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Gaussian measure

dγ1(x) = π−1/2e−x
2

dx on R

Probability measure:

∫
R
dγ1(x) = 1. Malliavin Calculus.

The Ornstein–Uhlenbeck operator

Lu = −d2u

dx2
+ 2x

du

dx

is symmetric with respect to dγ1:

∫
R

(Lu)v dγ1 =

∫
R
u(Lv) dγ1

Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

) n ≥ 0

are eigenfuctions of L with LHn = 2nHn

Hermite polynomials form an orthogonal basis of L2(R, dγ1)

Gaussian harmonic analysis: dγ1 is nondoubling and non-Ahlfors regular,
so classical CZ theory on metric measure spaces does not directly apply.
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Pablo Raúl Stinga (Iowa State University) Fractional powers and inverse measures July 19, 2022 3 / 16



Gaussian measure

dγ1(x) = π−1/2e−x
2

dx on R

Probability measure:

∫
R
dγ1(x) = 1. Malliavin Calculus.

The Ornstein–Uhlenbeck operator

Lu = −d2u

dx2
+ 2x

du

dx

is symmetric with respect to dγ1:

∫
R

(Lu)v dγ1 =

∫
R
u(Lv) dγ1

Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

) n ≥ 0

are eigenfuctions of L with LHn = 2nHn

Hermite polynomials form an orthogonal basis of L2(R, dγ1)

Gaussian harmonic analysis: dγ1 is nondoubling and non-Ahlfors regular,
so classical CZ theory on metric measure spaces does not directly apply.
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Inverse Gaussian measure

dγ−1(x) = π1/2ex
2

dx

Infinite measure:

∫
R
dγ−1(x) =∞

The operator

Lu =
d2u

dx2
+ 2x

du

dx

is symmetric with respect to dγ−1:

∫
R

(Lu)v dγ−1 =

∫
R
u(Lv) dγ−1

Are there polynomial eigenfunctions? LHn = λnHn?

Orthonormal basis of L2(R, dγ−1)? Not polynomials anymore!

Inverse Gaussian harmonic analysis: similar obstructions.
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Inverse Gaussian measure in geometry

A hypersurface Σ in Rn+1 is a self-expander if

HΣ =
1

2
x⊥

HΣ: mean curvature vector on Σ; x⊥: orthogonal projection of x onto the normal.

Equivalently, Σt =
√
tΣ, t > 0, is a mean curvature flow:(∂x

∂t

)⊥
= HΣt

I Self-expanders describe the asymptotic behavior and the local structure of
mean curvature flow after singularities for short times.

A self-expander M is a critical point of the weighted volume functional

F (M) =

∫
M

e|x|
2/4 dHn−1

Reference. T. Ilmanen, Lectures on mean curvature flow and related equations (1995)
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Fractional derivatives and integrals

For u : R→ R, let

Dleftu(x) = lim
t→0+

u(x)− u(x − t)

t
= − lim

t→0+

e−tDleftu(x)− u(x)

t

where the left translation semigroup is e−tDleftu(x) = u(x − t).

For 0 < α < 1,

(Dleft)
αu(x) =

1

Γ(−α)

∫ ∞
0

(
e−tDleftu(x)− u(x)

) dt

t1+α

= cα

∫ x

−∞

u(x)− u(t)

(x − t)1+α
dt

is the Marchaud fractional derivative; and

(Dleft)
−αu(x) =

1

Γ(α)

∫ ∞
0

e−tDleftu(x)
dt

t1−α

= c−α

∫ x

−∞

u(t)

(x − t)1−α dt

is the Weyl fractional integral.
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Marchaud fractional derivative: PDE results

References. Bernardis–Mart́ın-Reyes–S.–Torrea (2016); S.–Vaughan (2020).

Using ∫
R

((Dleft)
αu)v dx =

∫
R
u((Dright)

αv) dx

and one-sided test functions, we can define (Dleft)
αu in the sense of

distributions.

Maximum principle. If (Dleft)
αu ≤ 0 in (0,T ] and u ≤ 0 in (−∞, 0] then

sup(−∞,T ] u = sup(−∞,0] u.

Extension problem. If U = U(x , y) solves{
−DleftU + 1−2α

y Uy + Uyy = 0 for x ∈ R, y > 0

U(x , 0) = u(x) on R

then −dαy1−2αUy (x , y)
∣∣
y=0

= (Dleft)
αu(x).

Harnack inequality. If u ≥ 0 in R, and (Dleft)
αu = 0 in (0, 1), then

sup
(1/4,1/3)

u ≤ C inf
(1/2,3/4)

u.
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Marchaud fractional derivative: real analysis results

References. Bernardis–Mart́ın-Reyes–S.–Torrea (2016); S.–Vaughan (2020).

One-sided fractional Sobolev spaces. For 1 ≤ p <∞ and ω ∈ A−p (R)
(one-sided Sawyer weight)

W α,p(ωp) = {u = (Dleft)
−αf : f ∈ Lp(ωp)}

Characterizations with left fractional derivatives.

Bourgain–Brezis–Mironescu-type result. For

W 1,p(ω) = {u ∈ Lp(ω) : Dleftu ∈ Lp(ω)}

we have

lim
α→1

(Dleft)
αu = Dleftu in Lp(ω), 1 < p <∞, and a.e.

lim
α→0

(Dleft)
αu = u a.e.

Fundamental Theorem of Fractional Calculus.

u(x) = lim
ε→0

(Dleft)
α
ε (Dleft)

−αu(x) in Lp(ωp) and a.e.
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First order differential operators

For a(x) continuous, let

Dleft,au(x) = Dleftu + a(x)u

Fix x0 ∈ R and define

E(x) = Ex0,a(x) = exp

[
−
∫ x

x0

a(y) dy

]
It can be checked that

Dleft,au(x) = E(x)Dleft(E−1u)(x)

Lemma (Semigroup)

e−tDleft,au(x) = E(x)e−tDleft (E−1u)(x)
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Fractional powers of first order differential operators

Positive fractional power is a modulation of Marchaud:

(Dleft,a)αu(x) =
1

Γ(−α)

∫ ∞
0

(
e−tDleft,au(x)− u(x)

) dt

t1+α

= cαE(x)

∫ x

−∞

(E−1u)(x)− (E−1u)(t)

(x − t)1+α
dt

= E(x)(Dleft)
α(E−1u)(x)

Negative fractional power is a modulation of Weyl:

(Dleft,a)−αu(x) =
1

Γ(α)

∫ ∞
0

e−tDleft,au(x)
dt

t1−α

= c−αE(x)

∫ x

−∞

(E−1u)(t)

(x − t)1−α dt

= E(x)(Dleft)
−α(E−1u)(x)

I We can transfer results from (Dleft)
±α to (Dleft,a)±α using modulation

(semigroup, distributions, maximum principle, extension, BBM-type results, etc)
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Sobolev spaces

Recall that, for ω ∈ A−p (R) and a ≡ 0,

W 1,p(ω) =
{
u ∈ Lp(ω) : Dleftu ∈ Lp(ω)

}

Since, for any a(x),
E(x)−1Dleft,au = Dleft(E−1u)(x)

then the correct definition of Sobolev space associated with Dleft,a is

W 1,p
a (ω) =

{
u ∈ Lp(E−pω) : Dleft,au ∈ Lp(E−pω)

}
Similarly,

W α,p
a (ωp) =

{
u = (Dleft,a)−αf : f ∈ Lp(E−pωp)

}
Conclusion. The natural Lp space for analysis of (Dleft,a)±α is

Lp(E−p) = {u : R→ R : E−1u ∈ Lp(R)}
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An important example

When a(x) = x ,
Dleft,au = Dleftu + xu

This is the natural derivative in harmonic analysis of Hermite expansions:

− d2

dx2
+ x

d

dx
= (Dleft + x)(Dright)

By taking x0 = 0,

E(x)−1 = exp

(∫ x

0

a(y) dy

)
= ex

2/2

and we end up with the inverse Gaussian space

L2(E−2) = {u : R→ R : ex
2/2u ∈ L2(R)} = L2(R, dγ−1)
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Eigenpolynomials for inverse Gaussian

Theorem (Mazzitelli–S.–Torrea, 2022)

The polynomials given by the Rodrigues formula

H(x) = (−1)ne−x
2 dn

dxn
(ex

2

) n ≥ 0

are eigenfunctions of L = d2

dx2 + 2x d
dx with LHn = 2nHn.

Generating function formula: et
2−2xt =

∞∑
n=0

Hn(x)
tn

n!

Three-term recurrence relation: Hn+1(x) + 2xHn(x)− 2nHn−1 = 0 n ≥ 1.

There is a unique moment functional F such that

F(1) = 1, F(HnHm) = 0 and F(H2
n) 6= 0.

Notice that H(x) are not orthogonal with respect to dγ−1, but with respect
to a moment functional F .
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Orthogonal basis for inverse Gaussian

Theorem
Consider the classical Hermite polynomials given by the Rodrigues formula

Hn(x) = (−1)nex
2 d

dx
(e−x

2

) n ≥ 0.

Then
H∗n (x) = e−x

2

Hn(x)

forms an orthogonal basis of L2(R, dγ−1). Moreover,

LH∗n = −(2n + 2)H∗n .

Remark

We also prove L2(R, dγ−1) boundedness of singular integrals associated to

L = d2

dx2 + 2x d
dx (maximal semigroup operator, Riesz transform d

dxL
−1/2,

Littlewood–Paley square functions). The idea is to conjugate with the

corresponding operators related to L = − d2

dx2 + 2x d
dx .
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Other inverse polynomial systems

Laguerre polynomials: orthonormal basis of L2((0,∞), xαe−x dx), α > −1.

Take the Laguerre derivative

Dleft,au = Dleftu −
(α
x
− 1
)
u,

choose x0 = 1 and compute

E−1(x) = exp

[
−
∫ x

1

(α
y
− 1
)
dy

]
=

1

e
x−αex .

This is the inverse Laguerre measure.

We found the eigenpolynomials for the corresponding Laplacian:

Lα,n(x) =
xαe−x

n!

dn

dxn
(xn−αex) n ≥ 0.

We also construct eigenpolynomials for the inverse Jacobi measure

(1− x)−α(1 + x)−β dx in (−1, 1), for α, β > −1.

We obtain boundedness of singular integrals in L2 of the inverse measures.
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Thank you for your attention!

Pablo Raúl Stinga (Iowa State University) Fractional powers and inverse measures July 19, 2022 16 / 16


