# Novelty and surprises in the theory of odd-order linear differential operators 

## Beatrice Pelloni

Heriot-Watt University \& Maxwell Institute for the Mathematical Sciences

Edinburgh, Scotland

BIRS - July 2022


## Introduction

* My main interest: boundary value problems for integrable PDEs such as NLS, KdV,... but also any linear (constant coefficients) ones.
*Linear BVP on bounded domain involve linear differential operators that may not be self-adjoint, such as

$$
L=\partial_{x}^{3} \text { on }\{f: I \rightarrow \mathbb{R}, f \in \mathcal{S}(I), f \text { satisfies given } B C\}
$$

with

$$
I=[0, \infty) \quad \text { or } \quad I=[0,1] .
$$

*This talk is mainly about what the PDE approach can contribute to the understanding of the spectral structure of the operators *Main example: the Stokes, or Airy, equation

$$
u_{t}=L u, \quad u=u(x, t), \quad x \in I, \quad t>0
$$

## Boundary value problems on $[0,1]$ - a question

$$
\text { on }[0,1] \times(0, \infty) \text { : }
$$

$$
u_{t}=u_{x x x}, \quad u(x, 0)=u_{0}(x), \quad 3 \text { homogeneous } \mathrm{BC}(?)
$$

Separate variables, and use eigenfunctions of

$$
L=\frac{d^{3}}{d x^{3}} \text { on } \mathcal{D}=\left\{f \in C^{\infty}([0,1]): f \text { satisfies } 3 b c^{\prime} s\right\} \subset L^{2}[0,1]
$$

$L$ is not generally selfadjoint (because of $B C$ ), but may have infinitely many real eigenvalues $\lambda_{n}$, with eigenfunctions $\left\{\phi_{n}(x)\right\}$

Question: does it hold $u(x, t)=\sum_{n}\left(u_{0}, \phi_{n}\right) \mathrm{e}^{i \lambda_{n}^{3} t} \phi_{n}(x) ?$

## Eigenvalues as singularities of a complex-valued function

Classical idea in the context of elliptic linear PDE - Watson's transformation:
convert series to an integral, via a residue calculation, using a complex valued function with simple poles at the eigenvalues

$$
\sum_{n=-\infty}^{\infty} f(n)=\int_{C} \frac{f(\lambda)}{1-\mathrm{e}^{2 \pi i \lambda}} d \lambda
$$

where $C$ is any contour enclosing the real $\lambda$-axis but none of the singularities (including possible singularities at $\infty$ ) of $f$.

The Unified Transform approach (Fokas, $P, \ldots$ ) goes the other way,: derive, in general, a complex integral representation for the solution of linear BVP - which may be equivalent to a series

## Integral representation of the solution of linear BVP

$u_{t}(x, t)+i P\left(-i \partial_{x}\right) u(x, t)=0, \quad x \in[0,1], t>0, \quad P$ polynomial with given IC at $t=0$ and BCs at $x=0$, and $x=1$

$$
\begin{aligned}
& \left.\left\{\begin{array}{l}
(I C) \\
\left\{u_{0}(x),\right.
\end{array}\right) \stackrel{(B C)}{f_{j}(t)}\right\} \xrightarrow{\text { direct }} \quad \begin{array}{c}
(\lambda \in \mathbb{C}) \\
\left\{\zeta^{ \pm}(\lambda), \Delta(\lambda)\right\} \xrightarrow{\text { inverse }}
\end{array} \\
& u(x, t)=\frac{1}{2 \pi}\left\{\int_{\Gamma^{+}} \mathrm{e}^{i \lambda x-i P(\lambda) t} \frac{\zeta^{+}(\lambda)}{\Delta(\lambda)} d \lambda \int_{\Gamma^{-}} \mathrm{e}^{i \lambda(x-1)-i P(\lambda) t} \frac{\zeta^{-}(\lambda)}{\Delta(\lambda)} d \lambda\right\} \\
& \Gamma^{ \pm}=\{\lambda \in \mathbb{C}: \operatorname{Im} P(\lambda)=0\} \cap \mathbb{C}^{ \pm} \\
& \text {(on this contour, } \mathrm{e}^{-i P(\lambda) t} \text { is purely oscillatory) }
\end{aligned}
$$

## Singularities in the representation (P, Smith)

$$
u_{t}+L u=0, x \in I \quad L=i P\left(-i \partial_{x}\right)(+ \text { b.c. })
$$

$u(x, t)=\frac{1}{2 \pi}\left\{\int_{\Gamma^{+}} \mathrm{e}^{i \lambda x-i P(\lambda) t} \frac{\zeta^{+}(\lambda)}{\Delta(\lambda)} d \lambda \int_{\Gamma^{-}} \mathrm{e}^{i \lambda(x-1)-i P(\lambda) t} \frac{\zeta^{-}(\lambda)}{\Delta(\lambda)} d \lambda\right\}$

- $\zeta^{ \pm}(\lambda)$, are transforms of the given initial and boundary conditions
- $\Delta(\lambda)$ is a determinant (arising in the solution of the so-called global relation) whose zeros are (essentially) the discrete eigenvalues of $L$.
If the associated eigenfuctions form a basis (say the operator $+b c$ is self-adjoint...), this representation is equivalent to the series one * Uniformly convergent representation, in contrast to non-uniformly (slow) converging real integral/series representation * Fast exponential decay can be harnessed for accurate numerical evaluations


## Example: homogeneous Dirichlet problem for the heat equation on $(0,1)$

UT solution representation:

$$
\begin{aligned}
& \quad 2 \pi u(x, t)= \\
& \int_{\Gamma^{+}} \mathrm{e}^{i \lambda x-\lambda^{2} t \frac{\left(2 \mathrm{e}^{-i \lambda}-\mathrm{e}^{i \lambda}\right) \hat{\hat{0}}_{0}(\lambda)-\mathrm{e}^{i \lambda} \hat{u}_{0}(-\lambda)}{\mathrm{e}^{-i \lambda}-\mathrm{e}^{i \lambda}} d \lambda} \\
& +\int_{\Gamma^{-}} \mathrm{e}^{i \lambda(x-1)-\lambda^{2} t \frac{\hat{u}_{0}(-\lambda)-\hat{u}_{0}(\lambda)}{\mathrm{e}^{-i \lambda}-\mathrm{e}^{i \lambda}} d \lambda . \quad \rightarrow \times \times} \operatorname{Re}\left(\lambda^{2}\right)<0 \\
& \lambda_{n}=\pi n \text { zeros of } \Delta(\lambda)=\mathrm{e}^{-i \lambda}-\mathrm{e}^{i \lambda} \\
& \text { Using Cauchy+residue calculation } \rightarrow
\end{aligned}
$$

$$
u(x, t)=\frac{2}{\pi} \sum_{n} \mathrm{e}^{-\lambda_{n}^{2} t} \sin \left(\lambda_{n} x\right) \hat{u}_{0}^{5}\left(\lambda_{n}\right) \quad \text { sine series }
$$

## $u_{t}=u_{x x x}$ on $[0,1], u(x, 0)=u_{0}(x), 3 \mathrm{BCs}$

Th zeros of $\Delta(\lambda)$ are an infinite set accumulating only at infinity; (asymptotic) location is given by general results in complex analysis, and depends crucially on the boundary conditions boundary conditions: $u(0, t)=u(1, t)=0, \quad u_{x}(0, t)=\beta u_{x}(1, t)$,
$\Delta(\lambda)=\mathrm{e}^{-i \lambda}+\alpha \mathrm{e}^{-i \alpha \lambda}+\alpha^{2} \mathrm{e}^{-i \alpha^{2} \lambda}+\beta\left(\mathrm{e}^{i \lambda}+\alpha \mathrm{e}^{i \alpha \lambda}+\alpha^{2} \mathrm{e}^{i \alpha^{2} \lambda}\right), \alpha=\mathrm{e}^{\frac{2 i \pi}{3}}$.

- $\beta=1$ : the zeros are on the integration contour $\rightarrow$ residue computation (with no contour deformation)
- $0<\beta<1$ : the zeros are asymptotic to the integration contour $\rightarrow$ residue computation
- $\beta=0$ : the contour of integration cannot be deformed as far the asymptotic directions of the zeros
$\Longrightarrow$ the underlying differential operator does not admit a Riesz basis of eigenfunctions


## Zeros of $\Delta(\lambda)$ as a function of $\beta$

 solid lines $=$ integration contour$\mathrm{BC}: u(0, t)=u(1, t)=0, u_{x}(0, t)=\beta u_{x}(1, t)$

(a) $\beta=0$

(c) $\beta=0.5$

(b) $\beta=0.001$

(d) $\beta=0.8$

## A transform pair - examples tailored to a specific BVP

$$
\begin{gathered}
u_{t}=u_{x x x}, \quad I C: u(x, 0)=u_{0}(x), \quad 3 B C s \\
u(x, t)=\frac{1}{2 \pi}\left\{\int_{\Gamma^{+}} e^{i \lambda x-i \lambda^{3} t} \frac{\zeta^{+}(\lambda)}{\Delta(\lambda)} d \lambda+\int_{\Gamma^{-}} \mathrm{e}^{i \lambda(x-1)-i \lambda^{3} t} \frac{\zeta^{-}(\lambda)}{\Delta(\lambda)} d \lambda\right\}
\end{gathered}
$$

Problem 1:

$$
\left\{\begin{array}{l}
u(0, t)=u(1, t)=0 \\
u_{x}(0, t)=\frac{1}{2} u_{x}(1, t)
\end{array}\right.
$$

$$
u(0, t)=u(1, t)=u_{x}(0, t)=0
$$

The integral representation is equivalent to a series, by calculating the residues around the poles on the contour.

## Problem 2:

$u(0, t)=u(1, t)=u_{x}(0, t)=0$.

The integral representation cannot be deformed to a series representation.

## Zeros of $\Delta(\lambda)$ as a function of $\beta$

$\mathrm{BC}: u(0, t)=u(1, t)=0, u_{x}(0, t)=\beta u_{x}(1, t)$

(a) Problem 1- $\beta=\frac{1}{2}$

(b) Problem 2- $\beta=0$

On the solid lines, $\operatorname{Re}\left(-i \lambda^{3}\right)=0$ - separating the regions where the $t$ exponential decays or grows as $\lambda \rightarrow \infty$

## Examples of transform pair tailored to a specific BVP

## Problem 1:

$$
\begin{gathered}
u(x, 0)=f(x), u(0, t)=u(1, t)=0, u_{x}(0, t)=\frac{1}{2} u_{x}(1, t) . \\
f(x) \rightarrow F[f](\lambda)=\left\{\begin{array}{l}
\int_{0}^{1} E^{+}(x, \lambda) f(x) d x \\
\int_{0}^{1} E^{-}(x, \lambda) f(x) d x \\
\lambda \in \Gamma^{+}
\end{array}\right. \\
E^{+}(x, \lambda)=\frac{1}{2 \pi \Delta(\lambda)}\left[\mathrm{e}^{-i \lambda x}\left(\mathrm{e}^{i \lambda}+2 \alpha \mathrm{e}^{-i \alpha \lambda}+2 \alpha^{2} \mathrm{e}^{-i \alpha^{2} \lambda}\right)+\ldots\right] \\
E^{-}(x, \lambda)=\frac{-\mathrm{e}^{-i \lambda}}{2 \pi \Delta(\lambda)}\left[\mathrm{e}^{-i \lambda x}\left(2+\alpha^{2} \mathrm{e}^{-i \alpha \lambda}+\alpha \mathrm{e}^{-i \alpha^{2} \lambda}\right)+\ldots\right]
\end{gathered}
$$

with $\Delta(\lambda)=\mathrm{e}^{i \lambda}+\alpha \mathrm{e}^{i \alpha \lambda}+\alpha^{2} \mathrm{e}^{i \alpha^{2} \lambda}+2\left(\mathrm{e}^{-i \lambda}+\alpha \mathrm{e}^{-i \alpha \lambda}+\alpha^{2} \mathrm{e}^{-i \alpha^{2} \lambda}\right)$.

$$
F(\lambda) \rightarrow f[F](x)=\left(\int_{\Gamma^{+}}+\int_{\Gamma^{-}}\right) \mathrm{e}^{i \lambda x} F(\lambda) d \lambda=\sum_{\sigma: \Delta(\sigma)=0} \int_{C_{\sigma}} \mathrm{e}^{i \lambda x} F(\lambda) d \lambda .
$$

## Examples of transform pair tailored to a specific BVP

## Problem 2:

$$
\begin{gathered}
u(x, 0)=f(x), u(0, t)=u(1, t)=u_{x}(0, t)=0 \\
f(x) \rightarrow F[f](\lambda)= \begin{cases}\int_{0}^{1} E^{+}(x, \lambda) f(x) d x & \lambda \in \Gamma^{+} \\
\int_{0}^{1} E^{-}(x, \lambda) f(x) d x & \lambda \in \Gamma^{-}\end{cases} \\
E^{+}(x, \lambda)=\frac{1}{2 \pi \Delta(\lambda)}\left[\mathrm{e}^{-i \lambda x}\left(\alpha \mathrm{e}^{-i \alpha \lambda}+\alpha^{2} \mathrm{e}^{-i \alpha^{2} \lambda}\right)-\alpha \mathrm{e}^{-i \alpha \lambda x} \ldots\right]
\end{gathered}
$$

with $\Delta(\lambda)=\mathrm{e}^{-i \lambda}+\alpha \mathrm{e}^{-i \alpha \lambda}+\alpha^{2} \mathrm{e}^{-i \alpha^{2} \lambda}$.

$$
F(\lambda) \rightarrow f[F](x)=\left(\int_{\Gamma^{+}}+\int_{\Gamma^{-}}\right) \mathrm{e}^{i \lambda x} F(\lambda) d \lambda, \quad \text { no series. }
$$

## Spectral decomposition of differential operators: Gel'fand generalised eigenfunctions

There are no nonzero eigenfunctions of

$$
(S f)(x)=-f^{\prime \prime}(x), \quad \forall f \in \mathcal{S}[0, \infty) \text { such that } f(0)=0
$$

Define instead a functional $F[\cdot](\lambda) \in(\mathcal{S}[0, \infty))^{\prime}$ :

$$
F[S f](\lambda)=\lambda^{2} F[f](\lambda), \quad \forall \lambda \in \mathbb{R}
$$

For this example,

$$
F[f](\lambda)=\frac{2}{\pi} \int_{0}^{\infty} \sin (\lambda x) f(x) d x, \quad(\text { sine transform on }[0, \infty))
$$

Gel'fand called this eigenfunctional, or generalised eigenfunctions (and $\lambda \in \mathbb{R}$ eigenvalues)
This notion depends on self-adjointness to prove any completeness result and to define the spectral representation of the operator.

## More general spectral decomposition of differential operators: augmented eigenfunctions

Example: $u_{t}+\partial_{x}^{n} u=0, x \in(0,1)+$ initial and homogeneous BC Augmented eigenfunctions of $L=\partial_{x}^{n}$ on

$$
\mathcal{D}=\left\{f \in C^{\infty}: f \text { satisfies the boundary conditions }\right\} \subset L^{2}:
$$

are (eigen)functionals

$$
F_{\lambda}[f], \lambda \in \Gamma, \quad \Gamma=\left\{\lambda: \operatorname{Im} \lambda^{n}=0\right\}
$$

such that there exist reminder functionals $R[\cdot](\lambda)$ with

$$
F_{\lambda}[L f]=\lambda^{n} F_{\lambda}[f]+R_{\lambda}[f], \quad \lambda \in \Gamma, \text { and }\left\{\begin{array}{l}
\int_{\Gamma} \mathrm{e}^{i \lambda x} R_{\lambda}[f] d \lambda=0 \\
\text { or } \\
\int_{\Gamma} \mathrm{e}^{i \lambda x} \frac{R_{\lambda}[f]}{\lambda^{n}} d \lambda=0
\end{array}\right.
$$

## Diagonalisation of the operator

If the eigenfunctionals form a complete family $\left(F_{\lambda}[f]=0\right.$ iff $f=0$ ), then integration over $\Gamma$ gives rise to a non-self-adjoint analogue of the spectral representation of $L$ :

$$
\int_{\Gamma} e^{i \lambda x} F_{\lambda}[L f] d \lambda=\int_{\Gamma} \lambda^{n} e^{i \lambda x} F_{\lambda}[f] d \lambda,
$$

or

$$
\int_{\Gamma} \frac{1}{\lambda^{n}} \mathrm{e}^{i \lambda x} F_{\lambda}[L f] d \lambda=\int_{\Gamma} \mathrm{e}^{i \lambda x} F_{\lambda}[f] d \lambda .
$$

Hence they provides an effective diagonalisation modulo functions analytic in a certain sector of the complex spectral plane Important: Completeness follows from the PDE theory, rather than from self-adjointness

Diagonalisation of such operators in very general situations - talk of Dave Smith later in the meeting

## Another application of complex analytical ideas: Time-periodic boundary conditions

The problem:
$\partial_{t} u(x, t)+P\left(-i \partial_{x}\right) u(x, t)=0, \quad u(x, 0)=u_{0}(x), \quad x \in[0,1]$, given appropriate time-periodic boundary conditions at $x=0$ and $x=1$.

Is $u(x, t)$ time-periodic (exactly or asymptotically)?
With the same period as the BC?

Examples

$$
\begin{array}{cc}
\text { (free Schrödinger) } & u_{t}-i u_{x x}=0 \\
(\text { Stokes }) & u_{t}+u_{x x x}=0
\end{array}
$$

## Necessary conditions for periodicity = analyticity constraint

Step 1 Assuming time periodicity, one can derive necessary conditions (based on analyticity constraints) for the solvability of the D-to-N map.
Step 2 To prove that the solution/unknown boundary values is (asymptotically) periodic, one needs to analyse the integral or series representation of the solution.
Assuming that the necessary conditions for periodicity hold,:

- For free Schrödinger with time-periodic Dirichlet boundary conditions of period $\tau$, the solution is time periodic only if $\tau$ and $2 / \pi$ are linearly dependent over $\mathbb{Q}$.
- For the Stokes equation, with time-periodic Dirichlet-type conditions, the solution is always asymptotically time periodic, with the same period as the boundary data.


## Finally: periodic revival for third order dispersion

Talbot effect, or the revival property: in linear periodic problem, it refers to the propagation, at rational values of the time, of any initial discontinuities - at other times, the solution is continuous but nowhere differentiable.
Studied for linear Schrödinger, then also for Stokes equation
$u_{t}=u_{x x x}, \quad u(x, 0)=$ step function, periodic boundary conditions (Peter Olver)


$$
t=0 .
$$



$t=.1$


$$
t=.5
$$



## Periodic Airy－solution at＂rational＂times

$u_{t}=u_{x x x}, \quad u(x, 0)=$ step function，periodic boundary conditions Revival of the initial discontinuities：

$t=\pi$


$$
t=\frac{1}{4} \pi
$$




$$
t=\frac{1}{2} \pi
$$




$$
t=\frac{1}{3} \pi
$$



## Revival property for quasi-periodic Stokes

Quasi-periodic conditions:

$$
\mathrm{e}^{i 2 \pi \theta} \partial_{x}^{j} u(t, 0)=\partial_{x}^{j} u(t, 2 \pi),(j=0,1), \quad 0<\theta<1
$$

Revival property still hold for 2nd order problems (free space Schrödinger), for any value of $\theta$ - but it holds for Stokes only for $\theta \in \mathbb{Q}$.

(a) $t=2 \pi \frac{3}{7}, \theta=1 / 4$
(b) $t=2 \pi \frac{1}{3}, \theta=\sqrt{2} / 3$

More on this in the talk talk of George Farmakis later in the meeting

## References

- A.S. Fokas, B. Pelloni and D.A. Smith, Time-periodic linear boundary value problems on a finite interval, Q J Appl Math (2022)
- L. Boulton, G. Farmakis and B. Pelloni, Beyond periodic revivals for linear dispersive PDEs, Proc. Royal Soc A (2021)
- Kesici E., Pelloni B., Pryer T. and Smith, D.A., Numerical implementation of the unified Fokas transform for evolution problems on a finite interval, Eur J Appl Math(2018)
- A.S. Fokas and D.A. Smith, Evolution PDEs and augmented eigenfunctions. Finite interval, Adv Diff Eq (2016)
- B. Pelloni and D.A. Smith, Evolution PDEs and augmented eigenfunctions. The half-line case., J. Spectral Theory (2016)
- B. Pelloni, The spectral representation of two-point boundary value problems for linear evolution equations, Proc. R. Soc. A (2005)
- A. S. Fokas and B. Pelloni, Integral transforms, spectral representation and the d-bar problem, Proc. R. Soc. A (2000)


## UT: complex (RH) formulation of integral transforms

Example: The ODE

$$
\mu_{x}(x, \lambda)-i \lambda \mu(x, \lambda)=u(x), \quad \lambda \in \mathbb{C}
$$

## encodes the Fourier transform

direct transform: via solving the ODE for $\mu(x, \lambda)$ bounded in $\lambda \in \mathbb{C}$ inverse transform: via solving a RH problem

Given $u(x)$ (smooth and decaying), solutions $\mu^{+}$and $\mu^{-}$bounded (wrt $\lambda$ ) in $\mathbb{C}^{+}$and $\mathbb{C}^{-}$are

$$
\begin{aligned}
\mu^{+} & =\int_{-\infty}^{x} \mathrm{e}^{i \lambda(x-y)} u(y) d y, \lambda \in \mathbb{C}^{+} ; \quad \mu^{-}=\int_{\infty}^{x} \mathrm{e}^{i \lambda(x-y)} u(y) d y, \lambda \in \mathbb{C}^{-} \\
& \Longrightarrow \text { for } \lambda \in \mathbb{R} \quad\left(\mu^{+}-\mu^{-}\right)(\lambda)=\mathrm{e}^{i \lambda x} \hat{u}(\lambda) \quad \text { DIRECT }
\end{aligned}
$$

## Fourier inversion theorem

## ( $\lambda$ plane)

## $\mathbb{C}_{+}$



## $\mathbb{C}_{-}$

Given $\hat{u}(\lambda), \lambda \in \mathbb{R}$, a function $\mu$ analytic everywhere in $\mathbb{C}$ except the real axis is the solution of a RH problem (via Plemelj formula):

$$
\begin{gathered}
\mu(\lambda, x)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{i \zeta x} \hat{u}(\zeta)}{\zeta-\lambda} d \zeta \\
\Rightarrow u(x)=\mu_{x}-i \lambda \mu=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{i \zeta x} \hat{u}(\zeta) d \zeta, x \in \mathbb{R} \quad \text { INVERSE }
\end{gathered}
$$

## Trasforms for BVP for (linear) PDEs

PDE as the compatibility condition of a pair of linear ODEs
Example: linear evolution problem

$$
u_{t}+u_{x x x}=0 \Longleftrightarrow \mu_{x t}=\mu_{t x} \text { with } \mu:\left\{\begin{array}{l}
\mu_{x}-i \lambda \mu=u \\
\mu_{t}-i \lambda^{3} \mu=u_{x x}+i \lambda u_{x}-\lambda^{2} u
\end{array}\right.
$$

$$
\text { and } \lambda \in \mathbb{C} \text {. }
$$

BVP main idea: derive a transform pair (via RH) from this system of ODEs (with both $x$ and $t$ as parameters)
equivalently, divergence form (classical for elliptic case)

$$
u_{t}+u_{x x x}=0 \Longleftrightarrow\left[\mathrm{e}^{-i \lambda x-i \lambda^{3} t} u\right]_{t}-\left[\mathrm{e}^{-i \lambda x-i \lambda^{3} t}\left(u_{x x}+i \lambda u_{x}-\lambda^{2} u\right)\right]_{x}=0
$$

