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Introduction

* My main interest: boundary value problems for integrable PDEs
such as NLS, KdV,.., but also any linear (constant coefficients)
ones.

*Linear BVP on bounded domain involve linear differential
operators that may not be self-adjoint, such as

L = ∂3
x on {f : I → R, f ∈ S(I ), f satisfies given BC}

with
I = [0,∞) or I = [0, 1].

*This talk is mainly about what the PDE approach can contribute
to the understanding of the spectral structure of the operators

*Main example: the Stokes, or Airy, equation

ut = Lu, u = u(x , t), x ∈ I , t > 0,
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Boundary value problems on [0, 1] - a question

on [0, 1]× (0,∞):

ut = uxxx , u(x , 0) = u0(x), 3 homogeneous BC (?)

Separate variables, and use eigenfunctions of

L =
d3

dx3
on D = {f ∈ C∞([0, 1]) : f satisfies 3 bc ′s} ⊂ L2[0, 1]

L is not generally selfadjoint (because of BC), but may have
infinitely many real eigenvalues λn, with eigenfunctions {φn(x)}

Question: does it hold u(x , t) =
∑
n

(u0, φn)eiλ
3
ntφn(x)?
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Eigenvalues as singularities of a complex-valued function

Classical idea in the context of elliptic linear PDE - Watson’s
transformation:

convert series to an integral, via a residue calculation, using a
complex valued function with simple poles at the eigenvalues

∞∑
n=−∞

f (n) =

∫
C

f (λ)

1− e2πiλ
dλ,

where C is any contour enclosing the real λ-axis but none of the
singularities (including possible singularities at ∞) of f .
——————————————————————————–

The Unified Transform approach (Fokas, P,...) goes the other
way,: derive, in general, a complex integral representation for the
solution of linear BVP - which may be equivalent to a series
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Integral representation of the solution of linear BVP

ut(x , t)+iP(−i∂x)u(x , t) = 0, x ∈ [0, 1], t > 0, P polynomial

with given IC at t = 0 and BCs at x = 0, and x = 1

{
(IC)

u0(x),
(BC)

fj(t)} direct−→ {
(λ∈C)

ζ±(λ), ∆(λ)} inverse−→

u(x , t) =
1

2π

{∫
Γ+

eiλx−iP(λ)t ζ
+(λ)

∆(λ)
dλ

∫
Γ−

eiλ(x−1)−iP(λ)t ζ
−(λ)

∆(λ)
dλ

}

Γ± = {λ ∈ C : Im P(λ) = 0} ∩ C±
(on this contour, e−iP(λ)t is purely oscillatory)
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Singularities in the representation (P, Smith)

ut + Lu = 0, x ∈ I L = iP(−i∂x)(+ b.c.)

u(x , t) =
1

2π

{∫
Γ+

eiλx−iP(λ)t ζ
+(λ)

∆(λ)
dλ

∫
Γ−

eiλ(x−1)−iP(λ)t ζ
−(λ)

∆(λ)
dλ

}
• ζ±(λ), are transforms of the given initial and boundary conditions
• ∆(λ) is a determinant (arising in the solution of the so-called
global relation) whose zeros are (essentially) the discrete
eigenvalues of L.

If the associated eigenfuctions form a basis (say the operator+bc is
self-adjoint...), this representation is equivalent to the series one

* Uniformly convergent representation, in contrast to
non-uniformly (slow) converging real integral/series representation

* Fast exponential decay can be harnessed for accurate numerical
evaluations
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Example: homogeneous Dirichlet problem for the heat
equation on (0, 1)

UT solution representation:

2πu(x , t) =∫
Γ+ eiλx−λ

2t (2e−iλ−eiλ)û0(λ)−eiλû0(−λ)
e−iλ−eiλ dλ

+
∫

Γ− eiλ(x−1)−λ2t û0(−λ)−û0(λ)
e−iλ−eiλ dλ.

λn = πn zeros of ∆(λ) = e−iλ − eiλ
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Re(λ2) < 0

Re(λ2) < 0

π/4

Using Cauchy+residue calculation →

u(x , t) =
2

π

∑
n

e−λ
2
nt sin(λnx)ûs

0(λn) sine series
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ut = uxxx on [0, 1], u(x , 0) = u0(x), 3 BCs

Th zeros of ∆(λ) are an infinite set accumulating only at infinity;
(asymptotic) location is given by general results in complex
analysis , and depends crucially on the boundary conditions

boundary conditions : u(0, t) = u(1, t) = 0, ux(0, t) = βux(1, t),

∆(λ) = e−iλ+αe−iαλ+α2e−iα
2λ+β(eiλ+αeiαλ+α2eiα

2λ), α = e
2iπ

3 .

I β = 1: the zeros are on the integration contour → residue
computation (with no contour deformation)

I 0 < β < 1: the zeros are asymptotic to the integration
contour → residue computation

I β = 0: the contour of integration cannot be deformed as far
the asymptotic directions of the zeros
=⇒ the underlying differential operator does not admit a
Riesz basis of eigenfunctions
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Zeros of ∆(λ) as a function of β
solid lines = integration contour

BC: u(0, t) = u(1, t) = 0, ux(0, t) = βux(1, t)

(a) β = 0 (b) β = 0.001

(c) β = 0.5 (d) β = 0.8
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A transform pair - examples tailored to a specific BVP

ut = uxxx , IC : u(x , 0) = u0(x), 3BCs

u(x , t) =
1

2π

{∫
Γ+

eiλx−iλ
3t ζ

+(λ)

∆(λ)
dλ+

∫
Γ−

eiλ(x−1)−iλ3t ζ
−(λ)

∆(λ)
dλ

}

Problem 1:{
u(0, t) = u(1, t) = 0,
ux(0, t) = 1

2 ux(1, t).

The integral representation is
equivalent to a series, by
calculating the residues around
the poles on the contour.

Problem 2:

u(0, t) = u(1, t) = ux(0, t) = 0.

The integral representation
cannot be deformed to a series
representation.
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Zeros of ∆(λ) as a function of β

BC: u(0, t) = u(1, t) = 0, ux(0, t) = βux(1, t)

(a) Problem 1 - β = 1
2

(b) Problem 2 - β = 0

On the solid lines, Re(−iλ3)=0 - separating the regions where the
t exponential decays or grows as λ→∞
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Examples of transform pair tailored to a specific BVP

Problem 1:
u(x , 0) = f (x), u(0, t) = u(1, t) = 0, ux(0, t) = 1

2 ux(1, t).

f (x)→ F [f ](λ) =

{ ∫ 1
0 E +(x , λ)f (x)dx λ ∈ Γ+∫ 1
0 E−(x , λ)f (x)dx λ ∈ Γ−

E +(x , λ) =
1

2π∆(λ)

[
e−iλx(eiλ + 2αe−iαλ + 2α2e−iα

2λ) + ...
]

E−(x , λ) =
−e−iλ

2π∆(λ)

[
e−iλx(2 + α2e−iαλ + αe−iα

2λ) + ...
]

with ∆(λ) = eiλ +αeiαλ +α2eiα
2λ + 2(e−iλ +αe−iαλ +α2e−iα

2λ).

F (λ)→ f [F ](x) =

(∫
Γ+

+

∫
Γ−

)
eiλxF (λ)dλ =

∑
σ:∆(σ)=0

∫
Cσ

eiλxF (λ)dλ.
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Examples of transform pair tailored to a specific BVP

Problem 2:
u(x , 0) = f (x), u(0, t) = u(1, t) = ux(0, t) = 0.

f (x)→ F [f ](λ) =

{ ∫ 1
0 E +(x , λ)f (x)dx λ ∈ Γ+∫ 1
0 E−(x , λ)f (x)dx λ ∈ Γ−

E +(x , λ) =
1

2π∆(λ)

[
e−iλx(αe−iαλ + α2e−iα

2λ)− αe−iαλx ...
]

E−(x , λ) =
−e−iλ

2π∆(λ)

[
e−iλx + e−iαλx + α2e−iα

2λx
]

with ∆(λ) = e−iλ + αe−iαλ + α2e−iα
2λ.

F (λ)→ f [F ](x) =

(∫
Γ+

+

∫
Γ−

)
eiλxF (λ)dλ, no series.
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Spectral decomposition of differential operators: Gel’fand
generalised eigenfunctions

There are no nonzero eigenfunctions of

(Sf )(x) = −f ′′(x), ∀f ∈ S[0,∞) such that f (0) = 0.

Define instead a functional F [·](λ) ∈ (S[0,∞))′:

F [Sf ](λ) = λ2F [f ](λ), ∀λ ∈ R

For this example,

F [f ](λ) =
2

π

∫ ∞
0

sin(λx)f (x)dx , (sine transform on [0,∞)).

Gel’fand called this eigenfunctional, or generalised eigenfunctions
(and λ ∈ R eigenvalues)
This notion depends on self-adjointness to prove any completeness
result and to define the spectral representation of the operator.
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More general spectral decomposition of differential
operators: augmented eigenfunctions

Example: ut + ∂nx u = 0, x ∈ (0, 1) + initial and homogeneous BC

Augmented eigenfunctions of L = ∂nx on

D = {f ∈ C∞ : f satisfies the boundary conditions } ⊂ L2:

are (eigen)functionals

Fλ[f ], λ ∈ Γ, Γ = {λ : Imλn = 0}

such that there exist reminder functionals R[·](λ) with

Fλ[Lf ] = λnFλ[f ] + Rλ[f ], λ ∈ Γ, and


∫

Γ e
iλxRλ[f ]dλ = 0

or∫
Γ e

iλx Rλ[f ]
λn dλ = 0.
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Diagonalisation of the operator

If the eigenfunctionals form a complete family (Fλ[f ] = 0 iff
f = 0), then integration over Γ gives rise to a non-self-adjoint
analogue of the spectral representation of L:∫

Γ
eiλxFλ[Lf ]dλ =

∫
Γ
λneiλxFλ[f ]dλ,

or ∫
Γ

1

λn
eiλxFλ[Lf ]dλ =

∫
Γ
eiλxFλ[f ]dλ.

Hence they provides an effective diagonalisation modulo functions
analytic in a certain sector of the complex spectral plane

Important: Completeness follows from the PDE theory, rather than
from self-adjointness

Diagonalisation of such operators in very general situations - talk
of Dave Smith later in the meeting
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Another application of complex analytical ideas:
Time-periodic boundary conditions

The problem:

∂tu(x , t)+P(−i∂x)u(x , t) = 0, u(x , 0) = u0(x), x ∈ [0, 1],

given appropriate time-periodic boundary conditions at x = 0 and
x = 1.

Is u(x , t) time-periodic (exactly or asymptotically)?
With the same period as the BC?

Examples

(free Schrödinger) ut − iuxx = 0,

(Stokes) ut + uxxx = 0.

July 2022 BP



Necessary conditions for periodicity = analyticity constraint

Step 1 Assuming time periodicity, one can derive necessary conditions
(based on analyticity constraints) for the solvability of the
D-to-N map.

Step 2 To prove that the solution/unknown boundary values is
(asymptotically) periodic, one needs to analyse the integral or
series representation of the solution.

Assuming that the necessary conditions for periodicity hold,:

I For free Schrödinger with time-periodic Dirichlet boundary
conditions of period τ , the solution is time periodic only if τ
and 2/π are linearly dependent over Q.

I For the Stokes equation, with time-periodic Dirichlet-type
conditions, the solution is always asymptotically time periodic,
with the same period as the boundary data.
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Finally: periodic revival for third order dispersion

Talbot effect, or the revival property: in linear periodic problem, it
refers to the propagation, at rational values of the time, of any
initial discontinuities - at other times, the solution is continuous
but nowhere differentiable.
Studied for linear Schrödinger, then also for Stokes equation
ut = uxxx , u(x , 0)=step function, periodic boundary conditions
(Peter Olver)
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Periodic Airy - solution at ”rational” times

ut = uxxx , u(x , 0)=step function, periodic boundary conditions

Revival of the initial discontinuities:
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Revival property for quasi-periodic Stokes

Quasi-periodic conditions:

ei2πθ∂jxu(t, 0) = ∂jxu(t, 2π), (j = 0, 1), 0 < θ < 1.

Revival property still hold for 2nd order problems (free space
Schrödinger), for any value of θ - but it holds for Stokes only for
θ ∈ Q.
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More on this in the talk talk of George Farmakis later in the
meeting
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UT: complex (RH) formulation of integral transforms

Example: The ODE

µx(x , λ)− iλµ(x , λ) = u(x), λ ∈ C

encodes the Fourier transform

direct transform: via solving the ODE for µ(x , λ) bounded in λ ∈ C
inverse transform: via solving a RH problem
—————————
Given u(x) (smooth and decaying), solutions µ+ and µ− bounded
(wrt λ) in C+ and C− are

µ+ =

∫ x

−∞
eiλ(x−y)u(y)dy , λ ∈ C+; µ− =

∫ x

∞
eiλ(x−y)u(y)dy , λ ∈ C−;

=⇒ for λ ∈ R (µ+ − µ−)(λ) = eiλx û(λ) DIRECT
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Fourier inversion theorem

-eiλx û(λ) Imλ=0

C+
(λ plane)

C−

Given û(λ), λ ∈ R, a function µ analytic everywhere in C except
the real axis is the solution of a RH problem (via Plemelj formula):

µ(λ, x) =
1

2πi

∫ ∞
−∞

eiζx û(ζ)

ζ − λ
dζ

⇒ u(x) = µx − iλµ =
1

2π

∫ ∞
−∞

eiζx û(ζ)dζ, x ∈ R INVERSE
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Trasforms for BVP for (linear) PDEs

PDE as the compatibility condition of a pair of linear ODEs

Example: linear evolution problem

ut+uxxx = 0⇐⇒ µxt = µtx with µ :

{
µx − iλµ = u
µt − iλ3µ = uxx + iλux − λ2u

and λ ∈ C.

BVP main idea: derive a transform pair (via RH) from this
system of ODEs (with both x and t as parameters)

———————–
equivalently, divergence form (classical for elliptic case)

ut + uxxx = 0⇐⇒ [e−iλx−iλ3tu]t − [e−iλx−iλ3t(uxx + iλux − λ2u)]x = 0
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