Fractional powers of first order differential operators and inverse measures

Pablo Raúl Stinga

Iowa State University

Theoretical and Applied Aspects for Nonlocal Models Banff International Research Station

July 19, 2022

イロト イヨト イヨト イ

 Joint work with Martín Mazzitelli (Instituto Balseiro, Argentina) and José L. Torrea (Universidad Autónoma de Madrid), arXiv 2022.

メロト メポト メヨト メヨ

Gaussian measure

$$d\gamma_1(x) = \pi^{-1/2} e^{-x^2} dx$$
 on \mathbb{R}

メロト メロト メヨト メヨト

Gaussian measure

$$d\gamma_1(x) = \pi^{-1/2} e^{-x^2} dx$$
 on \mathbb{R}

• Probability measure: $\int_{\mathbb{R}} d\gamma_1(x) = 1$. Malliavin Calculus.

(日) (四) (主) (王)

Gaussian measure

$$d\gamma_1(x) = \pi^{-1/2} e^{-x^2} dx$$
 on $\mathbb R$

• Probability measure: $\int_{\mathbb{R}} d\gamma_1(x) = 1$. Malliavin Calculus.

• The Ornstein-Uhlenbeck operator

$$Lu = -\frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_1$: $\int_{\mathbb{R}} (Lu) v \, d\gamma_1 = \int_{\mathbb{R}} u(Lv) \, d\gamma_1$

<ロ> (四)、(四)、(日)、(日)、

$$d\gamma_1(x) = \pi^{-1/2} e^{-x^2} dx$$
 on $\mathbb R$

• Probability measure: $\int_{\mathbb{R}} d\gamma_1(x) = 1$. Malliavin Calculus.

• The Ornstein–Uhlenbeck operator

$$Lu = -\frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_1$: $\int_{\mathbb{R}} (Lu)v \, d\gamma_1 = \int_{\mathbb{R}} u(Lv) \, d\gamma_1$

• Hermite polynomials

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}) \qquad n \ge 0$$

are eigenfuctions of L with $LH_n = 2nH_n$

イロト イヨト イヨト イヨト

$$d\gamma_1(x) = \pi^{-1/2} e^{-x^2} dx$$
 on $\mathbb R$

• Probability measure: $\int_{\mathbb{R}} d\gamma_1(x) = 1$. Malliavin Calculus.

The Ornstein–Uhlenbeck operator

$$Lu = -\frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_1$: $\int_{\mathbb{D}} (Lu)v \, d\gamma_1 = \int_{\mathbb{D}} u(Lv) \, d\gamma_1$

• Hermite polynomials

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}) \qquad n \ge 0$$

are eigenfuctions of L with $LH_n = 2nH_n$

• Hermite polynomials form an orthogonal basis of $L^2(\mathbb{R}, d\gamma_1)$

・ロン ・四と ・ヨン ・ヨン

$$d\gamma_1(x) = \pi^{-1/2} e^{-x^2} dx$$
 on $\mathbb R$

• Probability measure: $\int_{\mathbb{R}} d\gamma_1(x) = 1$. Malliavin Calculus.

The Ornstein–Uhlenbeck operator

$$Lu = -\frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_1$: $\int_{\mathbb{D}} (Lu)v \, d\gamma_1 = \int_{\mathbb{D}} u(Lv) \, d\gamma_1$

• Hermite polynomials

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}) \qquad n \ge 0$$

are eigenfuctions of L with $LH_n = 2nH_n$

- Hermite polynomials form an orthogonal basis of $L^2(\mathbb{R}, d\gamma_1)$
- Gaussian harmonic analysis: dγ₁ is nondoubling and non-Ahlfors regular, so classical CZ theory on metric measure spaces does not directly apply.

イロン イヨン イヨン イヨン

$$d\gamma_{-1}(x) = \pi^{1/2} e^{x^2} dx$$

イロト イヨト イヨト イヨト

$$d\gamma_{-1}(x) = \pi^{1/2} e^{x^2} dx$$

• Infinite measure:
$$\int_{\mathbb{R}} d\gamma_{-1}(x) = \infty$$

イロト イヨト イヨト イヨト

$$d\gamma_{-1}(x) = \pi^{1/2} e^{x^2} dx$$

• Infinite measure:
$$\int_{\mathbb{R}} d\gamma_{-1}(x) = \infty$$

• The operator

$$\mathcal{L}u = \frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_{-1}$: $\int_{\mathbb{R}} (\mathcal{L}u) v \, d\gamma_{-1} = \int_{\mathbb{R}} u(\mathcal{L}v) \, d\gamma_{-1}$

・ロト ・聞ト ・ヨト ・ヨト

$$d\gamma_{-1}(x) = \pi^{1/2} e^{x^2} dx$$

• Infinite measure:
$$\int_{\mathbb{R}} d\gamma_{-1}(x) = \infty$$

• The operator

$$\mathcal{L}u = \frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_{-1}$: $\int_{\mathbb{R}} (\mathcal{L}u) v \, d\gamma_{-1} = \int_{\mathbb{R}} u(\mathcal{L}v) \, d\gamma_{-1}$

• Are there *polynomial* eigenfunctions? $\mathcal{LH}_n = \lambda_n \mathcal{H}_n$?

(日) (四) (王) (王) (王)

$$d\gamma_{-1}(x) = \pi^{1/2} e^{x^2} dx$$

- Infinite measure: $\int_{\mathbb{R}} d\gamma_{-1}(x) = \infty$
- The operator

$$\mathcal{L}u = \frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_{-1}$: $\int_{\mathbb{R}} (\mathcal{L}u) v \, d\gamma_{-1} = \int_{\mathbb{R}} u(\mathcal{L}v) \, d\gamma_{-1}$

- Are there *polynomial* eigenfunctions? $\mathcal{LH}_n = \lambda_n \mathcal{H}_n$?
- Orthonormal basis of $L^2(\mathbb{R}, d\gamma_{-1})$? Not polynomials anymore!

・ロン ・四と ・ヨン ・ヨン

$$d\gamma_{-1}(x) = \pi^{1/2} e^{x^2} dx$$

- Infinite measure: $\int_{\mathbb{R}} d\gamma_{-1}(x) = \infty$
- The operator

$$\mathcal{L}u = \frac{d^2u}{dx^2} + 2x\frac{du}{dx}$$

is symmetric with respect to $d\gamma_{-1}$: $\int_{\mathbb{R}} (\mathcal{L}u) v \, d\gamma_{-1} = \int_{\mathbb{R}} u(\mathcal{L}v) \, d\gamma_{-1}$

- Are there *polynomial* eigenfunctions? $\mathcal{LH}_n = \lambda_n \mathcal{H}_n$?
- Orthonormal basis of $L^2(\mathbb{R}, d\gamma_{-1})$? Not polynomials anymore!
- Inverse Gaussian harmonic analysis: similar obstructions.

・ロン ・四と ・ヨン ・ヨン

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$${f H}_{\Sigma}=rac{1}{2}{f x}^{\perp}$$

 H_{Σ} : mean curvature vector on Σ ; x^{\perp} : orthogonal projection of x onto the normal.

イロト イヨト イヨト

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$${f H}_{\Sigma}=rac{1}{2}{f x}^{ot}$$

 \mathbf{H}_{Σ} : mean curvature vector on Σ ; \mathbf{x}^{\perp} : orthogonal projection of \mathbf{x} onto the normal. Equivalently, $\Sigma_t = \sqrt{t}\Sigma$, t > 0, is a mean curvature flow:

$$\left(\frac{\partial \mathbf{x}}{\partial t}\right)^{\perp} = \mathbf{H}_{\mathbf{\Sigma}_t}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$${f H}_{\Sigma}=rac{1}{2}{f x}^{ot}$$

 \mathbf{H}_{Σ} : mean curvature vector on Σ ; \mathbf{x}^{\perp} : orthogonal projection of \mathbf{x} onto the normal. Equivalently, $\Sigma_t = \sqrt{t}\Sigma$, t > 0, is a mean curvature flow:

$$\left(\frac{\partial \mathbf{x}}{\partial t}\right)^{\perp} = \mathbf{H}_{\mathbf{\Sigma}_t}$$

Self-expanders describe the asymptotic behavior and the local structure of mean curvature flow after singularities for short times.

A hypersurface Σ in \mathbb{R}^{n+1} is a self-expander if

$${f H}_{\Sigma}=rac{1}{2}{f x}^{ot}$$

 \mathbf{H}_{Σ} : mean curvature vector on Σ ; \mathbf{x}^{\perp} : orthogonal projection of \mathbf{x} onto the normal. Equivalently, $\Sigma_t = \sqrt{t}\Sigma$, t > 0, is a mean curvature flow:

$$\left(\frac{\partial \mathbf{x}}{\partial t}\right)^{\perp} = \mathbf{H}_{\mathbf{\Sigma}_t}$$

Self-expanders describe the asymptotic behavior and the local structure of mean curvature flow after singularities for short times.

A self-expander M is a critical point of the weighted volume functional

$$F(M) = \int_M e^{|\mathbf{x}|^2/4} \, d\mathcal{H}^{n-1}$$

Reference. T. Ilmanen, Lectures on mean curvature flow and related equations (1995)

イロン イロン イヨン イヨン

Fractional derivatives and integrals

For $u: \mathbb{R} \to \mathbb{R}$, let

$$D_{left}u(x) = \lim_{t \to 0^+} \frac{u(x) - u(x-t)}{t} = -\lim_{t \to 0^+} \frac{e^{-tD_{left}}u(x) - u(x)}{t}$$

where the left translation semigroup is $e^{-tD_{left}}u(x) = u(x - t)$.

メロト メポト メヨト メヨ

Fractional derivatives and integrals

For $u: \mathbb{R} \to \mathbb{R}$, let

$$D_{left}u(x) = \lim_{t \to 0^+} \frac{u(x) - u(x - t)}{t} = -\lim_{t \to 0^+} \frac{e^{-tD_{left}}u(x) - u(x)}{t}$$

where the left translation semigroup is $e^{-tD_{left}}u(x) = u(x - t)$. For $0 < \alpha < 1$,

$$(D_{left})^{\alpha}u(x) = \frac{1}{\Gamma(-\alpha)} \int_0^{\infty} \left(e^{-tD_{left}}u(x) - u(x)\right) \frac{dt}{t^{1+\alpha}}$$
$$= c_{\alpha} \int_{-\infty}^{x} \frac{u(x) - u(t)}{(x-t)^{1+\alpha}} dt$$

is the Marchaud fractional derivative;

(4日) (四) (2) (2) (2)

Fractional derivatives and integrals

For $u: \mathbb{R} \to \mathbb{R}$, let

$$D_{left}u(x) = \lim_{t \to 0^+} \frac{u(x) - u(x - t)}{t} = -\lim_{t \to 0^+} \frac{e^{-tD_{left}}u(x) - u(x)}{t}$$

where the left translation semigroup is $e^{-tD_{left}}u(x) = u(x - t)$. For $0 < \alpha < 1$,

$$(D_{left})^{lpha}u(x) = rac{1}{\Gamma(-lpha)}\int_0^{\infty} \left(e^{-tD_{left}}u(x) - u(x)
ight)rac{dt}{t^{1+lpha}} \ = c_{lpha}\int_{-\infty}^{x}rac{u(x) - u(t)}{(x-t)^{1+lpha}}\,dt$$

is the Marchaud fractional derivative; and

$$(D_{left})^{-\alpha}u(x) = \frac{1}{\Gamma(\alpha)} \int_0^\infty e^{-tD_{left}}u(x) \frac{dt}{t^{1-\alpha}}$$
$$= c_{-\alpha} \int_{-\infty}^x \frac{u(t)}{(x-t)^{1-\alpha}} dt$$

is the Weyl fractional integral.

メロト メポト メヨト メヨ

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

イロン イヨン イヨン イ

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

• Using

$$\int_{\mathbb{R}} ((D_{left})^{\alpha} u) v \, dx = \int_{\mathbb{R}} u((D_{right})^{\alpha} v) \, dx$$

and **one-sided test functions**, we can define $(D_{left})^{\alpha}u$ in the sense of distributions.

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

Using

$$\int_{\mathbb{R}} ((D_{left})^{\alpha} u) v \, dx = \int_{\mathbb{R}} u((D_{right})^{\alpha} v) \, dx$$

and **one-sided test functions**, we can define $(D_{left})^{\alpha}u$ in the sense of distributions.

• Maximum principle. If $(D_{left})^{\alpha} u \leq 0$ in (0, T] and $u \leq 0$ in $(-\infty, 0]$ then $\sup_{(-\infty, T]} u = \sup_{(-\infty, 0]} u$.

・ロン ・四と ・ヨン ・ヨン

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

Using

$$\int_{\mathbb{R}} ((D_{left})^{\alpha} u) v \, dx = \int_{\mathbb{R}} u((D_{right})^{\alpha} v) \, dx$$

and **one-sided test functions**, we can define $(D_{left})^{\alpha}u$ in the sense of distributions.

- Maximum principle. If $(D_{left})^{\alpha} u \leq 0$ in (0, T] and $u \leq 0$ in $(-\infty, 0]$ then $\sup_{(-\infty, T]} u = \sup_{(-\infty, 0]} u$.
- Extension problem. If U = U(x, y) solves

$$\begin{cases} -D_{left}U + \frac{1-2\alpha}{y}U_y + U_{yy} = 0 & \text{for } x \in \mathbb{R}, \ y > 0\\ U(x,0) = u(x) & \text{on } \mathbb{R} \end{cases}$$

then $-d_{\alpha}y^{1-2\alpha}U_y(x,y)\big|_{y=0} = (D_{left})^{\alpha}u(x).$

イロン イヨン イヨン イヨン

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

Using

$$\int_{\mathbb{R}} ((D_{left})^{\alpha} u) v \, dx = \int_{\mathbb{R}} u((D_{right})^{\alpha} v) \, dx$$

and **one-sided test functions**, we can define $(D_{left})^{\alpha}u$ in the sense of distributions.

- Maximum principle. If $(D_{left})^{\alpha} u \leq 0$ in (0, T] and $u \leq 0$ in $(-\infty, 0]$ then $\sup_{(-\infty, T]} u = \sup_{(-\infty, 0]} u$.
- Extension problem. If U = U(x, y) solves

$$\begin{cases} -D_{left}U + \frac{1-2\alpha}{y}U_y + U_{yy} = 0 & \text{for } x \in \mathbb{R}, \ y > 0\\ U(x,0) = u(x) & \text{on } \mathbb{R} \end{cases}$$

then $-d_{\alpha}y^{1-2\alpha}U_y(x,y)\big|_{y=0} = (D_{left})^{\alpha}u(x).$

(

• Harnack inequality. If $u \ge 0$ in \mathbb{R} , and $(D_{left})^{\alpha}u = 0$ in (0,1), then

$$\sup_{(1/4,1/3)} u \le C \inf_{(1/2,3/4)} u$$

イロト イヨト イヨト イヨト

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

• One-sided fractional Sobolev spaces. For $1 \le p < \infty$ and $\omega \in A_p^-(\mathbb{R})$ (one-sided Sawyer weight)

$$W^{lpha, p}(\omega^p) = \{ u = (D_{left})^{-lpha} f : f \in L^p(\omega^p) \}$$

Characterizations with left fractional derivatives.

・ロト ・回ト ・ ヨト ・

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

• One-sided fractional Sobolev spaces. For $1 \le p < \infty$ and $\omega \in A_p^-(\mathbb{R})$ (one-sided Sawyer weight)

$$W^{\alpha,p}(\omega^p) = \{ u = (D_{left})^{-\alpha} f : f \in L^p(\omega^p) \}$$

Characterizations with left fractional derivatives.

• Bourgain-Brezis-Mironescu-type result. For

$$W^{1,p}(\omega) = \{ u \in L^p(\omega) : D_{left} u \in L^p(\omega) \}$$

we have

$$\begin{split} \lim_{\alpha \to 1} (D_{\mathit{left}})^{\alpha} u &= D_{\mathit{left}} u \qquad \text{in } L^p(\omega), \ 1$$

イロト イヨト イヨト イ

References. Bernardis-Martín-Reyes-S.-Torrea (2016); S.-Vaughan (2020).

• One-sided fractional Sobolev spaces. For $1 \le p < \infty$ and $\omega \in A^-_p(\mathbb{R})$ (one-sided Sawyer weight)

$$W^{\alpha,p}(\omega^p) = \{ u = (D_{left})^{-\alpha} f : f \in L^p(\omega^p) \}$$

Characterizations with left fractional derivatives.

• Bourgain-Brezis-Mironescu-type result. For

$$W^{1,p}(\omega) = \{ u \in L^p(\omega) : D_{left} u \in L^p(\omega) \}$$

we have

$$\begin{split} \lim_{\alpha \to 1} (D_{\mathit{left}})^{\alpha} u &= D_{\mathit{left}} u & \text{ in } L^p(\omega), \ 1$$

• Fundamental Theorem of Fractional Calculus.

$$u(x) = \lim_{\varepsilon \to 0} (D_{left})^{\alpha}_{\varepsilon} (D_{left})^{-\alpha} u(x) \quad \text{in } L^{p}(\omega^{p}) \text{ and a.e.}$$

イロト イポト イヨト イヨ

For a(x) continuous, let

$$\mathfrak{D}_{left,a}u(x) = D_{left}u + a(x)u$$

メロト メポト メヨト メヨ

For a(x) continuous, let

$$\mathfrak{D}_{left,a}u(x) = D_{left}u + a(x)u$$

Fix $x_0 \in \mathbb{R}$ and define

$$\mathcal{E}(x) = \mathcal{E}_{x_0,a}(x) = \exp\left[-\int_{x_0}^x a(y) \, dy\right]$$

メロト メポト メヨト メヨ

For a(x) continuous, let

$$\mathfrak{D}_{left,a}u(x) = D_{left}u + a(x)u$$

Fix $x_0 \in \mathbb{R}$ and define

$$\mathcal{E}(x) = \mathcal{E}_{x_0,a}(x) = \exp\left[-\int_{x_0}^x a(y) \, dy\right]$$

It can be checked that

$$\mathfrak{D}_{left,a}u(x)=\mathcal{E}(x)D_{left}(\mathcal{E}^{-1}u)(x)$$

メロト メロト メヨト メ

For a(x) continuous, let

$$\mathfrak{D}_{left,a}u(x) = D_{left}u + a(x)u$$

Fix $x_0 \in \mathbb{R}$ and define

$$\mathcal{E}(x) = \mathcal{E}_{x_0,a}(x) = \exp\left[-\int_{x_0}^x a(y) \, dy\right]$$

It can be checked that

$$\mathfrak{D}_{left,a}u(x) = \mathcal{E}(x)D_{left}(\mathcal{E}^{-1}u)(x)$$

Lemma (Semigroup)

$$e^{-t\mathfrak{D}_{left,a}}u(x) = \mathcal{E}(x)e^{-tD_{left}}(\mathcal{E}^{-1}u)(x)$$

(ロ) (回) (三) (三)

Fractional powers of first order differential operators

Positive fractional power is a *modulation* of Marchaud:

$$\begin{split} (\mathfrak{D}_{left,a})^{\alpha} u(x) &= \frac{1}{\Gamma(-\alpha)} \int_0^{\infty} \left(e^{-t\mathfrak{D}_{left,a}} u(x) - u(x) \right) \frac{dt}{t^{1+\alpha}} \\ &= c_{\alpha} \mathcal{E}(x) \int_{-\infty}^{x} \frac{(\mathcal{E}^{-1}u)(x) - (\mathcal{E}^{-1}u)(t)}{(x-t)^{1+\alpha}} dt \\ &= \mathcal{E}(x) (D_{left})^{\alpha} (\mathcal{E}^{-1}u)(x) \end{split}$$

▲□→ ▲圖→ ▲ 注→

Fractional powers of first order differential operators

Positive fractional power is a *modulation* of Marchaud:

$$\begin{split} (\mathfrak{D}_{left,a})^{\alpha}u(x) &= \frac{1}{\Gamma(-\alpha)} \int_0^{\infty} \left(e^{-t\mathfrak{D}_{left,a}}u(x) - u(x) \right) \frac{dt}{t^{1+\alpha}} \\ &= c_{\alpha}\mathcal{E}(x) \int_{-\infty}^{x} \frac{(\mathcal{E}^{-1}u)(x) - (\mathcal{E}^{-1}u)(t)}{(x-t)^{1+\alpha}} \, dt \\ &= \mathcal{E}(x)(D_{left})^{\alpha} (\mathcal{E}^{-1}u)(x) \end{split}$$

Negative fractional power is a *modulation* of Weyl:

$$(\mathfrak{D}_{left,a})^{-\alpha}u(x) = \frac{1}{\Gamma(\alpha)} \int_0^\infty e^{-t\mathfrak{D}_{left,a}}u(x) \frac{dt}{t^{1-\alpha}}$$
$$= c_{-\alpha}\mathcal{E}(x) \int_{-\infty}^x \frac{(\mathcal{E}^{-1}u)(t)}{(x-t)^{1-\alpha}} dt$$
$$= \mathcal{E}(x)(D_{left})^{-\alpha}(\mathcal{E}^{-1}u)(x)$$

Fractional powers of first order differential operators

Positive fractional power is a *modulation* of Marchaud:

$$\begin{split} (\mathfrak{D}_{left,a})^{\alpha}u(x) &= \frac{1}{\Gamma(-\alpha)} \int_{0}^{\infty} \left(e^{-t\mathfrak{D}_{left,a}}u(x) - u(x) \right) \frac{dt}{t^{1+\alpha}} \\ &= c_{\alpha}\mathcal{E}(x) \int_{-\infty}^{x} \frac{(\mathcal{E}^{-1}u)(x) - (\mathcal{E}^{-1}u)(t)}{(x-t)^{1+\alpha}} dt \\ &= \mathcal{E}(x)(D_{left})^{\alpha} (\mathcal{E}^{-1}u)(x) \end{split}$$

Negative fractional power is a *modulation* of Weyl:

$$\begin{split} (\mathfrak{D}_{left,a})^{-\alpha} u(x) &= \frac{1}{\Gamma(\alpha)} \int_0^\infty e^{-t\mathfrak{D}_{left,a}} u(x) \, \frac{dt}{t^{1-\alpha}} \\ &= c_{-\alpha} \mathcal{E}(x) \int_{-\infty}^x \frac{(\mathcal{E}^{-1}u)(t)}{(x-t)^{1-\alpha}} \, dt \\ &= \mathcal{E}(x) (D_{left})^{-\alpha} (\mathcal{E}^{-1}u)(x) \end{split}$$

► We can transfer results from (D_{left})^{±α} to (D_{left,a})^{±α} using modulation (semigroup, distributions, maximum principle, extension, BBM-type results, etc)

・ロン ・四 と ・ ヨン・

Recall that, for $\omega \in A^-_p(\mathbb{R})$ and $a \equiv 0$,

$$W^{1,p}(\omega) = \left\{ u \in L^p(\omega) : D_{left} u \in L^p(\omega) \right\}$$

・ロト ・聞 ト ・ ヨト ・ ヨト

Recall that, for $\omega \in A_p^-(\mathbb{R})$ and $a \equiv 0$,

$$W^{1,p}(\omega) = \left\{ u \in L^p(\omega) : D_{left} u \in L^p(\omega) \right\}$$

Since, for any a(x),

$$\mathcal{E}(x)^{-1}\mathfrak{D}_{left,a}u = D_{left}(\mathcal{E}^{-1}u)(x)$$

then the correct definition of Sobolev space associated with $\mathfrak{D}_{\mathit{left},a}$ is

$$W^{1,p}_{a}(\omega) = \left\{ u \in L^{p}(\mathcal{E}^{-p}\omega) : \mathfrak{D}_{left,a}u \in L^{p}(\mathcal{E}^{-p}\omega) \right\}$$

(4日) (四) (2) (2) (2)

Recall that, for $\omega \in A_p^-(\mathbb{R})$ and $a \equiv 0$,

$$W^{1,p}(\omega) = \left\{ u \in L^p(\omega) : D_{left} u \in L^p(\omega) \right\}$$

Since, for any a(x),

$$\mathcal{E}(x)^{-1}\mathfrak{D}_{left,a}u = D_{left}(\mathcal{E}^{-1}u)(x)$$

then the correct definition of Sobolev space associated with $\mathfrak{D}_{\mathit{left},a}$ is

$$\mathcal{W}^{1,p}_{\mathsf{a}}(\omega) = \left\{ u \in L^p(\mathcal{E}^{-p}\omega) : \mathfrak{D}_{\mathit{left},\mathsf{a}} u \in L^p(\mathcal{E}^{-p}\omega)
ight\}$$

Similarly,

$$W^{\alpha,p}_{a}(\omega^{p}) = \left\{ u = (\mathfrak{D}_{left,a})^{-\alpha}f : f \in L^{p}(\mathcal{E}^{-p}\omega^{p}) \right\}$$

メロト メポト メヨト メヨ

Recall that, for $\omega \in A_p^-(\mathbb{R})$ and $a \equiv 0$,

$$W^{1,p}(\omega) = \left\{ u \in L^p(\omega) : D_{left} u \in L^p(\omega) \right\}$$

Since, for any a(x),

$$\mathcal{E}(x)^{-1}\mathfrak{D}_{left,a}u=D_{left}(\mathcal{E}^{-1}u)(x)$$

then the correct definition of Sobolev space associated with $\mathfrak{D}_{left,a}$ is

$$\mathcal{W}^{1,p}_{\mathsf{a}}(\omega) = \left\{ u \in L^p(\mathcal{E}^{-p}\omega) : \mathfrak{D}_{\mathit{left},\mathsf{a}} u \in L^p(\mathcal{E}^{-p}\omega)
ight\}$$

Similarly,

$$W^{\alpha,p}_{a}(\omega^{p}) = \left\{ u = (\mathfrak{D}_{left,a})^{-\alpha}f : f \in L^{p}(\mathcal{E}^{-p}\omega^{p}) \right\}$$

Conclusion. The natural L^{p} space for analysis of $(\mathfrak{D}_{left,a})^{\pm \alpha}$ is

$$L^{p}(\mathcal{E}^{-p}) = \{ u : \mathbb{R} \to \mathbb{R} : \mathcal{E}^{-1}u \in L^{p}(\mathbb{R}) \}$$

(4日) (四) (2) (2) (2)

An important example

When a(x) = x,

$$\mathfrak{D}_{left,a}u = D_{left}u + xu$$

• This is the natural *derivative* in harmonic analysis of Hermite expansions:

$$-\frac{d^2}{dx^2} + x\frac{d}{dx} = (D_{left} + x)(D_{right})$$

メロト メポト メヨト メヨ

An important example

When a(x) = x, $\mathfrak{D}_{1,0}, \mu = \mathcal{D}_{1,0}, \mu + x\mu$

• This is the natural *derivative* in harmonic analysis of Hermite expansions:

$$-\frac{d^2}{dx^2} + x\frac{d}{dx} = (D_{left} + x)(D_{right})$$

By taking $x_0 = 0$, $\mathcal{E}(x)^{-1} = \exp\left(\int_0^x a(y) \, dy\right) = e^{x^2/2}$

and we end up with the inverse Gaussian space

$$L^2(\mathcal{E}^{-2}) = \{u: \mathbb{R} \to \mathbb{R}: e^{x^2/2}u \in L^2(\mathbb{R})\} = L^2(\mathbb{R}, d\gamma_{-1})$$

イロト イヨト イヨト イヨト

Theorem (Mazzitelli–S.–Torrea, 2022)

The polynomials given by the Rodrigues formula

$$\mathcal{H}(x) = (-1)^n e^{-x^2} \frac{d^n}{dx^n} (e^{x^2}) \qquad n \ge 0$$

are eigenfunctions of $\mathcal{L} = \frac{d^2}{dx^2} + 2x \frac{d}{dx}$ with $\mathcal{LH}_n = 2n\mathcal{H}_n$. Generating function formula: $e^{t^2 - 2xt} = \sum_{n=0}^{\infty} \mathcal{H}_n(x) \frac{t^n}{n!}$ Three-term recurrence relation: $\mathcal{H}_{n+1}(x) + 2x\mathcal{H}_n(x) - 2n\mathcal{H}_{n-1} = 0$ $n \ge 1$. There is a unique moment functional \mathcal{F} such that

$$\mathcal{F}(1)=1, \quad \mathcal{F}(\mathcal{H}_n\mathcal{H}_m)=0 \quad \textit{and} \quad \mathcal{F}(\mathcal{H}_n^2)\neq 0.$$

<四) <問) <問) < 문) < 문)

Theorem (Mazzitelli–S.–Torrea, 2022)

The polynomials given by the Rodrigues formula

$$\mathcal{H}(x) = (-1)^n e^{-x^2} \frac{d^n}{dx^n} (e^{x^2}) \qquad n \ge 0$$

are eigenfunctions of $\mathcal{L} = \frac{d^2}{dx^2} + 2x \frac{d}{dx}$ with $\mathcal{LH}_n = 2n\mathcal{H}_n$. Generating function formula: $e^{t^2 - 2xt} = \sum_{n=0}^{\infty} \mathcal{H}_n(x) \frac{t^n}{n!}$ Three-term recurrence relation: $\mathcal{H}_{n+1}(x) + 2x\mathcal{H}_n(x) - 2n\mathcal{H}_{n-1} = 0$ $n \ge 1$. There is a unique moment functional \mathcal{F} such that

$$\mathcal{F}(1) = 1, \quad \mathcal{F}(\mathcal{H}_n \mathcal{H}_m) = 0 \quad and \quad \mathcal{F}(\mathcal{H}_n^2) \neq 0.$$

 Notice that H(x) are not orthogonal with respect to dγ₋₁, but with respect to a moment functional F.

イロン イヨン イヨン イヨン

Orthogonal basis for inverse Gaussian

Theorem

Consider the classical Hermite polynomials given by the Rodrigues formula

$$H_n(x) = (-1)^n e^{x^2} \frac{d}{dx} (e^{-x^2}) \qquad n \ge 0.$$

Then

$$H_n^*(x) = e^{-x^2} H_n(x)$$

forms an orthogonal basis of $L^2(\mathbb{R}, d\gamma_{-1})$. Moreover,

$$\mathcal{L}H_n^*=-(2n+2)H_n^*.$$

Remark

We also prove $L^2(\mathbb{R}, d\gamma_{-1})$ boundedness of singular integrals associated to $\mathcal{L} = \frac{d^2}{dx^2} + 2x \frac{d}{dx}$ (maximal semigroup operator, Riesz transform $\frac{d}{dx} \mathcal{L}^{-1/2}$, Littlewood–Paley square functions). The idea is to conjugate with the corresponding operators related to $L = -\frac{d^2}{dx^2} + 2x \frac{d}{dx}$.

• Laguerre polynomials: orthonormal basis of $L^2((0,\infty), x^{\alpha}e^{-x} dx), \alpha > -1$.

イロト イロト イヨト イ

• Laguerre polynomials: orthonormal basis of $L^2((0,\infty), x^{\alpha}e^{-x} dx)$, $\alpha > -1$. Take the Laguerre derivative

$$\mathfrak{D}_{left,a}u = D_{left}u - \left(rac{lpha}{x} - 1
ight)u,$$

choose $x_0 = 1$ and compute

$$\mathcal{E}^{-1}(x) = \exp\left[-\int_1^x \left(\frac{\alpha}{y}-1\right) dy\right] = \frac{1}{e}x^{-\alpha}e^x.$$

イロン イヨン イヨン イ

• Laguerre polynomials: orthonormal basis of $L^2((0,\infty), x^{\alpha}e^{-x} dx)$, $\alpha > -1$. Take the Laguerre derivative

$$\mathfrak{D}_{left,a}u = D_{left}u - \left(rac{lpha}{x} - 1
ight)u,$$

choose $x_0 = 1$ and compute

$$\mathcal{E}^{-1}(x) = \exp\left[-\int_1^x \left(\frac{\alpha}{y}-1\right) dy\right] = \frac{1}{e}x^{-\alpha}e^x.$$

This is the *inverse* Laguerre measure.

イロト イヨト イヨト

 Laguerre polynomials: orthonormal basis of L²((0,∞), x^αe^{-x} dx), α > −1. Take the Laguerre derivative

$$\mathfrak{D}_{left,a}u = D_{left}u - \left(rac{lpha}{x} - 1
ight)u,$$

choose $x_0 = 1$ and compute

$$\mathcal{E}^{-1}(x) = \exp\left[-\int_1^x \left(\frac{\alpha}{y}-1\right) dy\right] = \frac{1}{e}x^{-\alpha}e^x.$$

This is the *inverse* Laguerre measure.

We found the eigenpolynomials for the corresponding Laplacian:

$$\mathcal{L}_{\alpha,n}(x) = rac{x^{lpha}e^{-x}}{n!}rac{d^n}{dx^n}(x^{n-lpha}e^x) \qquad n \ge 0.$$

イロト イヨト イヨト イ

 Laguerre polynomials: orthonormal basis of L²((0,∞), x^αe^{-x} dx), α > −1. Take the Laguerre derivative

$$\mathfrak{D}_{left,a}u = D_{left}u - \left(rac{lpha}{x} - 1
ight)u,$$

choose $x_0 = 1$ and compute

$$\mathcal{E}^{-1}(x) = \exp\left[-\int_1^x \left(\frac{\alpha}{y}-1\right) dy\right] = \frac{1}{e}x^{-\alpha}e^x.$$

This is the *inverse* Laguerre measure.

We found the eigenpolynomials for the corresponding Laplacian:

$$\mathcal{L}_{\alpha,n}(x) = rac{x^{lpha} e^{-x}}{n!} rac{d^n}{dx^n} (x^{n-lpha} e^x) \qquad n \ge 0.$$

• We also construct eigenpolynomials for the inverse Jacobi measure

$$(1-x)^{-lpha}(1+x)^{-eta}\,dx \qquad {
m in}\,\,(-1,1),\,\,{
m for}\,\,lpha,eta>-1$$

< ロ > < 回 > < 回 > < 回 > < 回 >

 Laguerre polynomials: orthonormal basis of L²((0,∞), x^αe^{-x} dx), α > −1. Take the Laguerre derivative

$$\mathfrak{D}_{left,a}u = D_{left}u - \left(rac{lpha}{x} - 1
ight)u,$$

choose $x_0 = 1$ and compute

$$\mathcal{E}^{-1}(x) = \exp\left[-\int_1^x \left(\frac{\alpha}{y}-1\right) dy\right] = \frac{1}{e}x^{-\alpha}e^x.$$

This is the *inverse* Laguerre measure.

We found the eigenpolynomials for the corresponding Laplacian:

$$\mathcal{L}_{\alpha,n}(x) = rac{x^{lpha} e^{-x}}{n!} rac{d^n}{dx^n} (x^{n-lpha} e^x) \qquad n \ge 0.$$

• We also construct eigenpolynomials for the inverse Jacobi measure

$$(1-x)^{-lpha}(1+x)^{-eta}\, dx \qquad ext{in } (-1,1), ext{ for } lpha,eta>-1.$$

• We obtain boundedness of singular integrals in L^2 of the inverse measures.

イロト イポト イヨト イヨ

Thank you for your attention!