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One of the models in fractional diffusion

Consider 1-D double-sided fractional diffusion advection reaction equation
[L(u)](x) = f (x), x ∈ Ω = (a, b),

u(a) = u(b) = 0,

[L(u)](x) := −Dk(x)(α aD
−(1−µ)
x + β xD

−(1−µ)
b )Du

+p(x)Du + q(x)u(x),

(1)

where 0 < µ < 1, 0 ≤ α, β ≤ 1, α + β = 1, aD
−(1−µ)
x , xD

−(1−µ)
b represent left- and

right-sided Riemann-Liouville integrals.

Model (1) has been used in modeling anomalous diffusion processes such as in
underground water, cellular cytoplasm setting, etc.

Meanwhile, some disputes arise on the wellposedness of various models and the
challenge of numerical approximations. In the following, we present some recent
progress, which partial solves the open questions.

Structure of solution
[1] Under natural conditions on the coefficents k(x), p(x), q(x), f (x), there exists a
unique true solution u(x) in Ĥ(1+µ)/2

0 (Ω) to (1). It can be decomposed into

u(x) =

∫ x

a

∫ x1

a
v(t) dt dx1 −

cS

S1

∫ x

a

∫ x1

a
(t− a)p(b− t)q dt dx1

+
c1S

S1
(x− a)p+1(b− x)q+1

+ C

∫ x

a
(t− a)p(b− t)q dt, x ∈ Ω

(2)

where v(x) is a certain function in H∗(Ω) ⊂ L1(Ω), C is a certain constant, p, q are
uniquely determined by

p + q = −(1− µ) and α sin(qπ) = β sin(pπ),

c = Γ(−q)

(
α(b− a)1+p+qΓ(p + 1)

∫ b

a
(t− a)−q−1(b− t)−p−1 dt

)−1

,

S1 =
Γ(−q)

∫ b
a (t− a)p(b− t)q dt

α(b− a)1+p+qΓ(p + 1)
∫ b
a (t− a)−q−1(b− t)−p−1 dt

,

c1 =
(−p− 1 + µ)(−p + µ)Γ(1− µ)

µ(1 + µ)β Γ(2− µ + p)Γ(q + 2)
, S =

∫ b

a
v(t) dt,

and it is representable by

u(x) = aD
−(1+µ)
x J, x ∈ Ω, for a certain J(x) ∈ H∗(Ω) ⊂ L1(Ω). (3)

Equivalent models

Based on the structure of solution, we can prove that the following models are
actually equivalent:

[L(u)](x) = f (x), x ∈ Ω = (a, b),

u(a) = u(b) = 0,

[L(u)](x) := −Dk(x)(α aD
−(1−µ)
x + β xD

−(1−µ)
b )Du

+p(x)Du + q(x)u(x),

⇐⇒


[L(u)](x) = f (x), x ∈ Ω = (a, b),

u(a) = u(b) = 0,

[L(u)](x) := −Dk(x)D(α aD
−(1−µ)
x + β xD

−(1−µ)
b )u

+p(x)Du + q(x)u(x),

⇐⇒



[L(ũ)](x) = f (x), x ∈ Ω,

ũ(x) = 0, x ∈ R\Ω
[L(ũ)](x) := −k(x)

(
(α− β)aD

(1+µ)
x + 2β cos((1 + µ)π/2)(−∆)(1+µ)/2

)
ũ

−k′(x)
(
aD

µ
x − 2β cos(µπ/2)(−∆)µ/2

)
ũ

+p(x)Dũ + q(x)ũ(x),

where ũ(x) denotes the zero extension of u(x) outside Ω.

Novel numerical scheme

What does the structure of solution tell us? Observe that

u(x) = aD
−(1+µ)
x ψ + C1(x− a)t1+1(b− x)t2+1 + C2

∫ x

a
(t− a)t1(b− t)t2 dt, (4)

for x ∈ (a, b), where ψ,C1, C2 are unknonwn and everything else is known. Due
to the last two “bad" terms, it is usually inaccurate to make a priori assumption on
the smoothness of u to allow for an optimal convergence rate in the analysis of
numerical approximations.

What is the novel numerical scheme? Rather than approximating u directly, which
is usually challenging and can be tough, we approximate ψ and the constants
C1, C2, which in turn gives the approximation of u after doing back substitution.

what is the chief merit of this method?Unlike standard numerical approximations,
this approach poses no necessity to directly approximate the less regular compo-
nents of the solution. What is mainly left is to approximate ψ. Once approximation
of ψ is available, then the constants C1, C2 can be calculated, and approximation
of u can be directly constructed from (4). Moreover, the error of this construction is
only due to the approximation of ψ, and thus is free from the nonsmoothness effects
inherent in u.

One-sided case

To test the philosophy and provide for a manageable set of tasks in successfully de-
veloping, analyzing, and implementing the above approach, we first try the special
case, β = 0:

[L(u)](x) = f (x), x ∈ Ω = (a, b),

u(a) = u(b) = 0,

[L(u)](x) := −D(k(x)aD
−(1−µ)
x Du) + p(x)Du + q(x)u.

(5)

The corresponding solution is reduced to

u(x) = aD
−(1+µ)
x ψ + Cψ(x− a)µ, x ∈ Ω, Cψ = −(b− a)−µaD

−(1+µ)
x ψ

∣∣
x=b.

Algorithm: instead directly approximating solution u, we approximate the
unknown ψ and Cψ

Step 1: convert the fractional differential equation into integral equation

ψ + Iψ = F (x)− CψG(x), a.e. in Ω, (6)

where

[Iψ] (x) := − 1

k(x)

(
p(x) aD

−µ
x ψ + q(x) aD

−(1+µ)
x ψ − k′(x) aD

−1
x ψ

)
,

G(x) := − 1

k(x)

(
µ p(x)(x− a)µ−1 + q(x)(x− a)µ − Γ(µ + 1)k′(x)

)
,

F (x) := −f/k.

Step 2: Use Two-Step Method to approximate ψF and ψG that are governed by{
ψF + IψF = F (x), x ∈ Ω,

ψG + IψG = G(x), x ∈ Ω.

Step 3:
ψ = ψF − CψψG⇒

{
calculateCψ
byu(b) = 0.

Step 4: Do error analysis and related convergence analysis. (Numerical experi-
ments can be found in [2] )
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