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What is the BEST nonlocal model?

1. Is this simple formula general 

enough?

Outline
● Goal: modeling heterogeneous material behavior
● Key: Continuous and converging model via learning a 
nonlocal kernel

● Part I: Learning a Linear and Homogenized Model
✔ To Learn: a nonlocal kernel function

● Part II: Learning a Nonlinear and Heterogeneous Model
✔ To Learn: a nonlocal solution operator (kernel+NN)



  

Goal: prediction and monitoring of heterogeneous material responses

 In heterogeneous materials, small-scale dynamics and interactions affect the global behavior.
 Fundamental challenges present, due to difficulties around computational scalability, variability, and 

data scarsity.

Motivation and Background

Exemplar problem 1: 
Impact on a 
heterogeneous bar 



  

Goal: prediction and monitoring of heterogeneous material responses

 In heterogeneous materials, small-scale dynamics and interactions affect the global behavior.
 Fundamental challenges present, due to difficulties around computational scalability, variability, and 

data scarsity.

Motivation and Background

Exemplar problem 2: 
crack propagation on 
glass-ceramics. 

Image source (iphone 12): cnet.com 
Numerical simulations using peridynamics. Each takes 72 hours
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Goal: prediction and monitoring of heterogeneous material responses

 In heterogeneous materials, small-scale dynamics and interactions affect the global behavior.
 Fundamental challenges present, due to difficulties around computational scalability, variability, and 

data scarsity.

Motivation and Background

Exemplar problem 3: 
heart valve leaflet 
modeling from 
experiment.

Mechanical Testing of heart valve leaflet
Conventional constitutive modeling: fails to capture the 
mechanical response (displacement error ~ 10-30%)



  

Goal: prediction and monitoring of heterogeneous material responses

 Desired properties: 1. the learnt model should be generalizable to future prediction tasks.
                               2. the inverse problem should also be well-posed and resolution               
                                   independent, or even converging.

Motivation and Background



  

Goal: prediction and monitoring of heterogeneous material responses

 Desired properties: 1. the learnt model should be generalizable to future prediction tasks.
                               2. the inverse problem should also be well-posed and resolution 
                                   independent, or even converging.

Motivation and Background

Propose: Learning a nonlocal kernel!



What is the BEST nonlocal model?

1. Is this simple formula general 

enough?

Part I
Learning Kernels for Nonlocal 

Homogenized Models

[1] F. Lu, Q. An, Y. Yu, “Nonparametric learning of kernels in nonlocal operators”. 
Submitted.
[2] H. You, Y. Yu, N. Trask, M. Gulian, M. D’Elia, “Data-driven learning of nonlocal physics from 
high-fidelity synthetic data”, CMAME, 2021.
[3] H. You, Y. Yu, S. Silling, M. D’Elia, “Data-driven learning of nonlocal models: from high-fidelity 
simulations to constitutive laws”. AAAI Spring Symposium: MLPS, 2021
[4] H. You, Y. Yu*, S. Silling, M. D’Elia, “A data-driven peridynamic continuum model for upscaling 
molecular dynamics”. CMAME, 2022.
[5] L. Zhang, H. You, Y. Yu*, “Meta-Learning for Metamaterials: A Provable Nonlocal Operator 
Regression Approach”. Submitted.



  

What is a nonlocal (integral) model?

Basic concepts:

 The state of a system at any point depends on the state in a neighborhood 
of points

 Interactions can occur at distance, without contact
 Solutions can be irregular: non-differentiable, singular, discontinuous

  Facts: 
These models can capture effects that traditional PDEs fail to capture

1) Multiscale behavior (nonlocal as an upscaled/homogenized model)
2) Discontinuities such as cracks and fractures (peridynamics)
3) Anomalous behavior such as superdiffusion and subdiffusion (fractional 

operators)

2.

Q. Du, B. Engquist, X. Tian, Multiscale modeling, homogenization and nonlocal effects: Mathematical and computational issues, Contemporary Mathematics 754.



  

Proposed: a 3-step recipe

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

H. You, Y. Yu, S. Silling, M. D’Elia, “Data-driven learning of nonlocal models: from high-fidelity simulations to constitutive laws”. AAAI: MLPS, 2021



  

Proposed: a 3-step recipe

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

Key Algorithm Features/Contributions:
● Guarantees that the resultant surrogate model is well-posed and physically consistent.
● Applied through basis function design or penalization.

Generabizable to Different Prediction Tasks

H. You, Y. Yu, S. Silling, M. D’Elia, “Data-driven learning of nonlocal models: from high-fidelity simulations to constitutive laws”. AAAI: MLPS, 2021



  

Proposed: a 3-step recipe

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

Key Algorithm Features/Contributions:
● One can selects a set of basis functions for a hypothesis space.
● Learns the functional form of the kernel (previous works only identify discrete parameters!).  

Converging Estimator (Kernel k)

Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint arXiv:2205.11006.



  

Proposed: a 3-step recipe

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

Key Algorithm Features/Contributions:
● A regularization term is necessary, or the inverse problem becomes ill-posed as              . 
● A system-intrinsic data-adaptive reproducing kernel Hilbert space (SIDA-RKHS) 

regularization term is developed.
Identifiability and Robustness to Noise

Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint arXiv:2205.11006.



  

NOR: Convergence and Robustness to Noise
 Training set:                                   , generated from the nonlocal equation 

where        is associated to a manufactured kernel 

 Manufactured kernel:                                                                               where

 Optimization-based learning:  

where k is approximated by B-splines:

When taking the classical 
Tikhonov regularization: 

Convergence of function estimators 
as the data mesh-size ∆x 
decreases from 0.2 to 0.0125:

Noisy data (nsr=1)Clean data (nsr=0)



  

NOR: Convergence and Robustness to Noise
 Training set:                                   , generated from the nonlocal equation 

where        is associated to a manufactured kernel

Theorem (Function space of identifiability) [Lu, An, Yu, 2022]:
Consider the problem of identifying the kernel k, the function space of identifiability, in which the 
true kernel is the unique minimizer of the loss functional, is an RKHS (denoted by HG) with 
reproducing kernel:

where      is the density of an empirical probability density                                                                 .

Theorem (Characterization of the RKHS space) [Lu, An, Yu, 2022]:
The RKHS HG with G as reproducing kernel satisfies                               , where LG is an integral 
operator defined by

The eigenvalues of LG converges to zero, and its eigen-functions              can form a complete 
orthonormal basis of            .

Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint arXiv:2205.11006.



  

NOR: Convergence and Robustness to Noise
 Training set:                                   , generated from the nonlocal equation 

where        is associated to a manufactured kernel 

 Manufactured kernel:                                                                               where

 Optimization-based learning:  

where k is approximated by B-splines:

 SIDA-RKHS regularization: 

Noisy data (nsr=1)Clean data (nsr=0)



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly, with t from 0 to 2.
Oscillating source:
Plane wave 1:
Plane wave 2:

 Experiments:
Coarse data set 1: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 1.
Coarse data set 2: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 2.
Fine data set: we train the estimator using ``fine'' dataset (∆x=0.025) of 
                        oscillating source and plane wave 1.

NOR: Wave propagation in a heterogeneous bar



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly

NOR: Wave propagation in a heterogeneous bar

Kernel 
convergence

matching 
DNS indicates 
physical 
consistency

>0 indicates 
physical 
stability



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly, with t from 0 to 2.
Oscillating source:
Plane wave 1:
Plane wave 2:

 Test set: wave packet obtained using a DNS solver with a different loading and domain, from the 
training dataset, and with a much longer simulation time (t from 0 to 100). 
Wave packet: 

NOR: Wave propagation in a heterogeneous bar

The relative L2 errors of long 
term (T=100) displacement 
prediction on the test dataset:



What is the BEST nonlocal model?

1. Is this simple formula general 

enough?

Part II
Learning Integral Neural Operators 

for Heterogeneous Models

[1] H. You, Q. Zhang, C. Ross, C-H. Lee, Y. Yu*, “Learning Deep Implicit Fourier Neural 
Operators (IFNOs) with Applications to Heterogeneous Material Modeling”. CMAME, 
2022.
[2] H. You, Q. Zhang, C. Ross, C-H. Lee, M-C. Hsu, Y. Yu*, “A Physics-Guided Neural 
Operator Learning Approach to Model Biological Tissues from Digital Image Correlation 
Measurements”. arXiv preprint arXiv:2204.00205.
[3] H. You, Y. Yu*, M. D’Elia, T. Gao, S. Silling, “Nonlocal Kernel Network (NKN): a stable and 
resolution independent deep neural network”. arXiv preprint arXiv:2201.02217
[4] S. Goswami, A. Bora, Y. Yu, G. Karniadakis*, “Physics-Informed Neural Operators". Submitted.



  

Goal: prediction and monitoring of heterogeneous material responses

 Idea: the material displacement and damage modeling and solving problem can be seen as to find 
a solution operator:

G: b(x)→ u(x)
where b can be the boundary condition/external loading/initial condition/microstructure.

Neural Operator Learning

Mechanical Testing of heart valve leaflet

Exemplar 
problem 3: 
heart valve 
leaflet 
modeling.

Exemplar 
problem 2: 
crack on 
glass-
ceramics. 

Crack propagation simulations using peridynamics.



  

Goal: prediction and monitoring of heterogeneous material responses

 We propose to use neural operator learning approach, which directly learns material responses 
from high-fidelity simulations or experimental data.

 Assume an unknown governing equation

 Learn the operator G, such that for each                                          , the solution u=G(b).
 Advantages:

1. Only require observed data pairs                     , and hence can be applied when the underlying 
PDE is unknown.       Exemplar problem 3
2. For every new instance of b, requires only a forward pass of the network.     Exemplar problem 2
3. No further modification or tuning will be required for different resolutions and discretizations.

Neural Operator Learning

1L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nature 
Machine Intelligence 3 (3) (2021) 218–229.
2Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Graph kernel network for partial differential equations, arXiv 
preprint arXiv:2003.03485.
3Benner, P., Goyal, P., Kramer, B., Peherstorfer, B., & Willcox, K. (2020). Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear 
terms. Computer Methods in Applied Mechanics and Engineering, 372, 113433.



  

 Integral Kernel Networks: constructing a parametric map from b to u

 Consider an elliptic equation

 Li et al12 proposed to parameterize the Green’s function     as a neural network. For an L-layer NN, 
the l-th layer network update is

Integral Operator Learning

1Z. Li, N. B. Kovachki, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar, et al., Fourier neural operator for parametric partial 
differential equations, in: International Conference on Learning Representations, 2021.

FNO1



  

 FNO: parameterize the integral kernel directly in Fourier space, and learns the mapping between 
function spaces.

 Allows Fast Fourier Transform (FFT) to efficiently compute the integral.
 Generalizes well to different meshes and parameters b.

Fourier Neural Operator (FNO)



  

 Consider a 2D Darcy’s equation

use FNO to construct a mapping from a to u, with 1000 pairs of {(aj(x),uj(x))}.

Deep FNO: a possible pitfall

Sample 1

Sample 2

Representative FNO, 
L=4&32 results



  

 Consider a 2D Darcy’s equation

use FNO to construct a mapping from a to u, with 1000 pairs of {(aj(x),uj(x))}.

Deep FNO: a possible pitfall

# of trainable parameters
FNO, L=1: 0.17M
FNO, L=32: 5.35M

Overfitting

Vanishing gradient



  

 Integral Kernel Networks: constructing a parametric map from b to u

 Consider an elliptic equation as an implicit problem:

 Idea 1: Solve for U using the Newton-Raphson method iteratively:

and use FNO layer to mimic the (autonomous) operator                                :

Implicit Fourier Neural Operator (IFNO)

Fung, S. W., Heaton, H., Li, Q., McKenzie, D., Osher, S., & Yin, W. (2021). JFB: Jacobian-free backpropagation for implicit networks. arXiv preprint arXiv:2103.12803.



  

 Idea 2: ResNet and Shallow-to-Deep Technique2

For a Deep NN with ResNet architecture:

the forward propagation can be seen as a discretization of a time-dependent nonlinear ODE:

 Haber et al. proposes to accelerate the training of deep networks by using the parameter v trained 
with depth L as the initial parameter for depth            :

Implicit Fourier Neural Operator (IFNO)

1Haber, E., Ruthotto, L., Holtham, E., & Jun, S. H. (2018, April). Learning Across Scales—Multiscale Methods for Convolution Neural Networks. In 
Thirty-Second AAAI Conference on Artificial Intelligence.
2H. You, Y. Yu, M. D’Elia, T. Gao, S. Silling, “Nonlocal Kernel Network (NKN): a stable and resolution independent deep neural network”. arXiv 
preprint arXiv:2201.02217



  

 Combining ideas 1 and 2:

Implicit Fourier Neural Operator (IFNO)

IFNO:

FNO:



  

 Combining ideas 1 and 2:

 Features/Contributions:
1) An autonomous iterative system to reduce the memory allocation and overfitting issue.
2) The resemblance with time-dependent nonlinear ODE to allow shallow-to-deep initialization 
technique and resolve vanishing gradient issues.

Implicit Fourier Neural Operator (IFNO)

IFNO:

FNO:



  

 Assumption (Existence of a Fixed-Point Formulation):
Let                                               and                                            , there exists a fixed point 
formulation,                                  for the target problem, such that R is a continuous function 
satisfying                                                                for any two vectors                . Moreover, for any 
ε>0, there exist an integer L such that                                         for all possible input instances F.

 Theorem (Universal Approximation):
Let        be the ground-truth solution  of a modeling problem that satisfies the above assumption, 
then for any ε>0, there exist sufficiently large layer number L>0 and feature dimension number 
d>0, such that one can find a parameter set                                               ,  with the corresponding 
IFNO model satisfies

Implicit Fourier Neural Operator (IFNO)

IFNO:



  

 Consider a 2D Darcy’s equation

use FNO to construct a mapping from a to u, with 1000 pairs of {(aj(x),uj(x))}.

Implicit Fourier Neural Operator (IFNO)

# of trainable parameters
FNO, L=1: 0.17M, 0.406 sec/epoch 
FNO, L=32: 5.35M, 5.694 sec/epoch
IFNO, L=1: 0.17M, 0.342 sec/epoch
IFNO, L=32: 0.17M, 4.300 sec/epoch



  

Exemplar 3: Experiment Data 
(Heart Valve Leaflet)

 We consider the material response of heart valve leaflet, which is an anisotropic, highly 
heterogeneous and nonlinear material.

 7 different Testing Protocol sets were performed, the displacement field is recorded via the DIC 
displacement tracking.

 For a fixed (unknown) microstructure
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Exemplar 3: Experiment Data 
(Heart Valve Leaflet)

 We consider the material response of heart valve leaflet, which is an anisotropic, highly 
heterogeneous and nonlinear material.

 7 different Testing Protocol sets were performed, the displacement field is recorded via the DIC 
displacement tracking.

 For a fixed (unknown) microstructure

Experiment                    Prediction

In Distribution
IFNO training error:

1.54%
IFNO test error: 

1.64%
Fung model training error:

10.34%
Fung model test error: 

10.83%

3mm
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300

400

500

600

700

800

Thickness: 0.55 mm



  

 New challenge: generalizability when training and testing on different protocols.
 Generalizability to test samples chosen sufficiently far away from the training distribution is critical 

for safely deploying deep learning models in the real world.
 However, the out-of-distribution prediction task is generally challenging for machine learning 

models.

Exemplar 3: Experiment Data 
(Heart Valve Leaflet)

Protocol ID Testing Protocol Role

1 Biaxial Tension = 1:1 Training set

2 Biaxial Tension = 1:0.66 Training set

3 Biaxial Tension = 1:0.33 Test set

4 Biaxial Tension = 0.66:1 Training set

5 Biaxial Tension = 0.33:1 Test set

6 Constrained Uniaxial in x Test set

7 Constrained Uniaxial in y Test set



  

 New challenge: generalizability when training and testing on different protocols.
 Generalizability to test samples chosen sufficiently far away from the training distribution is critical 

for safely deploying deep learning models in the real world.
 However, the out-of-distribution prediction task is generally challenging for machine learning 

models.

Exemplar 3: Experiment Data 
(Heart Valve Leaflet)

Protocol ID Testing Protocol Role

1 Biaxial Tension = 1:1 Training set

2 Biaxial Tension = 1:0.66 Training set

3 Biaxial Tension = 1:0.33 Test set

4 Biaxial Tension = 0.66:1 Training set

5 Biaxial Tension = 0.33:1 Test set

6 Constrained Uniaxial in x Test set

7 Constrained Uniaxial in y Test set

Out of Distribution
IFNO training error:

1.53%
IFNO test error: 

16.78%
Fung model training error:

12.37%
Fung model test error: 

16.80%



  

 Idea 3: minimize the residual with infused physics knowledge:

Physics-Guided IFNO
no-permanent-
deformation



  

 New challenge: generalizability when training and testing on different protocols.
 Generalizability to test samples chosen sufficiently far away from the training distribution is critical 

for safely deploying deep learning models in the real world.
 However, the out-of-distribution prediction task is generally challenging for machine learning 

models.

Exemplar 3: Experiment Data 
(Heart Valve Leaflet)

Protocol ID Testing Protocol Role

1 Biaxial Tension = 1:1 Training set

2 Biaxial Tension = 1:0.66 Training set

3 Biaxial Tension = 1:0.33 Test set

4 Biaxial Tension = 0.66:1 Training set

5 Biaxial Tension = 0.33:1 Test set

6 Constrained Uniaxial in x Test set

7 Constrained Uniaxial in y Test set

Out of Distribution
IFNO test error: 

16.78%
Fung model test error:

16.80%
PG-IFNO test error: 

15.32%



  

● We proposed two new nonlocal operator learning models, NORs and IFNOs, 
which learns continuous kernels for heterogeneous material learning tasks.

● For homogenized model learning tasks, the nonlocal operator regression 
(NOR) model is proposed, which learns optimal kernel functions directly from 
data.

● For heterogeneous material modeling tasks, the implicit Fourier neural 
operator (IFNO) model is proposed, which naturally embeds the material 
micromechanical properties and defects in the integrand.

● We employed NOR and IFNO to learn three exemplar material models directly 
from high-fidelity simulations/experimental measurements, and show that the 
learnt nonlocal operators outperform conventional constitutive models in 
predicting complex material responses.

Conclusion
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