{D}_{\text {left }, a} u=D_{\text {left }} u+x u
$$

- This is the natural derivative in harmonic analysis of Hermite expansions:

$$
-\frac{d^{2}}{d x^{2}}+x \frac{d}{d x}=\left(D_{l e f t}+x\right)\left(D_{r i g h t}\right)
$$

An important example

When $a(x)=x$,

$$
\mathfrak{D}_{l e f t, a} u=D_{\text {left }} u+x u
$$

- This is the natural derivative in harmonic analysis of Hermite expansions:

$$
-\frac{d^{2}}{d x^{2}}+x \frac{d}{d x}=\left(D_{l e f t}+x\right)\left(D_{r i g h t}\right)
$$

By taking $x_{0}=0$,

$$
\mathcal{E}(x)^{-1}=\exp \left(\int_{0}^{x} a(y) d y\right)=e^{x^{2} / 2}
$$

and we end up with the inverse Gaussian space

$$
L^{2}\left(\mathcal{E}^{-2}\right)=\left\{u: \mathbb{R} \rightarrow \mathbb{R}: e^{x^{2} / 2} u \in L^{2}(\mathbb{R})\right\}=L^{2}\left(\mathbb{R}, d \gamma_{-1}\right)
$$

Eigenpolynomials for inverse Gaussian

Theorem (Mazzitelli-S.-Torrea, 2022)

The polynomials given by the Rodrigues formula

$$
\mathcal{H}(x)=(-1)^{n} e^{-x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{x^{2}}\right) \quad n \geq 0
$$

are eigenfunctions of $\mathcal{L}=\frac{d^{2}}{d x^{2}}+2 x \frac{d}{d x}$ with $\mathcal{L} \mathcal{H}_{n}=2 n \mathcal{H}_{n}$.
Generating function formula: $e^{t^{2}-2 x t}=\sum_{n=0}^{\infty} \mathcal{H}_{n}(x) \frac{t^{n}}{n!}$
Three-term recurrence relation: $\mathcal{H}_{n+1}(x)+2 x \mathcal{H}_{n}(x)-2 n \mathcal{H}_{n-1}=0 \quad n \geq 1$.
There is a unique moment functional \mathcal{F} such that

$$
\mathcal{F}(1)=1, \quad \mathcal{F}\left(\mathcal{H}_{n} \mathcal{H}_{m}\right)=0 \quad \text { and } \quad \mathcal{F}\left(\mathcal{H}_{n}^{2}\right) \neq 0
$$

Eigenpolynomials for inverse Gaussian

Theorem (Mazzitelli-S.-Torrea, 2022)

The polynomials given by the Rodrigues formula

$$
\mathcal{H}(x)=(-1)^{n} e^{-x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{x^{2}}\right) \quad n \geq 0
$$

are eigenfunctions of $\mathcal{L}=\frac{d^{2}}{d x^{2}}+2 x \frac{d}{d x}$ with $\mathcal{L} \mathcal{H}_{n}=2 n \mathcal{H}_{n}$.
Generating function formula: $e^{t^{2}-2 x t}=\sum_{n=0}^{\infty} \mathcal{H}_{n}(x) \frac{t^{n}}{n!}$
Three-term recurrence relation: $\mathcal{H}_{n+1}(x)+2 x \mathcal{H}_{n}(x)-2 n \mathcal{H}_{n-1}=0 \quad n \geq 1$.
There is a unique moment functional \mathcal{F} such that

$$
\mathcal{F}(1)=1, \quad \mathcal{F}\left(\mathcal{H}_{n} \mathcal{H}_{m}\right)=0 \quad \text { and } \quad \mathcal{F}\left(\mathcal{H}_{n}^{2}\right) \neq 0 .
$$

- Notice that $\mathcal{H}(x)$ are not orthogonal with respect to $d \gamma_{-1}$, but with respect to a moment functional \mathcal{F}.

Orthogonal basis for inverse Gaussian

Theorem

Consider the classical Hermite polynomials given by the Rodrigues formula

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}}\right) \quad n \geq 0 .
$$

Then

$$
H_{n}^{*}(x)=e^{-x^{2}} H_{n}(x)
$$

forms an orthogonal basis of $L^{2}\left(\mathbb{R}, d \gamma_{-1}\right)$. Moreover,

$$
\mathcal{L} H_{n}^{*}=-(2 n+2) H_{n}^{*} .
$$

Remark

We also prove $L^{2}\left(\mathbb{R}, d \gamma_{-1}\right)$ boundedness of singular integrals associated to $\mathcal{L}=\frac{d^{2}}{d x^{2}}+2 x \frac{d}{d x}$ (maximal semigroup operator, Riesz transform $\frac{d}{d x} \mathcal{L}^{-1 / 2}$, Littlewood-Paley square functions). The idea is to conjugate with the corresponding operators related to $L=-\frac{d^{2}}{d x^{2}}+2 x \frac{d}{d x}$.

Other inverse polynomial systems

- Laguerre polynomials: orthonormal basis of $L^{2}\left((0, \infty), x^{\alpha} e^{-x} d x\right), \alpha>-1$.

Other inverse polynomial systems

- Laguerre polynomials: orthonormal basis of $L^{2}\left((0, \infty), x^{\alpha} e^{-x} d x\right), \alpha>-1$. Take the Laguerre derivative

$$
\mathfrak{D}_{\text {left }, \alpha} u=D_{\text {left }} u-\left(\frac{\alpha}{x}-1\right) u,
$$

choose $x_{0}=1$ and compute

$$
\mathcal{E}^{-1}(x)=\exp \left[-\int_{1}^{x}\left(\frac{\alpha}{y}-1\right) d y\right]=\frac{1}{e} x^{-\alpha} e^{x} .
$$

Other inverse polynomial systems

- Laguerre polynomials: orthonormal basis of $L^{2}\left((0, \infty), x^{\alpha} e^{-x} d x\right), \alpha>-1$. Take the Laguerre derivative

$$
\mathfrak{D}_{\text {left }, \alpha} u=D_{\text {left }} u-\left(\frac{\alpha}{x}-1\right) u,
$$

choose $x_{0}=1$ and compute

$$
\mathcal{E}^{-1}(x)=\exp \left[-\int_{1}^{x}\left(\frac{\alpha}{y}-1\right) d y\right]=\frac{1}{e} x^{-\alpha} e^{x}
$$

This is the inverse Laguerre measure.

Other inverse polynomial systems

- Laguerre polynomials: orthonormal basis of $L^{2}\left((0, \infty), x^{\alpha} e^{-x} d x\right), \alpha>-1$. Take the Laguerre derivative

$$
\mathfrak{D}_{\text {left }, \alpha} u=D_{\text {left }} u-\left(\frac{\alpha}{x}-1\right) u,
$$

choose $x_{0}=1$ and compute

$$
\mathcal{E}^{-1}(x)=\exp \left[-\int_{1}^{x}\left(\frac{\alpha}{y}-1\right) d y\right]=\frac{1}{e} x^{-\alpha} e^{x}
$$

This is the inverse Laguerre measure.
We found the eigenpolynomials for the corresponding Laplacian:

$$
\mathcal{L}_{\alpha, n}(x)=\frac{x^{\alpha} e^{-x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n-\alpha} e^{x}\right) \quad n \geq 0 .
$$

Other inverse polynomial systems

- Laguerre polynomials: orthonormal basis of $L^{2}\left((0, \infty), x^{\alpha} e^{-x} d x\right), \alpha>-1$. Take the Laguerre derivative

$$
\mathfrak{D}_{l e f t, \alpha} u=D_{\text {left }} u-\left(\frac{\alpha}{x}-1\right) u,
$$

choose $x_{0}=1$ and compute

$$
\mathcal{E}^{-1}(x)=\exp \left[-\int_{1}^{x}\left(\frac{\alpha}{y}-1\right) d y\right]=\frac{1}{e} x^{-\alpha} e^{x} .
$$

This is the inverse Laguerre measure.
We found the eigenpolynomials for the corresponding Laplacian:

$$
\mathcal{L}_{\alpha, n}(x)=\frac{x^{\alpha} e^{-x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n-\alpha} e^{x}\right) \quad n \geq 0 .
$$

- We also construct eigenpolynomials for the inverse Jacobi measure

$$
(1-x)^{-\alpha}(1+x)^{-\beta} d x \quad \text { in }(-1,1), \text { for } \alpha, \beta>-1
$$

Other inverse polynomial systems

- Laguerre polynomials: orthonormal basis of $L^{2}\left((0, \infty), x^{\alpha} e^{-x} d x\right), \alpha>-1$. Take the Laguerre derivative

$$
\mathfrak{D}_{l e f t, \alpha} u=D_{\text {left }} u-\left(\frac{\alpha}{x}-1\right) u,
$$

choose $x_{0}=1$ and compute

$$
\mathcal{E}^{-1}(x)=\exp \left[-\int_{1}^{x}\left(\frac{\alpha}{y}-1\right) d y\right]=\frac{1}{e} x^{-\alpha} e^{x} .
$$

This is the inverse Laguerre measure.
We found the eigenpolynomials for the corresponding Laplacian:

$$
\mathcal{L}_{\alpha, n}(x)=\frac{x^{\alpha} e^{-x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n-\alpha} e^{x}\right) \quad n \geq 0 .
$$

- We also construct eigenpolynomials for the inverse Jacobi measure

$$
(1-x)^{-\alpha}(1+x)^{-\beta} d x \quad \text { in }(-1,1), \text { for } \alpha, \beta>-1
$$

- We obtain boundedness of singular integrals in L^{2} of the inverse measures.

Thank you for your attention!

