Schur complement dominance and damped wave equations

Borbala Gerhat

Czech Technical University in Prague
July 11, 2022

- B. Gerhat

Schur complement dominant operator matrices

- B. Gerhat and P. Siegl

Schrödinger operators with accretive potentials in weighted spaces

Outline

(1) Introduction

- Operator matrices
- Lax-Milgram theorem
- Schur complements
(2) Schur complement dominance
(3) Damped wave equations
- Non-negative distributional dampings
- Accretive differential dampings in weighted spaces

4 Further applications

Introduction

Operator matrices

Damped wave equations
$\partial_{t}^{2} u(x, t)+2 a(x) \partial_{t} u(x, t)=\left(\Delta_{x}-q(x)\right) u(x, t), \quad x \in \Omega \subseteq \mathbb{R}^{d}, \quad t \geq 0$

Operator matrices

Damped wave equations

$\partial_{t}^{2} u(x, t)+2 a(x) \partial_{t} u(x, t)=\left(\Delta_{x}-q(x)\right) u(x, t), \quad x \in \Omega \subseteq \mathbb{R}^{d}, \quad t \geq 0$
transformation to first order (in time) problem

$$
\partial_{t}\binom{u_{1}(t, x)}{u_{2}(t, x)}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
\Delta_{x}-q(x) & -2 a(x)
\end{array}\right)}_{=\mathcal{A}}\binom{u_{1}(t, x)}{u_{2}(t, x)}
$$

Operator matrices

Damped wave equations

$\partial_{t}^{2} u(x, t)+2 a(x) \partial_{t} u(x, t)=\left(\Delta_{x}-q(x)\right) u(x, t), \quad x \in \Omega \subseteq \mathbb{R}^{d}, \quad t \geq 0$ transformation to first order (in time) problem

$$
\partial_{t}\binom{u_{1}(t, x)}{u_{2}(t, x)}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
\Delta_{x}-q(x) & -2 a(x)
\end{array}\right)}_{=\mathcal{A}}\binom{u_{1}(t, x)}{u_{2}(t, x)}
$$

implement \mathcal{A} as linear operator matrix in product Hilbert space

$$
\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

Operator matrices

Damped wave equations

$\partial_{t}^{2} u(x, t)+2 a(x) \partial_{t} u(x, t)=\left(\Delta_{x}-q(x)\right) u(x, t), \quad x \in \Omega \subseteq \mathbb{R}^{d}, \quad t \geq 0$ transformation to first order (in time) problem

$$
\partial_{t}\binom{u_{1}(t, x)}{u_{2}(t, x)}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
\Delta_{x}-q(x) & -2 a(x)
\end{array}\right)}_{=\mathcal{A}}\binom{u_{1}(t, x)}{u_{2}(t, x)}
$$

implement \mathcal{A} as linear operator matrix in product Hilbert space

$$
\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

- dense domain, non-empty resolvent set
- structure and location of spectrum
- norm of resolvent

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

- bounded form a " $=\langle A \cdot, \cdot\rangle_{\mathcal{H}}$ " on Hilbert space \mathcal{V}

$$
\mathbf{a}(f, g)=\int_{\Omega} \nabla f \cdot \overline{\nabla g} \mathrm{~d} x+\int_{\Omega} V f \bar{g} \mathrm{~d} x, \quad \mathcal{V}=H_{0}^{1}(\Omega) \cap \operatorname{dom}|V|^{\frac{1}{2}}
$$

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

- bounded form a " $=\langle A \cdot, \cdot\rangle_{\mathcal{H}}$ " on Hilbert space \mathcal{V}

$$
\mathbf{a}(f, g)=\int_{\Omega} \nabla f \cdot \overline{\nabla g} \mathrm{~d} x+\int_{\Omega} V f \bar{g} \mathrm{~d} x, \quad \mathcal{V}=H_{0}^{1}(\Omega) \cap \operatorname{dom}|V|^{\frac{1}{2}}
$$

- distributional operator

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{V}, \mathcal{V}^{*}\right), \quad \widehat{A} f:=\mathbf{a}(f, \cdot)
$$

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

- bounded form a " $=\langle A \cdot, \cdot\rangle_{\mathcal{H}}$ " on Hilbert space \mathcal{V}

$$
\mathbf{a}(f, g)=\int_{\Omega} \nabla f \cdot \overline{\nabla g} \mathrm{~d} x+\int_{\Omega} V f \bar{g} \mathrm{~d} x, \quad \mathcal{V}=H_{0}^{1}(\Omega) \cap \operatorname{dom}|V|^{\frac{1}{2}}
$$

- distributional operator

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{V}, \mathcal{V}^{*}\right), \quad \widehat{A} f:=\mathbf{a}(f, \cdot)
$$

- $\mathcal{V} \subseteq \mathcal{H}$ dense, continuously embedded

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

- bounded form a " $=\langle A \cdot, \cdot\rangle_{\mathcal{H}}$ " on Hilbert space \mathcal{V}

$$
\mathbf{a}(f, g)=\int_{\Omega} \nabla f \cdot \overline{\nabla g} \mathrm{~d} x+\int_{\Omega} V f \bar{g} \mathrm{~d} x, \quad \mathcal{V}=H_{0}^{1}(\Omega) \cap \operatorname{dom}|V|^{\frac{1}{2}}
$$

- distributional operator

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{V}, \mathcal{V}^{*}\right), \quad \widehat{A} f:=\mathbf{a}(f, \cdot)
$$

- $\mathcal{V} \subseteq \mathcal{H}$ dense, continuously embedded
- A defined as maximal restriction of \widehat{A} in \mathcal{H}

$$
\mathcal{V} \subseteq \mathcal{H} \simeq \mathcal{H}^{*} \subseteq \mathcal{V}^{*}, \quad A:=\left.\widehat{A}\right|_{\operatorname{dom} A}, \quad \operatorname{dom} A:=\widehat{A}^{-1} \mathcal{H}
$$

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

- bounded form a " $=\langle A \cdot, \cdot\rangle_{\mathcal{H}}$ " on Hilbert space \mathcal{V}

$$
\mathbf{a}(f, g)=\int_{\Omega} \nabla f \cdot \overline{\nabla g} \mathrm{~d} x+\int_{\Omega} V f \bar{g} \mathrm{~d} x, \quad \mathcal{V}=H_{0}^{1}(\Omega) \cap \operatorname{dom}|V|^{\frac{1}{2}}
$$

- distributional operator

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{V}, \mathcal{V}^{*}\right), \quad \widehat{A} f:=\mathbf{a}(f, \cdot)
$$

- $\mathcal{V} \subseteq \mathcal{H}$ dense, continuously embedded
- A defined as maximal restriction of \widehat{A} in \mathcal{H}

$$
\mathcal{V} \subseteq \mathcal{H} \simeq \mathcal{H}^{*} \subseteq \mathcal{V}^{*}, \quad A:=\left.\widehat{A}\right|_{\operatorname{dom} A}, \quad \operatorname{dom} A:=\widehat{A}^{-1} \mathcal{H}
$$

Theorem (Lax-Milgram)

$$
\exists m>0 \quad \forall f \in \mathcal{V}:|\mathbf{a}(f, f)| \geq m\|f\|_{\mathcal{V}}^{2}
$$

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

- bounded form a " $=\langle A \cdot, \cdot\rangle_{\mathcal{H}}$ " on Hilbert space \mathcal{V}

$$
\mathbf{a}(f, g)=\int_{\Omega} \nabla f \cdot \overline{\nabla g} \mathrm{~d} x+\int_{\Omega} V f \bar{g} \mathrm{~d} x, \quad \mathcal{V}=H_{0}^{1}(\Omega) \cap \operatorname{dom}|V|^{\frac{1}{2}}
$$

- distributional operator

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{V}, \mathcal{V}^{*}\right), \quad \widehat{A} f:=\mathbf{a}(f, \cdot)
$$

- $\mathcal{V} \subseteq \mathcal{H}$ dense, continuously embedded
- A defined as maximal restriction of \widehat{A} in \mathcal{H}

$$
\mathcal{V} \subseteq \mathcal{H} \simeq \mathcal{H}^{*} \subseteq \mathcal{V}^{*}, \quad A:=\left.\widehat{A}\right|_{\operatorname{dom} A}, \quad \operatorname{dom} A:=\widehat{A}^{-1} \mathcal{H}
$$

Theorem (Lax-Milgram)

$$
\begin{aligned}
\exists m>0 \quad \forall f & \in \mathcal{V}:|\mathbf{a}(f, f)| \geq m\|f\|_{\mathcal{V}}^{2} \\
& \Longrightarrow A^{-1} \in \mathcal{B}(\mathcal{H}) \text { and dom } A \text { dense in } \mathcal{H}
\end{aligned}
$$

Lax-Milgram theorem

$$
A=-\Delta+V \text { in } \mathcal{H}=L^{2}(\Omega)
$$

- bounded form a " $=\langle A \cdot, \cdot\rangle_{\mathcal{H}}$ " on Hilbert space \mathcal{V}

$$
\mathbf{a}(f, g)=\int_{\Omega} \nabla f \cdot \overline{\nabla g} \mathrm{~d} x+\int_{\Omega} V f \bar{g} \mathrm{~d} x, \quad \mathcal{V}=H_{0}^{1}(\Omega) \cap \operatorname{dom}|V|^{\frac{1}{2}}
$$

- distributional operator

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{V}, \mathcal{V}^{*}\right), \quad \widehat{A} f:=\mathbf{a}(f, \cdot)
$$

- $\mathcal{V} \subseteq \mathcal{H}$ dense, continuously embedded
- A defined as maximal restriction of \widehat{A} in \mathcal{H}

$$
\mathcal{V} \subseteq \mathcal{H} \simeq \mathcal{H}^{*} \subseteq \mathcal{V}^{*}, \quad A:=\left.\widehat{A}\right|_{\operatorname{dom} A}, \quad \operatorname{dom} A:=\widehat{A}^{-1} \mathcal{H}
$$

Theorem (Lax-Milgram)

$$
\begin{gathered}
\exists m>0 \quad \forall f \in \mathcal{V}:|\mathbf{a}(f, f)| \geq m\|f\|_{\mathcal{V}}^{2} \\
\Longrightarrow \widehat{A}^{-1} \in \mathcal{B}\left(\mathcal{V}^{*}, \mathcal{V}\right) \quad \Longrightarrow A^{-1} \in \mathcal{B}(\mathcal{H}) \text { and dom } A \text { dense in } \mathcal{H}
\end{gathered}
$$

Schur complements

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \mathcal{H} \supseteq \operatorname{dom} \mathcal{A} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

Schur complements

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \mathcal{H} \supseteq \operatorname{dom} \mathcal{A} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

- naive domain (typically too small)

$$
\operatorname{dom} \mathcal{A}=(\operatorname{dom} A \cap \operatorname{dom} C) \oplus(\operatorname{dom} B \cap \operatorname{dom} D)
$$

Schur complements

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \mathcal{H} \supseteq \operatorname{dom} \mathcal{A} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

- naive domain (typically too small)

$$
\operatorname{dom} \mathcal{A}=(\operatorname{dom} A \cap \operatorname{dom} C) \oplus(\operatorname{dom} B \cap \operatorname{dom} D)
$$

- use (first) Schur complement

$$
S_{\lambda}=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \in \rho(D)
$$

Schur complements

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \mathcal{H} \supseteq \operatorname{dom} \mathcal{A} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

- naive domain (typically too small)

$$
\operatorname{dom} \mathcal{A}=(\operatorname{dom} A \cap \operatorname{dom} C) \oplus(\operatorname{dom} B \cap \operatorname{dom} D)
$$

- use (first) Schur complement

$$
S_{\lambda}=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \in \rho(D)
$$

- Frobenius-Schur factorisation of resolvent

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

Schur complements

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \mathcal{H} \supseteq \operatorname{dom} \mathcal{A} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

- naive domain (typically too small)

$$
\operatorname{dom} \mathcal{A}=(\operatorname{dom} A \cap \operatorname{dom} C) \oplus(\operatorname{dom} B \cap \operatorname{dom} D)
$$

- use (first) Schur complement

$$
S_{\lambda}=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \in \rho(D)
$$

- Frobenius-Schur factorisation of resolvent

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

- works with suitable relative boundedness within entries

Schur complements

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \mathcal{H} \supseteq \operatorname{dom} \mathcal{A} \rightarrow \mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

- naive domain (typically too small)

$$
\operatorname{dom} \mathcal{A}=(\operatorname{dom} A \cap \operatorname{dom} C) \oplus(\operatorname{dom} B \cap \operatorname{dom} D)
$$

- use (first) Schur complement

$$
S_{\lambda}=A-\lambda-B(D-\lambda)^{-1} C, \quad \lambda \in \rho(D)
$$

- Frobenius-Schur factorisation of resolvent

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

- works with suitable relative boundedness within entries
- equivalence between spectra of Schur complement and matrix

Schur complement dominance

Ideas

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

Ideas

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

- enough if Schur complement dominates neighbouring factors in formula
[Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-'16, Ibrogimov'17, Ibrogimov-Tretter'17]

Ideas

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

- enough if Schur complement dominates neighbouring factors in formula
[Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-'16, Ibrogimov'17, Ibrogimov-Tretter'17]
- define entries as distributional operators in suitable triplets and restrict to maximal domain in underlying space
[Ammari-Nicaise'15]

Ideas

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

- enough if Schur complement dominates neighbouring factors in formula
[Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-'16, Ibrogimov'17, Ibrogimov-Tretter'17]
- define entries as distributional operators in suitable triplets and restrict to maximal domain in underlying space [Ammari-Nicaise'15]
- very "non-linear" approach, dominance of Schur complement encoded in spaces of test functions and distributions

Ideas

$$
(\mathcal{A}-\lambda)^{-1}=\left(\begin{array}{cc}
S_{\lambda}^{-1} & -S_{\lambda}^{-1} B(D-\lambda)^{-1} \\
-(D-\lambda)^{-1} C S_{\lambda}^{-1} & (D-\lambda)^{-1}+(D-\lambda)^{-1} C S_{\lambda}^{-1} B(D-\lambda)^{-1}
\end{array}\right)
$$

- enough if Schur complement dominates neighbouring factors in formula
[Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-'16, Ibrogimov'17, Ibrogimov-Tretter'17]
- define entries as distributional operators in suitable triplets and restrict to maximal domain in underlying space [Ammari-Nicaise'15]
- very "non-linear" approach, dominance of Schur complement encoded in spaces of test functions and distributions
- previous works on (abstract) Dirac operators
[Esteban-Loss'07, Esteban-Loss'08, Schimmer-Solovej-Tokus'20]

Setting

- dense, continuously embedded triples of Hilbert spaces

$$
\mathcal{D}_{S} \subseteq \mathcal{H}_{1} \subseteq \mathcal{D}_{-S}, \quad \mathcal{D}_{2} \subseteq \mathcal{H}_{2} \subseteq \mathcal{D}_{-2}
$$

Setting

- dense, continuously embedded triples of Hilbert spaces

$$
\mathcal{D}_{S} \subseteq \mathcal{H}_{1} \subseteq \mathcal{D}_{-S}, \quad \mathcal{D}_{2} \subseteq \mathcal{H}_{2} \subseteq \mathcal{D}_{-2}
$$

- operator matrix with distributional entries

$$
\widehat{\mathcal{A}}=\left(\begin{array}{ll}
\hat{A} & \widehat{B} \\
\widehat{C} & \widehat{D}
\end{array}\right) \in \mathcal{B}\left(\mathcal{D}_{S} \oplus \mathcal{D}_{2}, \mathcal{D}_{-S} \oplus \mathcal{D}_{-2}\right)
$$

Setting

- dense, continuously embedded triples of Hilbert spaces

$$
\mathcal{D}_{S} \subseteq \mathcal{H}_{1} \subseteq \mathcal{D}_{-S}, \quad \mathcal{D}_{2} \subseteq \mathcal{H}_{2} \subseteq \mathcal{D}_{-2}
$$

- operator matrix with distributional entries

$$
\widehat{\mathcal{A}}=\left(\begin{array}{ll}
\widehat{A} & \widehat{B} \\
\widehat{C} & \widehat{D}
\end{array}\right) \in \mathcal{B}\left(\mathcal{D}_{S} \oplus \mathcal{D}_{2}, \mathcal{D}_{-S} \oplus \mathcal{D}_{-2}\right)
$$

- distributional Schur complement

$$
\begin{aligned}
\widehat{S}_{\lambda} & :=\widehat{A}-\lambda-\widehat{B}(\widehat{D}-\lambda)^{-1} \widehat{C} \in \mathcal{B}\left(\mathcal{D}_{S}, \mathcal{D}_{-S}\right), \quad \lambda \in \rho(\widehat{D}) \\
\rho(\widehat{D}) & :=\left\{\lambda \in \mathbb{C}:(\widehat{D}-\lambda)^{-1} \in \mathcal{B}\left(\mathcal{D}_{-2}, \mathcal{D}_{2}\right)\right\}
\end{aligned}
$$

Setting

- dense, continuously embedded triples of Hilbert spaces

$$
\mathcal{D}_{S} \subseteq \mathcal{H}_{1} \subseteq \mathcal{D}_{-S}, \quad \mathcal{D}_{2} \subseteq \mathcal{H}_{2} \subseteq \mathcal{D}_{-2}
$$

- operator matrix with distributional entries

$$
\widehat{\mathcal{A}}=\left(\begin{array}{ll}
\widehat{A} & \widehat{B} \\
\widehat{C} & \widehat{D}
\end{array}\right) \in \mathcal{B}\left(\mathcal{D}_{S} \oplus \mathcal{D}_{2}, \mathcal{D}_{-S} \oplus \mathcal{D}_{-2}\right)
$$

- distributional Schur complement

$$
\begin{aligned}
\widehat{S}_{\lambda} & :=\widehat{A}-\lambda-\widehat{B}(\widehat{D}-\lambda)^{-1} \widehat{C} \in \mathcal{B}\left(\mathcal{D}_{S}, \mathcal{D}_{-S}\right), \quad \lambda \in \rho(\widehat{D}) \\
\rho(\widehat{D}) & :=\left\{\lambda \in \mathbb{C}:(\widehat{D}-\lambda)^{-1} \in \mathcal{B}\left(\mathcal{D}_{-2}, \mathcal{D}_{2}\right)\right\}
\end{aligned}
$$

- matrix $\mathcal{A}:=\left.\widehat{\mathcal{A}}\right|_{\operatorname{dom} \mathcal{A}}$ and Schur complement $S_{\lambda}:=\left.\widehat{S}_{\lambda}\right|_{\operatorname{dom} S_{\lambda}}$ on

$$
\operatorname{dom} \mathcal{A}:=\widehat{\mathcal{A}}^{-1}(\mathcal{H}), \quad \operatorname{dom} S_{\lambda}:=\widehat{S}_{\lambda}^{-1}\left(\mathcal{H}_{1}\right)
$$

Spectral equivalence

Theorem
If for all $\lambda \in \Theta \subseteq \rho(\widehat{D})$ there exists $z_{\lambda} \in \mathbb{C}$ such that

$$
\left(\widehat{S}_{\lambda}-z_{\lambda}\right)^{-1} \in \mathcal{B}\left(\mathcal{D}_{-S}, \mathcal{D}_{S}\right)
$$

Spectral equivalence

Theorem
If for all $\lambda \in \Theta \subseteq \rho(\widehat{D})$ there exists $z_{\lambda} \in \mathbb{C}$ such that

$$
\left(\widehat{S}_{\lambda}-z_{\lambda}\right)^{-1} \in \mathcal{B}\left(\mathcal{D}_{-S}, \mathcal{D}_{S}\right)
$$

then

$$
\begin{aligned}
\sigma(\mathcal{A}) \cap \Theta & =\sigma(S) \cap \Theta \\
\sigma_{\mathrm{p}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{p}}(S) \cap \Theta \\
\sigma_{\mathrm{ess}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{ess}}(S) \cap \Theta
\end{aligned}
$$

Spectral equivalence

Theorem
If for all $\lambda \in \Theta \subseteq \rho(\widehat{D})$ there exists $z_{\lambda} \in \mathbb{C}$ such that

$$
\left(\widehat{S}_{\lambda}-z_{\lambda}\right)^{-1} \in \mathcal{B}\left(\mathcal{D}_{-S}, \mathcal{D}_{S}\right)
$$

then

$$
\begin{aligned}
\sigma(\mathcal{A}) \cap \Theta & =\sigma(S) \cap \Theta \\
\sigma_{\mathrm{p}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{p}}(S) \cap \Theta \\
\sigma_{\mathrm{ess}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{ess}}(S) \cap \Theta
\end{aligned}
$$

If moreover $\rho(S) \cap \Theta \neq \emptyset$ then $\rho(\mathcal{A}) \neq \emptyset$ and $\operatorname{dom} \mathcal{A}$ is dense in \mathcal{H}.

Spectral equivalence

Theorem
If for all $\lambda \in \Theta \subseteq \rho(\widehat{D})$ there exists $z_{\lambda} \in \mathbb{C}$ such that

$$
\left(\widehat{S}_{\lambda}-z_{\lambda}\right)^{-1} \in \mathcal{B}\left(\mathcal{D}_{-S}, \mathcal{D}_{S}\right)
$$

then

$$
\begin{aligned}
\sigma(\mathcal{A}) \cap \Theta & =\sigma(S) \cap \Theta \\
\sigma_{\mathrm{p}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{p}}(S) \cap \Theta \\
\sigma_{\mathrm{ess}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{ess}}(S) \cap \Theta
\end{aligned}
$$

If moreover $\rho(S) \cap \Theta \neq \emptyset$ then $\rho(\mathcal{A}) \neq \emptyset$ and $\operatorname{dom} \mathcal{A}$ is dense in \mathcal{H}.

- condition (\star) established e.g. by form representation theorem

Spectral equivalence

Theorem

If for all $\lambda \in \Theta \subseteq \rho(\widehat{D})$ there exists $z_{\lambda} \in \mathbb{C}$ such that

$$
\left(\widehat{S}_{\lambda}-z_{\lambda}\right)^{-1} \in \mathcal{B}\left(\mathcal{D}_{-S}, \mathcal{D}_{S}\right)
$$

then

$$
\begin{aligned}
\sigma(\mathcal{A}) \cap \Theta & =\sigma(S) \cap \Theta \\
\sigma_{\mathrm{p}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{p}}(S) \cap \Theta \\
\sigma_{\mathrm{ess}}(\mathcal{A}) \cap \Theta & =\sigma_{\mathrm{ess}}(S) \cap \Theta
\end{aligned}
$$

If moreover $\rho(S) \cap \Theta \neq \emptyset$ then $\rho(\mathcal{A}) \neq \emptyset$ and $\operatorname{dom} \mathcal{A}$ is dense in \mathcal{H}.

- condition (\star) established e.g. by form representation theorem
- generalises standard patterns like e.g. diagonal dominance
[Nagel'89, Tretter'08]

Damped wave equations

Non-negative distributional dampings

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta-q & -2 \mathbf{a}
\end{array}\right), \quad \mathcal{H}=\mathcal{W}(\Omega) \oplus L^{2}(\Omega), \quad q \in L_{\text {loc }}^{1}(\Omega), \quad q \geq 0
$$

Non-negative distributional dampings

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta-q & -2 \mathbf{a}
\end{array}\right), \quad \mathcal{H}=\mathcal{W}(\Omega) \oplus L^{2}(\Omega), \quad q \in L_{\text {loc }}^{1}(\Omega), \quad q \geq 0
$$

- damping a non-negative form on $C_{0}^{\infty}(\Omega)$

Non-negative distributional dampings

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & l \\
\Delta-q & -2 \mathbf{a}
\end{array}\right), \quad \mathcal{H}=\mathcal{W}(\Omega) \oplus L^{2}(\Omega), \quad q \in L_{\text {loc }}^{1}(\Omega), \quad q \geq 0
$$

- damping a non-negative form on $C_{0}^{\infty}(\Omega)$
$\rightarrow \mathbf{a}=a \geq 0$ locally integrable

$$
\mathbf{a}(f, g)=\int_{\Omega} a f \bar{g} \mathrm{~d} x
$$

Non-negative distributional dampings

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta-q & -2 \mathbf{a}
\end{array}\right), \quad \mathcal{H}=\mathcal{W}(\Omega) \oplus L^{2}(\Omega), \quad q \in L_{\mathrm{loc}}^{1}(\Omega), \quad q \geq 0
$$

- damping a non-negative form on $C_{0}^{\infty}(\Omega)$
$\rightarrow \mathbf{a}=a \geq 0$ locally integrable

$$
\mathbf{a}(f, g)=\int_{\Omega} a f \bar{g} \mathrm{~d} x
$$

\rightarrow Dirac delta type

$$
\mathbf{a}(f, g)=\int_{\Gamma} a f \bar{g} \mathrm{~d} \sigma, \quad a \in L_{\text {loc }}^{1}(\Gamma), \quad a \geq 0
$$

Non-negative distributional dampings

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & l \\
\Delta-q & -2 \mathbf{a}
\end{array}\right), \quad \mathcal{H}=\mathcal{W}(\Omega) \oplus L^{2}(\Omega), \quad q \in L_{\text {loc }}^{1}(\Omega), \quad q \geq 0
$$

- damping a non-negative form on $C_{0}^{\infty}(\Omega)$
$\rightarrow \mathbf{a}=a \geq 0$ locally integrable

$$
\mathbf{a}(f, g)=\int_{\Omega} a f \bar{g} \mathrm{~d} x
$$

\rightarrow Dirac delta type
[Krejčirík-Kurimaiová'20, Krejčirík-Royer'22]
[Ammari-Nicaise'15]

$$
\mathbf{a}(f, g)=\int_{\Gamma} a f \bar{g} \mathrm{~d} \sigma, \quad a \in L_{\mathrm{loc}}^{1}(\Gamma), \quad a \geq 0
$$

- (second) Schur complement

$$
S_{\lambda}=-\frac{1}{\lambda}\left(-\Delta+q+2 \lambda \mathbf{a}+\lambda^{2}\right), \quad \lambda \neq 0
$$

Non-negative distributional dampings

- \mathcal{D}_{S} closure of $C_{0}^{\infty}(\Omega)$ w.r.t.

$$
\|f\|_{S}^{2}=\|\nabla f\|_{L^{2}}^{2}+\left\|q^{\frac{1}{2}} f\right\|^{2}+\mathbf{a}(f, f)+\|f\|_{L^{2}}^{2}
$$

Non-negative distributional dampings

- \mathcal{D}_{S} closure of $C_{0}^{\infty}(\Omega)$ w.r.t.

$$
\begin{aligned}
&\|f\|_{S}^{2}=\|\nabla f\|_{L^{2}}^{2}+\left\|q^{\frac{1}{2}} f\right\|^{2}+\mathbf{a}(f, f)+\|f\|_{L^{2}}^{2} \\
& S_{\lambda}=-\frac{1}{\lambda}\left(-\Delta+q+2 \lambda \mathbf{a}+\lambda^{2}\right)
\end{aligned}
$$

Non-negative distributional dampings

- \mathcal{D}_{S} closure of $C_{0}^{\infty}(\Omega)$ w.r.t.

$$
\begin{aligned}
&\|f\|_{S}^{2}=\|\nabla f\|_{L^{2}}^{2}+\left\|q^{\frac{1}{2}} f\right\|^{2}+\mathbf{a}(f, f)+\|f\|_{L^{2}}^{2} \\
& S_{\lambda}=-\frac{1}{\lambda}\left(-\Delta+q+2 \lambda \mathbf{a}+\lambda^{2}\right)
\end{aligned}
$$

- remaining spaces are

$$
\mathcal{D}_{1}=\mathcal{D}_{-1}=\mathcal{H}_{1}=\mathcal{W}(\Omega), \quad \mathcal{D}_{-S}=\mathcal{D}_{S}^{*}
$$

Non-negative distributional dampings

- \mathcal{D}_{S} closure of $C_{0}^{\infty}(\Omega)$ w.r.t.

$$
\begin{aligned}
&\|f\|_{S}^{2}=\|\nabla f\|_{L^{2}}^{2}+\left\|q^{\frac{1}{2}} f\right\|^{2}+\mathbf{a}(f, f)+\|f\|_{L^{2}}^{2} \\
& S_{\lambda}=-\frac{1}{\lambda}\left(-\Delta+q+2 \lambda \mathbf{a}+\lambda^{2}\right)
\end{aligned}
$$

- remaining spaces are

$$
\mathcal{D}_{1}=\mathcal{D}_{-1}=\mathcal{H}_{1}=\mathcal{W}(\Omega), \quad \mathcal{D}_{-S}=\mathcal{D}_{S}^{*}
$$

- domains of \mathcal{A} and S_{λ} read

$$
\begin{aligned}
\operatorname{dom} \mathcal{A} & =\left\{(f, g) \in \mathcal{W}(\Omega) \times \mathcal{D}_{S}:(\Delta-q) f-2 \mathbf{a}(g, \cdot) \in L^{2}(\Omega)\right\} \\
\operatorname{dom} S_{\lambda} & =\left\{f \in \mathcal{D}_{S}:(-\Delta+q) f+2 \lambda \mathbf{a}(f, \cdot) \in L^{2}(\Omega)\right\}
\end{aligned}
$$

Non-negative distributional dampings

> Theorem $-\mathcal{A}$ is m -accretive $(\Longrightarrow$ strongly continuous contraction semigroup $)$ and

Non-negative distributional dampings

$-\mathcal{A}$ is m -accretive $(\Longrightarrow$ strongly continuous contraction semigroup $)$ and

$$
\sigma_{(\mathrm{p} / \mathrm{ess})}(\mathcal{A}) \backslash(-\infty, 0]=\sigma_{(\mathrm{p} / \mathrm{ess})}(S) \backslash(-\infty, 0]
$$

Non-negative distributional dampings

$-\mathcal{A}$ is m -accretive $(\Longrightarrow$ strongly continuous contraction semigroup $)$ and

$$
\sigma_{(\mathrm{p} / \mathrm{ess})}(\mathcal{A}) \backslash(-\infty, 0]=\sigma_{(\mathrm{p} / \mathrm{ess})}(S) \backslash(-\infty, 0]
$$

- Schur complement implemented by Lax-Milgram theorem

Non-negative distributional dampings

$-\mathcal{A}$ is m -accretive $(\Longrightarrow$ strongly continuous contraction semigroup $)$ and

$$
\sigma_{(\mathrm{p} / \mathrm{ess})}(\mathcal{A}) \backslash(-\infty, 0]=\sigma_{(\mathrm{p} / \mathrm{ess})}(S) \backslash(-\infty, 0]
$$

- Schur complement implemented by Lax-Milgram theorem
- full equivalence on $\mathbb{C} \backslash\{0\}$ if \mathbf{a} is relatively bounded w.r.t. $\Delta-q$ with bound zero (in sense of forms)

Non-negative distributional dampings

Theorem

$-\mathcal{A}$ is m -accretive $(\Longrightarrow$ strongly continuous contraction semigroup $)$ and

$$
\sigma_{(\mathrm{p} / \mathrm{ess})}(\mathcal{A}) \backslash(-\infty, 0]=\sigma_{(\mathrm{p} / \mathrm{ess})}(S) \backslash(-\infty, 0]
$$

- Schur complement implemented by Lax-Milgram theorem
- full equivalence on $\mathbb{C} \backslash\{0\}$ if a is relatively bounded w.r.t. $\Delta-q$ with bound zero (in sense of forms)
- previously implemented under more restrictive assumptions

$$
\mathbf{a}=a \in W_{\operatorname{loc}}^{1, \infty}(\bar{\Omega}), \quad|\nabla a| \leq \varepsilon a^{\frac{3}{2}}+C_{\varepsilon}\left(q^{\frac{1}{2}}+1\right)
$$

[Freitas-Siegl-Tretter'18]

Accretive differential dampings in weighted spaces

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta & -2(a-\nabla \cdot M \nabla)
\end{array}\right), \quad \mathcal{H}_{w}=\mathcal{W}_{w}(\Omega) \oplus L_{w}^{2}(\Omega)
$$

Accretive differential dampings in weighted spaces

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta & -2(a-\nabla \cdot M \nabla)
\end{array}\right), \quad \mathcal{H}_{w}=\mathcal{W}_{w}(\Omega) \oplus L_{w}^{2}(\Omega)
$$

- structural assumptions

$$
w>0, \quad \operatorname{Re} a \geq 0, \quad M \geq 0
$$

Accretive differential dampings in weighted spaces

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta & -2(a-\nabla \cdot M \nabla)
\end{array}\right), \quad \mathcal{H}_{w}=\mathcal{W}_{w}(\Omega) \oplus L_{w}^{2}(\Omega)
$$

- structural assumptions

$$
w>0, \quad \operatorname{Re} a \geq 0, \quad M \geq 0
$$

- Schur complement

$$
S_{\lambda}=-\frac{1}{\lambda}\left(-\nabla \cdot\left(I_{\mathbb{C}^{d}}+2 \lambda M\right) \nabla+2 \lambda a+\lambda^{2}\right), \quad \lambda \neq 0
$$

Accretive differential dampings in weighted spaces

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta & -2(a-\nabla \cdot M \nabla)
\end{array}\right), \quad \mathcal{H}_{w}=\mathcal{W}_{w}(\Omega) \oplus L_{w}^{2}(\Omega)
$$

- structural assumptions

$$
w>0, \quad \operatorname{Re} a \geq 0, \quad M \geq 0
$$

- Schur complement

$$
S_{\lambda}=-\frac{1}{\lambda}\left(-\nabla \cdot\left(I_{\mathbb{C}^{d}}+2 \lambda M\right) \nabla+2 \lambda a+\lambda^{2}\right), \quad \lambda \neq 0
$$

- implement suitable Schrödinger operator

$$
T_{w}=-\nabla \cdot P \nabla+V \quad \text { in } \quad L_{w}^{2}(\Omega)
$$

Accretive differential dampings in weighted spaces

$$
\mathcal{A}=\left(\begin{array}{cc}
0 & 1 \\
\Delta & -2(a-\nabla \cdot M \nabla)
\end{array}\right), \quad \mathcal{H}_{w}=\mathcal{W}_{w}(\Omega) \oplus L_{w}^{2}(\Omega)
$$

- structural assumptions

$$
w>0, \quad \operatorname{Re} a \geq 0, \quad M \geq 0
$$

- Schur complement

$$
S_{\lambda}=-\frac{1}{\lambda}\left(-\nabla \cdot\left(I_{\mathbb{C}^{d}}+2 \lambda M\right) \nabla+2 \lambda a+\lambda^{2}\right), \quad \lambda \neq 0
$$

- implement suitable Schrödinger operator

$$
T_{w}=-\nabla \cdot P \nabla+V \quad \text { in } \quad L_{w}^{2}(\Omega)
$$

- use generalised Lax-Milgram theorem

Accretive differential dampings in weighted spaces

Theorem

There exists $\mu>0$ such that $-\mathcal{A}+\mu$ is m-accretive $(\Longrightarrow$ strongly continuous semigroup)

Accretive differential dampings in weighted spaces

Theorem

There exists $\mu>0$ such that $-\mathcal{A}+\mu$ is m-accretive $(\Longrightarrow$ strongly continuous semigroup)

- Rea, M locally integrable and

$$
w, \operatorname{Im} a \in W_{\operatorname{loc}}^{1, \infty}(\bar{\Omega})
$$

Accretive differential dampings in weighted spaces

Theorem

There exists $\mu>0$ such that $-\mathcal{A}+\mu$ is m-accretive $(\Longrightarrow$ strongly continuous semigroup)

- Rea, M locally integrable and

$$
w, \operatorname{Im} a \in W_{\operatorname{loc}}^{1, \infty}(\bar{\Omega})
$$

- there exists $C>0$ with

$$
\begin{aligned}
\left|\left(I_{\mathbb{C}^{d}}+M\right)^{\frac{1}{2}} \nabla(\operatorname{Im} a)\right| & \leq C\left(1+|\operatorname{Im} a|^{3}\right)\left(|a|^{\frac{1}{2}}+1\right) \\
\left|\nabla\left(w^{2}\right)\right| & \leq C w^{2}\left(|a|^{\frac{1}{2}}+1\right)
\end{aligned}
$$

Accretive differential dampings in weighted spaces

There exists $\mu>0$ such that $-\mathcal{A}+\mu$ is m -accretive $(\Longrightarrow$ strongly continuous semigroup)

- Rea, M locally integrable and

$$
w, \operatorname{Im} a \in W_{\operatorname{loc}}^{1, \infty}(\bar{\Omega})
$$

- there exists $C>0$ with

$$
\begin{aligned}
\left|\left(I_{\mathbb{C}^{d}}+M\right)^{\frac{1}{2}} \nabla(\operatorname{Im} a)\right| & \leq C\left(1+|\operatorname{Im} a|^{3}\right)\left(|a|^{\frac{1}{2}}+1\right) \\
\left|\nabla\left(w^{2}\right)\right| & \leq C w^{2}\left(|a|^{\frac{1}{2}}+1\right)
\end{aligned}
$$

- there exist $\varepsilon_{0} \in(0,2)$ and $C_{0} \geq 0$ with

$$
\left|M^{\frac{1}{2}} \nabla\left(w^{2}\right)\right| \leq \sqrt{2} \varepsilon_{0} w^{2}\left(\operatorname{Re} a+C_{0}\right)^{\frac{1}{2}}
$$

Further applications

Further applications

Further applications

- second order matrix differential operators

$$
\mathcal{A}=\left(\begin{array}{cc}
-\Delta+q & \nabla \cdot \mathbf{b} \\
\mathbf{c} \cdot \nabla & d
\end{array}\right)
$$

[Ibrogimov-Siegl-Tretter-'16,
Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

Further applications

- second order matrix differential operators

$$
\mathcal{A}=\left(\begin{array}{cc}
-\Delta+q & \nabla \cdot \mathbf{b} \\
\mathbf{c} \cdot \nabla & d
\end{array}\right)
$$

[Ibrogimov-Siegl-Tretter-'16,
Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

- Klein-Gordon operators with purely imaginary potentials

Further applications

- second order matrix differential operators

$$
\mathcal{A}=\left(\begin{array}{cc}
-\Delta+q & \nabla \cdot \mathbf{b} \\
\mathbf{c} \cdot \nabla & d
\end{array}\right)
$$

[Ibrogimov-Siegl-Tretter-'16,
Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

- Klein-Gordon operators with purely imaginary potentials
\rightarrow empty spectrum for $V(x)=\mathrm{i} x$

Further applications

- second order matrix differential operators

$$
\mathcal{A}=\left(\begin{array}{cc}
-\Delta+q & \nabla \cdot \mathbf{b} \\
\mathbf{c} \cdot \nabla & d
\end{array}\right)
$$

[Ibrogimov-Siegl-Tretter-'16,
Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

- Klein-Gordon operators with purely imaginary potentials
\rightarrow empty spectrum for $V(x)=\mathrm{i} x$
- Dirac operators with Coulomb type potentials using Hardy-Dirac inequality
[Dolbeaut-Esteban-Loss-Vega'04, Dolbeaut-Esteban-Séré'00]

Further applications

- second order matrix differential operators

$$
\mathcal{A}=\left(\begin{array}{cc}
-\Delta+q & \nabla \cdot \mathbf{b} \\
\mathbf{c} \cdot \nabla & d
\end{array}\right)
$$

[Ibrogimov-Siegl-Tretter-'16, Ibrogimov'17, Ibrogimov-Tretter'17, Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

- Klein-Gordon operators with purely imaginary potentials
\rightarrow empty spectrum for $V(x)=$ ix
- Dirac operators with Coulomb type potentials using Hardy-Dirac inequality
[Dolbeaut-Esteban-Loss-Vega'04, Dolbeaut-Esteban-Séré'00]
\rightarrow extend abstract setting by larger space $\mathcal{D}_{-1} \supseteq \mathcal{D}_{-S}$

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{D}_{S}, \mathcal{D}_{-1}\right), \quad \widehat{B} \in \mathcal{B}\left(\mathcal{D}_{2}, \mathcal{D}_{-1}\right), \quad \hat{S}_{\lambda} \in \mathcal{B}\left(\mathcal{D}_{S}, \mathcal{D}_{-S}\right)
$$

Further applications

- second order matrix differential operators

$$
\mathcal{A}=\left(\begin{array}{cc}
-\Delta+q & \nabla \cdot \mathbf{b} \\
\mathbf{c} \cdot \nabla & d
\end{array}\right)
$$

[Ibrogimov-Siegl-Tretter-'16, Ibrogimov'17, Ibrogimov-Tretter'17, Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

- Klein-Gordon operators with purely imaginary potentials
\rightarrow empty spectrum for $V(x)=\mathrm{i} x$
- Dirac operators with Coulomb type potentials using Hardy-Dirac inequality
[Dolbeaut-Esteban-Loss-Vega'04, Dolbeaut-Esteban-Séré'00]
\rightarrow extend abstract setting by larger space $\mathcal{D}_{-1} \supseteq \mathcal{D}_{-S}$

$$
\widehat{A} \in \mathcal{B}\left(\mathcal{D}_{S}, \mathcal{D}_{-1}\right), \quad \widehat{B} \in \mathcal{B}\left(\mathcal{D}_{2}, \mathcal{D}_{-1}\right), \quad \widehat{S}_{\lambda} \in \mathcal{B}\left(\mathcal{D}_{S}, \mathcal{D}_{-S}\right)
$$

\rightarrow generalise / recover previous results from symmetric setting [Esteban-Loss'07, Esteban-Loss'08, Schimmer-Solovej-Tokus'20]

Thank you for your attention!

Y. Almog and B. Helffer.

On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent.
Comm. Partial Differential Equations, 40:1441-1466, 2015.
K. Ammari and S. Nicaise.

Stabilization of elastic systems by collocated feedback, volume 2124 of Lecture Notes in Mathematics. Springer, Cham, 2015.
J. Dolbeault, M. J. Esteban, M. Loss, and L. Vega.

An analytical proof of Hardy-like inequalities related to the Dirac operator.
Journal of Functional Analysis, 216:1-21, 2004.
J. Dolbeault, M. J. Esteban, and E. Séré.

On the eigenvalues of operators with gaps. Application to Dirac operators.
Journal of Functional Analysis, 174:208-226, 2000.
M. J. Esteban and M. Loss.

Self-adjointness for Dirac operators via Hardy-Dirac inequalities.
Journal of Mathematical Physics, 48:112107, 8, 2007.
M. J. Esteban and M. Loss.

Self-adjointness via partial Hardy-like inequalities.
In Mathematical results in quantum mechanics, pages 41-47. World Sci. Publ., Hackensack, NJ, 2008.
P. Freitas, P. Siegl, and C. Tretter.

The damped wave equation with unbounded damping.
Journal of Differential Equations, 264:7023-7054, 2018.
O. O. Ibrogimov.

Essential spectrum of non-self-adjoint singular matrix differential operators. Journal of Mathematical Analysis and Applications, 451:473-496, 2017.
O. O. Ibrogimov, P. Siegl, and C. Tretter.

Analysis of the essential spectrum of singular matrix differential operators.
Journal of Differential Equations, 260:3881-3926, 2016.
O. O. Ibrogimov and C. Tretter.

Essential spectrum of elliptic systems of pseudo-differential operators on $L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)$. Journal of Pseudo-Differential Operators and Applications, 8:147-166, 2017.
D. Krejčiríík and T. Kurimaiová.

From lieb-thirring inequalities to spectral enclosures for the damped wave equation.
Integral Equations and Operator Theory, 92(6), oct 2020.
R. Nagel.

Towards a "matrix theory" for unbounded operator matrices.
Mathematische Zeitschrift, 201:57-68, 1989.
L. Schimmer, J. P. Solovej, and S. Tokus.

Friedrichs extension and min-max principle for operators with a gap.
Ann. Henri Poincaré, 21(2):327-357, 2020.
Christiane Tretter.
Spectral theory of block operator matrices and applications.
Imperial College Press, London, 2008.

