

Definitions of High-order Fractional Laplacian $(-\Delta)^s, s \in (1,2)$

• Pseudo-differential representation:

$$\mathcal{F}\left[(-\Delta)^{s}u\right](\xi) = \left[|\xi|^{2s}\mathcal{F}(u)\right], \quad s > 0,$$

Hypersingular integral representation:

 $(-\Delta)^{s}u(\mathbf{x}) = \frac{1}{2(1-4^{1-s})} \frac{\Gamma(\frac{d}{2}+s)}{\pi^{\frac{d}{2}}\Gamma(-s)} \text{ P.V.} \int_{\mathbb{R}^{d}} \frac{\delta_{2}u(\mathbf{x},\mathbf{y})}{|\mathbf{y}|^{d+2s}} d\mathbf{y}, \quad s \in (1,2),$

where

 $\delta_2 u(\mathbf{x}, \mathbf{y}) = u(\mathbf{x} - 2\mathbf{y}) - 4u(\mathbf{x} - \mathbf{y}) + 6u(\mathbf{x}) - 4u(\mathbf{x} + \mathbf{y}) + u(\mathbf{x} + 2\mathbf{y}).$

Motivation and Numerical Challenges

• Application example: Fractional viscoacoustic wave equation (Zhu and Harris, 2014)

$$\partial_t^2 u(\mathbf{x}, t) = \alpha \underbrace{(-\Delta)^{\gamma+1}}_{\text{High-order}} u(\mathbf{x}, t) + \beta \underbrace{(-\Delta)^{\gamma+\frac{1}{2}}}_{\text{Low-order}} \left[\partial_t u(\mathbf{x}, t) \right].$$

where $\gamma = \arctan(1/Q)/\pi \in (0, 0.5)$, Q is the quality factor.

- Gap: So far no numerical scheme for the fractional Laplacian $(-\Delta)^s$ with s > 1.
- Main challenges:
- Nonlocality
- Strong singularity
- Storage cost
- Computational cost
- Rotational invariance
- Goal of this study: Develop the first numerical scheme for discretizing $(-\Delta)^s$.

Numerical Discretization of $(-\Delta)^s$

For the simplicity of notation, let's consider the 1D boundary value problem on $\Omega =$ (-L, L).

$$(-\Delta)^s u(x) = f, \quad x \in \Omega,$$

with extended Dirichlet boundary condition

$$u(x) = g(x), \quad x \in \Omega^c = \mathbb{R} \setminus \Omega.$$

First, rewrite the operator with $\xi = |y|$:

$$(-\Delta)^{s}u(x) = C_{1,s} \int_{0}^{\infty} \frac{u(x-2\xi) - 4u(x-\xi) + 6u(x) - 4u(x+\xi) + u(x+2\xi)}{\xi^{1+2s}} d\xi$$
$$= C_{1,s} \int_{0}^{\infty} \underbrace{\frac{u(x-2\xi) - 4u(x-\xi) + 6u(x) - 4u(x+\xi) + u(x+2\xi)}{\xi^{4}}}_{\Phi(x,\xi)} \xi^{3-2s} d\xi.$$

Then, denote $\xi_k = kh, h = L/K$, we have

$$(-\Delta)^{s} u(x) = C_{1,s} \int_{0}^{\infty} \Phi(x,\xi) \xi^{3-2s} d\xi = C_{1,s} \sum_{k=0}^{\infty} \int_{\xi_{k}}^{\xi_{k+1}} \Phi(x,\xi) \xi^{3-2s} d\xi,$$

where $\Phi(x,\xi)$ can be viewed as the central difference approximation to $u^{(4)}(x)$.

• For
$$k = 0$$
:

$$\int_{\xi_0}^{\xi_1} \Phi(x,\xi) \xi^{3-2s} d\xi \approx \Phi(x,h) \int_0^h \xi^{3-2s} d\xi = \frac{1}{p} h^p \Phi(x,h),$$
where $p = 4 - 2s$.

Numerical Studies on High-order Fractional Laplacian

Juan P. Borthagaray² Yixuan Wu¹ Yanzhi Zhang^{*1} Shiping Zhou¹

¹Missouri University of Science and Technology, Rolla, USA

²Universidad de la República, Salto, Uruguay

• For k > 0:

$$\int_{\xi_k}^{\xi_{k+1}} \Phi(x,\xi) \xi^{3-2s} d\xi \approx \frac{1}{2} \Big(\Phi(x,\xi_k) + \Phi(x,\xi_{k+1}) \Big) \int_{\xi_k}^{\xi_{k+1}} \xi^{3-2s} d\xi = \frac{1}{2p} \Big(\xi_{k+1}^p - \xi_k^p \Big) \Big(\Phi(x,\xi_k) + \Phi(x,\xi_{k+1}) \Big),$$

i.e., weighted trapezoidal rule is used.

Denote x_i ($-K+1 \le i \le K-1$) as uniform grid points in Ω , and $u_i = u(x_i)$. The discretized scheme for the high-order fractional Laplacian:

$$\begin{split} (-\Delta)_{h}^{s} u_{i} &= \frac{C_{1,s}}{2ph^{2s}} \Bigg[6\Big(1+2^{p}+\sum_{k=2}^{\infty} \frac{(k+1)^{p}-(k-1)^{p}}{k^{4}} \Big) u_{i} \\ &-4\Big(1+2^{p})u_{i\pm 1} + \Big(1+2^{p}+(-4)\frac{3^{p}-1}{2^{4}}\Big) u_{i\pm 2} \\ &+ \sum_{k\geq 3} \Big((-4)\frac{(k+1)^{p}-(k-1)^{p}}{k^{4}} + \gamma(k)\frac{(\frac{k}{2}+1)^{p}-(\frac{k}{2}-1)^{p}}{\left(\frac{k}{2}\right)^{4}} \Big) u_{i\pm k} \Bigg], \end{split}$$

where p = 4 - 2s, and the coefficient

$$\gamma(k) = \begin{cases} 1, & \text{if } k \text{ is even,} \\ 0, & \text{if } k \text{ is odd.} \end{cases}$$

Remark:

- The coefficient matrix A is a Toeplitz matrix.
- The discretization can be generalized to high dimensional case.

Error Analysis

Denote the local truncation error as

$$e_h(\mathbf{x}) = (-\Delta)^s u(\mathbf{x}) - (-\Delta)^s_h u(\mathbf{x}), \quad \mathbf{x} \in \Omega.$$

Theorem 1 (Error estimates for 1 < s < 1.5)

Let $(-\Delta)_h^s$ be a finite difference approximation of the high-order fractional Laplacian $(-\Delta)^s$, with h a small mesh size. For small $\varepsilon > 0$, there exists a constant C > 0independent of h such that

1. if $u \in C^{2,2s-2+\varepsilon}(\mathbb{R})$, the local truncation error satisfies $||e_h(\cdot)||_{\infty} \leq Ch^{\varepsilon}$. **2.** if $u \in C^{4,2s-2+\varepsilon}(\mathbb{R})$, the local truncation error satisfies $||e_h(\cdot)||_{\infty} \leq Ch^2$.

(2)

(1)

Theorem 2 (Error estimates for $1.5 \le s < 2$)

Let $(-\Delta)_h^s$ be the finite difference approximation to the operator $(-\Delta)^s$, with h a small mesh size. For small $\varepsilon > 0$, there exists a constant C > 0 independent of h, such that

1. if $u \in C^{3,2s-3+\varepsilon}(\mathbb{R})$, the local truncation error satisfies $||e_h(\cdot)||_{\infty} \leq Ch^{\varepsilon}$. **2.** if $u \in C^{5,2s-3+\varepsilon}(\mathbb{R})$, the local truncation error satisfies $||e_h(\cdot)||_{\infty} \leq Ch^2$.

• Case 1: Consistency Take $u(x) = (1 - x^2)^p$ with $p = 2s + \varepsilon$ and $\varepsilon = 3 - 2s$ for $s \in (1, 1.5), \varepsilon = 4 - 2s$ for $s \in (1.5, 2)$.

$\begin{vmatrix} h \\ s \end{vmatrix}$	1/64	1/128	1/256	1/512	1/1024	1/2
1.05	1.572E-2	9.619E-3	5.474E-3	3.018E-3	1.639E-3	8.843
	c.r.	0.7806	0.8132	0.8591	0.8804	0.8
1.25	1.394E-1	1.007E-1	7.206E-2	5.120E-2	3.628E-2	2.568
	c.r.	0.4670	0.4851	0.4932	0.4968	0.4
1.45	1.3937	1.2921	1.2016	1.1193	1.0435	0.9
	c.r.	0.1092	0.1047	0.1024	0.1012	0.1
1.5	5.631E-2	2.875E-2	1.441E-2	7.199E-3	3.596E-3	1.797
	c.r.	0.9697	0.9965	1.001	1.001	1.
1.75	1.2685	8.991E-1	6.307E-1	4.430E-1	3.119E-1	2.200
	c.r.	0.4965	0.5116	0.5098	0.5061	0.5
1.95	9.7483	9.2094	8.5794	7.9824	7.4335	6.9
	c.r.	0.082	0.1022	0.1040	0.1028	0.1

Operator error in $||e_h||_{\infty}$ under consistency condition has $\mathcal{O}(h^{\varepsilon})$ accuracy.

Mathematics and Statistics

]¢ S

• Case 2: 2nd-order Accuracy Take $u(x) = (1-x^2)_+^{4+\frac{\alpha}{2}}$.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
1.05 2.0795e-01 5.8767e-02 1.5157e-02 3.820 c.r. 1.8232 1.9550	1/8	1/16	1/32	
c.r. 1.8232 1.9550	.0795e-01 5.8	'67e-02 1.5	157e-02	3.8206
	c.r.	1.8232	1.9550	1.9
1.3368e+00 1.9829e-01 2.5664e-02 5.198	3368e+00 1.9	329e-01 2.5	664e-02	5.1980
c.r. 2.7531 2.9498	c.r.	2.7531	2.9498	2.3
2.6197e+01 8.0881e+00 2.0973e+00 8.177	6197e+01 8.08	81e+00 2.09	973e+00	8.1771
c.r. 1.6956 1.9473	c.r.	1.6956	1.9473	1.

Operator errors in $||e_h||_{\infty}$, get $\mathcal{O}(h^2)$ accuracy.

Boundary Value Problems

For the boundary value problems, we obtain the linear system $A\mathbf{U} + \mathbf{b} = \mathbf{F},$

where U denotes the numerical solution, A denote the coefficient matrix of x, and F represents the right-hand side of the equation (1).

Remark: Here b comes from the boundary condition, that is, comes from those terms $u_{i\pm k}$ with $|i\pm k| \ge K$. For homogeneous boundary condition, $\mathbf{b} = \mathbf{0}$.

• Case 3: B.V.P. with compact support solution: Consider

with exact solution $u(x) = (1 - x^2)_+^6$. Where ${}_2F_1$ denotes the Gauss hypergeometric function.

Case 4: B.V.P. with global solution: Consider

$$f(x) = \frac{2^{2s}\Gamma(s+\frac{1}{2})}{\sqrt{\pi}} {}_{1}F_{1}\left(s+\frac{1}{2},\frac{1}{2};-x^{2}\right), \quad x \in \mathbb{R}$$
$$g(x) = e^{-x^{2}}, \qquad x \in \mathbb{R}$$

with exact solution $u(x) = \exp(-x^2)$. Where ${}_1F_1$ represents the confluent hypergeometric function.

Numerical errors for Boundary value problems

References

- Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians, T. Zhu, J.M. Harris, Geophysics, 79(2014), T105-T116.
- Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications, S. Duo, and Y. Zhang, Comput. Methods Appl. Mech. Eng., 355(2019), 639-662.
- Analytical and numerical studies on the high-order fractional Laplacian, S. Zhou, J.P. Borthagaray, Y. Wu, and Y. Zhang, preprint (2022).

 $\in (-1,1),$ $\in \mathbb{R} \setminus (-1,1),$

(-4, 4), $\mathbb{R}\setminus(-4,4),$

szb5g@umsystem.edu