

Acknowledgement

The author warmly thanks M. Novaga for suggesting the problem and sharing insightful ideas about it.

1. Setting

Let $\Omega \subset \mathbb{R}^d$ be an open reference set with finite Lebesgue measure, and let Ω^c be its complement. Let also $K \colon \mathbb{R}^d \to [0, +\infty)$ be an even kernel such that

$$\int_{\mathbb{R}^d} K(x) \min(1, |x|) \mathrm{d}x < +\infty.$$

For $u \colon \mathbb{R}^d \to [0, 1]$, we define the functional

$$J_{K}(u;\Omega) \coloneqq \frac{1}{2} \int_{\Omega} \int_{\Omega} K(y-x) |u(y) - u(x)| \, \mathrm{d}y \, \mathrm{d}$$

This may be regarded as a **nonlocal total variation** of u in Ω ; in particular, when $u = \chi_E$ is the characteristic function of a set $E \subset \mathbb{R}^d$, J_K may be understood as a **nonlocal perimeter** of E in Ω .

Nonlocal perimeters were firstly introduced by L. CAFFARELLI & AL. in [3] to describe phase field models that feature long-range space interactions. In that work, K is a fractional kernel, that is $K(x) = |x|^{-d-s}$, with $s \in (0, 1)$.

2. Nonlocal Plateau's problem

We consider a Plateau-type problem for the nonlocal energy J_K , that is, we consider its minimisation under prescribed boundary conditions.

Theorem 1 [1]. Let $E_0 \subset \mathbb{R}^d$ be a set such that $J_K(\chi_{E_0}; \Omega) < +\infty$, and let

$$\mathscr{F} \coloneqq \left\{ v \colon \mathbb{R}^d \to [0,1] : v = \chi_{E_0} \text{ in } \Omega^c \right\}.$$

There exists $E \subset \mathbb{R}^d$ such that $\chi_E \in \mathscr{F}$ and

$$J_K(\chi_E; \Omega) \le J_K(v; \Omega)$$
 for all $v \in \mathscr{F}$.

Idea of the proof. In general, sequences with uniformly bounded energy are not precompact in L^1 . However, weak convergence in L^p is enough to show the existence of a minimizer, because J_K is convex and L^p -lower semicontinuous for $p \in [1, +\infty)$. A generalised Coarea Formula grants that there exists a minimizer which is a characteristic function.

Problem. Once existence of solutions is on hand, how to establish the minimality of a certain competitor?

In [5], a nonlocal counterpart of the well-known principle based on the concept of calibration was introduced to this purpose.

THEORETICAL AND APPLIED ASPECTS FOR NONLOCAL MODELS Online poster session, 18 July 2022

A nonlocal notion of calibration

Valerio Pagliari

Institute of Analysis and Scientific Computing – TU Vienna

dx,

3. Definition of nonlocal calibration

Definition [5]. We say that $\zeta : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a **nonlocal calibration** for $u \colon \mathbb{R}^d \to [0, 1]$ if the following hold:

- 1. $|\zeta(x,y)| \leq 1$ for a.e. $(x,y) \in \mathbb{R}^d \times \mathbb{R}^d$;
- 2. the integrals

$$T_r(x) \coloneqq \int_{B(x,r)^c} K(y-x) \left(\zeta(y,x) - \zeta(x,y)\right) dy$$

satisfy

 $\lim_{r \to 0^+} I_r = 0 \quad \text{w.r.t. the } L^1(\Omega) \text{ -norm.}$

3. for a.e. $(x, y) \in \mathbb{R}^d \times \mathbb{R}^d$ such that $u(x) \neq u(y)$,

 $\zeta(x, y)(u(y) - u(x)) = |u(y) - u(x)|.$ (2)

4. Some remarks about the definition

• Requirement 1. plays the role of the so called "size condition".

• Equation (1) may be regarded as a vanishing divergence condition.

• Let $u = \chi_E$ with E a set and let ζ be a calibration for u. Heuristically, ζ gives the sign of the inner product between the vector y - x and the inner normal to E at the "crossing point" (see Figure 1).

Figure 1: If ζ is a calibration for the set E (i.e. for χ_E) and x, y are as in the picture, then $\zeta(x, y) = -1$.

with r > 0 and $x \in \mathbb{R}^d$,

(1)

5. Minimality via calibrations

The existence of a calibration is a sufficient condition for a function u to minimise the energy J_K w.r.t compact perturbations: **Theorem 2** [5]. Let \mathscr{F} be as in Thm. 1. If some $u \in \mathscr{F}$ admits a calibration, then

 $J_K(u;\Omega) \le J_K(v;\Omega)$ for all $v \in \mathscr{F}$.

Idea of the proof. Thanks to a sort of nonlocal divergence theorem, it can be proved that $J_K(v;\Omega) \ge b_0$ for all $v \in \mathscr{F}$, where b_0 is a constant that depends only on the boundary datum χ_{E_0} . Then one shows by means of (2) that the lower bound is attained by u.

6. Applications & related works

• Halfspaces are the unique minimisers of J_K in a ball. A simple example in which the criterion above can be used is the following:

for \mathscr{L}^d -a.e. $x \in B^c$, it holds $J_K(\chi_{H_{\hat{n}}}; B) \leq J_K(v; B)$. $u(x) = \chi_{H_{\hat{n}}}(x) \mathscr{L}^d$ -a.e. $x \in \mathbb{R}^d$.

• Asympotics of the rescalings of J_K . The optimality of halfspaces can be exploited to prove that suitable rescalings of $J_K \Gamma$ -converge to the standard perimeter as the scaling vanishes.

• Nonlocal perimeters on Carnot groups. The notion of nonlocal calibration and the related minimality of halfspaces have been recently generalised to the context of Carnot groups by A. CARBOTTI \mathcal{O} AL. in [4].

• An alternative definition of calibration. An similar notion of nonlocal calibration has been independently proposed by X. CABRÉ in [2].

References

- ESAIM:COCV **25** (2019), no. 48.
- viscosity theory, Ann. Mat. Pura Applicata 199 (2020), 1979–1995.
- Pure and Applied Mathematics **63** (2010), no. 9, 1111–1144.
- Applicata **199** (2020), 1685–1696.

TECHNISCHE UNIVERSITÄT WIEN

Theorem 3 [5]: Let B the a ball with centre in the origin and, for $\hat{n} \in \mathbb{S}^{d-1}$, let $H_{\hat{n}} \coloneqq \{x \in \mathbb{R}^d : x \cdot \hat{n} > 0\}$. Then, $\zeta(x, y) \coloneqq \operatorname{sign}((y - x) \cdot \hat{n})$ is a calibration for $\chi_{H_{\hat{n}}}$, and for any $v \colon \mathbb{R}^d \to [0,1]$ such that $v(x) = \chi_{H_{\hat{n}}}(x)$

Moreover, for any other minimiser *u* satisfying the same constraint, it holds

Berendsen and V. Pagliari, On the asymptotic behaviour of nonlocal perimeters,

[2] X. Cabré, Calibrations and null-lagrangians for nonlocal perimeters and an application to the

L. Caffarelli, J. Roquejoffre, and O. Savin, *Nonlocal minimal surfaces*, Communications on

[4] A. Carbotti, S. Don, D. Pallara, and A. Pinamonti, *Local minimizers and gamma-convergence* for nonlocal perimeters in carnot groups, ESAIM:COCV 27 (2021), no. S11.

[5] V. Pagliari, *Halfspaces minimise nonlocal perimeters: a proof via calibrations*, Ann. Mat. Pura