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Structure

• What are the Fluid Mechanics Phenomena in question

• Test Equations – RnsaGL and CnsaGL

• Non-normality with Nonlinearity

• Quasi-basis structure and Implications

• Further Research

BIRS - Canada 2022 2



Fluid Mechanics Phenomena 

Figure 1a (top) Example of a Hopf Bifrucation. Regimes of flow around a smooth 
circular cylinder in steady current [1]. Figure 1b (below) Example of a Pitchfork bifurcation. Sudden expansions 

flow geometry including schematics of expected flow patters for Reynolds 
number shown in plot. 
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Test Equations - RnsaGL
The Real-non-self-adjoint Ginzburg-Landau (RnsaGL) equation is given by;

𝑑𝑢

𝑑𝑡
= ℒ𝑅𝐺𝐿𝑢 + 𝛿𝑢 − 𝑢3

where

ℒ𝑅𝐺𝐿 =
𝜕2

𝜕𝑥2
− 𝑈

𝜕

𝜕𝑥
+

𝑈2

4
+ 𝑐2 − 𝑐2𝑥

2

and smooth initial data. 

As 𝑈 increases, the operator becomes more « non-self-adjoint »…  When 𝑈 = 0, this equation is self-
adjoint. The leading eigenvalue is always zero, i.e. 𝜆0 = 0. 

The eigenvectors of this operator do not form a basis in 𝐿2 . 
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Test Equations - CnsaGL
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The Complex-non-self-adjoint Ginzburg-Landau (CnsaGL) equation is given by;

𝑑𝑢

𝑑𝑡
= ℒ𝐶𝐺𝐿𝑢 + 𝛿𝑢 − |𝑢|2𝑢

where

ℒ𝐶𝐺𝐿 = (1 − 𝑖)
𝜕2

𝜕𝑥2
− 𝑈 + 0.2𝑖

𝜕

𝜕𝑥
+ 𝐶1 +

1

8
𝑈2 − 0.4𝑈 − 0.04 − 𝑐2𝑥

2

with 𝐶1 = 𝑅𝑒 𝑐2 1 − 𝑖 with smooth initial data.

When U increases, the operator becomes more « non-normal »… The leading eigenvalue is always
imaginary, i.e. 𝜆0 = 𝑖 𝜔0. 

The eigenvectors of this operator do not form a basis in 𝐿2 . 



Non-normality versus nonlinearity
The importance of non-normality in relation to nonlinearity has been in interest for several decades 
in Fluid Mechanics. The discussions have been driven by the success of various reduced order 
models. 

It is instructive to derive a reduced order model before discussing the literature. We derive the 
reduced order model via WNLE.
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The method of weakly nonlinear expansions can be described roughly into three steps:

1. Introduce a diffusive scaling centered around a small parameter that allows the linear operator to 
remain dominant.

2. Introduce an expansion in terms of the small parameter in order to get a hierarchy of equations.
3. Use the Fredholm Alternative repeatedly to obtain solvability conditions at each order to elaborate 

the temporal development of each term of the expansion. 



1. We choose a diffusive timescaling 𝑢 𝑥, 𝑡 = 𝜖
1

2𝑣 𝑥, 𝜏 , 𝜏 = 𝜖𝑡 where 𝜖 is a small parameter.  

We also let 𝛿 = 𝜖 ሚ𝛿 where ሚ𝛿 = 𝑂(1). This results in the following equation

−ℒ𝑅𝐺𝐿𝑣 = 𝜖( −
𝜕𝑣

𝜕𝜏
+ ሚ𝛿𝑣 + 𝑣3)

2. Expand the rescaled solution in powers of the small parameter.

𝑣 = 𝑣0 + 𝜖 𝑣1 + …

This results in the following hierarchy of equations;

−ℒ𝑅𝐺𝐿𝑣0 = 0, −ℒ𝑅𝐺𝐿𝑣1 = −
𝜕𝑣0
𝜕𝜏

+ 𝛿𝑣0 − 𝑣0
3

BIRS - Canada 2022 7



3.  At first order, we obtain
𝑣0 = 𝐴 𝜏 Ƹ𝑒0

where Ƹ𝑒0 is the zeroth eigenvector. 

Substituting this in the next order, we get

−ℒ𝑅𝐺𝐿𝑣1 = −
𝜕𝐴 𝜏

𝜕𝜏
+ ሚ𝛿𝐴 𝜏 Ƹ𝑒0 − 𝐴 𝜏

3
Ƹ𝑒0

3

We apply the Fredholm alternative in order to obtain 

𝑑𝐴

𝑑𝜏
= ሚ𝛿𝐴 − Ƹ𝑒0

† , Ƹ𝑒0
3 𝐴3.
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We put the amplitude equation back on the original timescale to get the first order amplitude 
equation 

𝑑𝐵

𝑑𝑡
= 𝛿𝐵 − 𝜆1𝐵3

where we have let 𝐵 = 𝜖
1

2𝐴 and 𝜆1 = Ƹ𝑒0
† , Ƹ𝑒0

3 .

The resulting first-order approximation is given by 

𝑢𝑎𝑝𝑝 ≈ 𝐵 Ƹ𝑒0.

How well does this approximate the solution to the RnsaGL?

BIRS - Canada 2022 9

Stuart-Landau Equation 
(Real-Case)
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Figure. A plot of 𝑢 − 𝑢𝑎𝑝𝑝 𝑳𝟐
against 𝑡 for various values of 𝑈, 𝛿 = 0.01.

𝑢
−
𝑢
𝑎
𝑝
𝑝

𝑳
𝟐
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Timeline

(1940s) Landau [3] derived the Stuart-Landau equation, but did not determine the coefficients.

(1960) Stuart [4] derived the coefficients for the amplitude equation. Watson [5] created a
method to find higher orders of the amplitude equation (Amplitude Expansion Method).

(1967) Numerical Experiments (Pekeris and Skholler [5], Reynolds and Potter [6] that show the
approximation is valid for only early times and small values of 𝛿.

This motivated the building of higher order amplitude equations and higher order approximations to 
capture better results. 
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Important Papers

• Coullet and Spiegel (1983) [13] created a new methodology for creating higher order amplitude
equations for bifurcation problems in Fluid Mechanics based on the Krylov-Bogoliubov method.

• Hebert (1983) [7] established a way of making higher order approximations. He provided an extra
condition in terms of a point 𝑢 𝑥0 = 𝑢0 that normalised higher order terms.

• Fujimura (1989, 1991) [8, 9] showed the equivalence between making amplitude equations with
normal form theory, WNLE and the Amplitude Expansion method [12].

• Chomaz (2005) [10] in the review paper entitled “Non-normality and Nonlinearity” firstly
connected the failure of WNLE to non-normality and argued to for a nonlinear framework.

• Sipp and Lebedev (2007) [11] and Carini et al. (2015) [12] derived first order amplitude equations
via two different methods and established a well-approximated saturation frequency and not
amplitude.



Illustration of Sipp and Lebedev on CnsaGL
Recall

𝑑𝑢

𝑑𝑡
= ℒ𝐶𝐺𝐿𝑢 + 𝛿𝑢 − 𝑢 2𝑢 with

ℒ𝐶𝐺𝐿 = (1 − 𝑖)
𝜕2

𝜕𝑥2
− 𝑈 + 0.2𝑖

𝜕

𝜕𝑥
+ 𝐶1 +

1

8
𝑈2 − 0.4𝑈 − 0.04 − 𝑐2𝑥

2.

We consider the solution 𝑢 = 𝑅𝑒iΦ to get the following operators

ℒ𝑅 =
𝜕2

𝜕𝑥2
− 𝑈

𝜕

𝜕𝑥
+ 𝐶1 +

1

8
𝑈2 − 0.4𝑈 − 0.04 − 𝑐2𝑥

2 ℒΦ =
𝜕2

𝜕𝑥2
− 𝑈

𝜕

𝜕𝑥
.

We plot the matrix exponential for these two operators. For the intent and purpose here, it 
describes the maximum response to the most dangerous initial condition. 
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Figure. Plots of exp 𝑡 ℒ𝑅 + 𝛿 𝐿2 (left)  and exp 𝑡 ℒΦ + 𝛿 𝐿2 (right) for 𝑈 = 0 (blue) and 𝑈 = 1 (orange) with 𝛿 = −0.01.
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Quasi-Basis Structure and Implications
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We firstly give the following definitions;

• Definition (Metric Operator) A metric operator in a Hilbert space ℋ is a strictly-positive self-
adjoint operator 𝐺, that is 𝐺 > 0.

• Definition (Quasi-Hermitian) A closed operator ℒ, with dense domain 𝐷(ℒ) is called quasi-
Hermitian if there exists a metric operator 𝐺, with a dense domain 𝐷 ℒ ⊂ 𝐷(𝐺) and 

ℒ 𝜉 𝐺 𝜂⟩ = 𝐺 𝜉 ℒ 𝜂⟩, 𝜉, 𝜂 ∈ 𝐷 ℒ (∗)

In the case of the RnsaGL, we have that (∗) holds with ℒ = ℒ𝑅𝐺𝐿 and 𝐺 = 𝑒−𝑈𝑥.



Let ℋ be a Hilbert space. Let us consider the following space of functions

𝐷 𝐺
1
2 = 𝑢 ∈ ℋ: 𝐺

1
2 𝑢 ℋ ≤ ∞ .

We let the ⋅ 𝐺 be the norm be induced by the inner product,

⋅ 𝐺 = 𝐺1/2 ⋅
ℋ
= 𝐺

1

2 ⋅, 𝐺
1

2 .

We denote the Hilbert-Space ℋ G ≔ 𝐷 𝐺
1

2 , ⋅ 𝐺 . 

Furthermore, we have the extreme spaces ℋ 𝐺 ∩ℋ 𝐺−1

𝑓 ℋ 𝐺 ∩ℋ 𝐺−1 = 𝑓 𝐺 + 𝑓 𝐺−1 .
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ℋ 𝐺 ∩ℋ 𝐺−1
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ℋ 𝐺

ℋ

ℋ 𝐺−1

ℋ 1 + 𝐺−1

ℋ 1 + 𝐺

Figure. The resulting lattice of Hilbert Spaces from the unbounded metric operator 𝐺. All of the embeddings 
represent continuous embeddings with dense range.  



Definition (Quasi-Basis) Given a dense subspace 𝑋1 of a Hilbert Space ℋ. Let 𝐸 = 𝑒𝑛 𝑛=0
∞

and 𝐸† = 𝑒𝑛
†

𝑛=0

∞
be two bi-orthogonal sets such that all 𝑒𝑛 ∈ 𝑋1 and all 𝑒𝑛

† ∈ 𝑋1. Then 

𝐸 and 𝐸† are 𝑋1 quasi-bases, if for all 𝑓, 𝑔 ∈ 𝑋1

𝑓, 𝑔 = σ𝑛=0 𝑓, 𝑒𝑛 𝑒𝑛
†, 𝑔 = σ𝑛=0 𝑓, 𝑒𝑛

† 𝑒𝑛, 𝑔

Theorem (Quasi-Basis for RnsaGL). The direct and adjoint eigenvectors of ℒ𝑅𝐺𝐿 form a
quasi basis with ℋ = 𝐿2(ℝ) and 𝐺 = 𝑒−𝑈𝑥 in the space ℋ 𝐺−1 ∩ℋ(𝐺). Proof. Follows
Proposition 9 for Bagarello 2013.

Theorem. Let 𝐸 = Ƹ𝑒𝑛 𝑛=0
∞ of a Hilbert Space ℋ. Let 𝐸 = 𝑒𝑛 𝑛=0

∞ and 𝐸† = 𝑒𝑛
†

𝑛=0

∞
be 

quasi-bases of ℋ 𝐺 ∩ℋ 𝐺−1 where the metric operator 𝐺
1

2 where 𝐺
1

2𝑒𝑛 = Ƹ𝑒𝑛.

Furthermore let 𝐺
1

2

−1

𝑒𝑛
† = Ƹ𝑒𝑛 and 𝐺−1 𝑒𝑛

† = 𝑒𝑛 and 𝐺−1 Ƹ𝑒𝑛. Then each element 𝑢 ∈
ℋ 𝐺 ∩ℋ 𝐺−1 , can be expressed as 𝑢 = σ𝑛=0

∞ ⟨𝑒𝑛, 𝑢 ⟩ en
† and 𝑢 = σ𝑛=0

∞ 𝑒𝑛
†, 𝑢 𝑒𝑛.
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Implications – Visualisation of Mechanism
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The nonlinearity recharges the stable modes, but more so in the more non-self-adjoint cases! 

t t

Figure. Plots of projections onto the direct modes Ƹ𝑒𝑛,  (i. e. Ƹ𝑒𝑛
†, 𝑢 ).  



Implications – Normalisation of higher order 
terms 
We can expand to get higher order terms, but owing to the Fredholm Alternative 
we need external conditions to work out the higher order terms. 

For instance, we expand in the following way 

𝑣 = ต𝐶 Ƹ𝑒0
𝑣0
′

+ 𝜖 𝑣1 𝐶, 𝑥 + 𝛾1 𝐶 Ƹ𝑒0
𝑣1
′

+ 𝜖2 𝑣2 𝐶, 𝑥 + 𝛾2 𝐶 Ƹ𝑒0
𝑣2
′

+ 𝜖3 𝑣3 𝐶, 𝑥 + 𝛾3 𝐶 Ƹ𝑒0
𝑣3′

+⋯

With this style of expansion, we want to have no overlap of the functions Ƹ𝑒0 with 
the terms 𝑣𝑛(𝐶, 𝑥) in the expansion. Owing to the quasi-basis, we can choose 
either 

Ƹ𝑒0, 𝑣1 = 0 (𝑣1 = ො𝑣1) and       Ƹ𝑒0
†, 𝑣1 = 0 (𝑣1 = 𝑣1)
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Figure. (Left) 
Plots of  ො𝑣1 (top) 
and 𝑣1 (bottom)  
against 𝑥 for the 
values of the 
figures shown in 
plot. The 
pictures on the 
right correspond 
to close ups of 
the boxes on the 
left.  𝛿 = 0.01

ෝ𝒗𝟏

𝒗𝟏
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𝒕 = 𝟏𝟎𝟎𝒔 𝒕 = 𝟏𝟎𝟎𝟎𝒔 𝒕 = 𝟐𝟎𝟎𝟎𝒔

𝑼 = 𝟎

𝑼 = 𝟎. 𝟔

𝑼 = 𝟏. 𝟐

The plots overlap perfectly!

Figure 10. Plots 
of 𝑣1

′ 𝑥, 𝑡 and 
𝑣1 𝑥, 𝑡
against 𝑥 for 
various values 
of U and T 
shown in the 
figure
for 𝛿 = 0.01



Implications – Stochastic Averaging
Theorem (Expansion of noise in the eigenvectors of ℒ𝑅𝐺𝐿). Let 𝑊(t) be a ℋ-valued Wiener 
process where ℋ = ℋ 𝐺 ∩ℋ 𝐺−1 . Let Ƹ𝑒𝑛

⊥ be the eigenvectors of ℒ𝑅𝐺𝐿 with 𝑈 = 0. 
Let 𝑄 be the corresponding covariance operator, such that there is a bounded sequence of 
sequence of non-negative real numbers 𝜆𝑛, such that 𝑄 Ƹ𝑒𝑛

⊥ = 𝜆𝑛𝑒𝑛
⊥ where  Ƹ𝑒𝑛

⊥ be the 
eigenvectors of ℒ𝑅𝐺𝐿 with 𝑈 = 0. 

The noise can be expanded as 

𝑊 𝑡 = 

𝑗=0

∞

𝜆𝑗𝛽𝑗 𝑡 Ƹ𝑒𝑗
⊥ =

𝑗=0

∞

𝜆𝑗 መ𝛽𝑗 𝑡 Ƹ𝑒𝑗

where 𝛽𝑗 =
1

√𝜆𝑗
⟨ Ƹ𝑒𝑗

⊥,𝑊 𝑡 ⟩ and  መ𝛽𝑗 =
1

√𝜆𝑗
⟨ Ƹ𝑒𝑗

†,𝑊 𝑡 ⟩ .
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Following the ability to expand noise in terms of the eigenfunctions of ℒ𝑅𝐺𝐿, we can attempt 
stochastic averaging in the non-self-adjoint case. 

We choose a noise strength that is shown to give rise to a deterministic first order amplitude 
equation. We consider the following SPDE. 

𝜕𝑢

𝜕𝑡
= ℒ𝑅𝐺𝐿 𝑢 + 𝜖𝛿𝑢 − 𝑢3 + 𝜖

3
4
𝜕𝑊

𝜕𝑡

where we have that 𝑊 = σ𝑛=0
𝑁 𝛼𝑛 መ𝛽𝑛 Ƹ𝑒𝑛 where 𝛼𝑛 allows us to put the noise strength on each 

mode. 

Stochastic averaging with this noise (Mohammed et al. 2014) results in the same amplitude 
equation to first order, i.e. 

𝑢𝑎𝑝𝑝 ≈ 𝐵 Ƹ𝑒0 with 
𝑑𝐵

𝑑𝑡
= 𝛿𝐵 − 𝜆1𝐵3
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Figure. (Left) A 
plot of 𝑢 𝑳𝟐

(blue) and 

𝑢𝑎𝑝𝑝 𝑳𝟐
(orange) 

against 𝑡 for 𝑈 =
0 (top) and 
(bottom ) 𝑈 =
1, and 𝛿 = 0.01

(Right) A plot of 
𝑢 𝑥 = 0.22, 𝑡
(blue) and 
𝑢𝑎𝑝𝑝(𝑥 = 0.22, 𝑡)

(orange) against 𝑡
for 𝑈 = 0 (top) 
and (bottom ) 
𝑈 = 1, and 𝛿 =
0.01
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Figure. (Left) A plot of 𝑢 𝑳𝟐 (blue) and 𝑢𝑎𝑝𝑝 𝑳𝟐
(orange) against 𝑡 for 𝑈 = 2.

(Right) A plot of 𝑢 𝑥 = 0.22, 𝑡 (blue) and 𝑢𝑎𝑝𝑝(𝑥 = 0.22, 𝑡) (orange) against 𝑡 for 𝑈 = 2.

𝛿 = −0.01, pattern forming below criticality in the non-self-adjoint case



Further Research
In progress articles…

(Drysdale and Sipp) Second Order Approximations via WNLE for A Non-self-adjoint Problem in Fluid Dynamics

(Drysdale and Sipp) Using the Quasi-Basis to illustrate Non-normality and Nonlinearity Fluid Dynamics

(Drysdale and Needham) Exploring the “Weakly Nonlinear Limit for the Non-self-adjoint Ginzburg Landau Problem”

Other Ideas

• To use the quasi-basis for numerical purposes such as capturing boundary conditions for 
asymmetric problems.

• To investigate how to have higher order approximations in the stochastic case, and also the 
below-critical phenomena. 

• To explore the semigroup properties if we define the domain of the operator to include the space, 
i.e. for sufficiently regular initial data in the space  how do we prove that the solution stays in this 
space ℋ 𝐺 ∩ℋ 𝐺−1 .

Thank you for listening! 
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Semigroup Properties and Ramifications

30

We have that both operators (ℒ𝑅𝐺𝐿, 𝐷 ℒ𝑅𝐺𝐿 ) and (ℒ𝐶𝐺𝐿, 𝐷 ℒ𝐶𝐺𝐿 ) generate 𝐶0-semigroups. 

We prove this by showing that 

መℒ𝑛
𝑅𝐺𝐿 =

𝜕2

𝜕𝑥2
− 𝑈

𝜕

𝜕𝑥
− (1 + 𝑐2𝑥

2)

መℒ𝑛
𝐶𝐺𝐿 =

𝜕2

𝜕𝑥2
− (𝑈 + 0.2𝑖)

𝜕

𝜕𝑥
− (1 + 𝑐2𝑥

2)

are both sectorial operators. 

These sectorial operators are useful to us as it allows us to write our equations in integral form:



Semigroup Properties and Ramifications

31

For the RnsaGL, we have

𝑢 = 𝑒𝑡
መℒ𝑛
𝑅𝐺𝐿

𝑢0 + 
0

𝑡
𝑒 𝑡−𝑠 መℒ𝑛

𝑅𝐺𝐿
𝛿 + 𝐶2 𝑢 − 𝑢3 𝑑𝑥

where 𝐶2 =
𝑈2

4
+ 𝑐2 + 1.

For the CnsaGL, we have

𝑢 = 𝑒𝑡
መℒ𝑛
𝐶𝐺𝐿

𝑢0 + 
0

𝑡
𝑒 𝑡−𝑠 መℒ𝑛

𝐶𝐺𝐿
𝛿 + 𝐶2

𝑐 𝑢 − |𝑢|2𝑢 𝑑𝑥

where 𝐶2 = 𝐶1 +
1

8
𝑈2 − 0.4𝑈 − 0.04 +1.

This is useful when we derive the error bounds for our equations!
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We also have both the operators generate a compact resolvent. This means that our operators have 
purely discrete spectrum. 

This means that we can use theorems from Krejčiřík et al. [14] in order to determine whether the 
eigenvectors form a Riesz Basis or not. 

We give the following definitions:

• Definition (Schauder Basis). Let 𝑋 be a Banach space. A set of vectors {𝑒𝑛}𝑛=0
∞ is a basis if every 

𝜙 ∈ 𝑋 has a unique expansion in the vectors {𝑒𝑛}𝑛=0
∞ .

• Definition (Riesz Basis). Let 𝑋 be a Banach space. A set of vectors {𝑒𝑛}𝑛=0
∞ normalised to 1 in is a 

Riesz Basis or unconditional basis  if it forms a basis and the inequality
∀ 𝜙 ∈ 𝑋, 𝐶−1 𝜙 ≤ σ𝑛=1

∞ 𝑒𝑛, 𝜙
2 ≤ 𝐶 𝜙

holds with a positive constant 𝐶 independent of 𝜙. 
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We also present the following definitions of pseudospectra and trivial pseudospectra. 

Definition. Let 𝐿 be an operator and let us define its spectrum 𝜎(𝐿). Given a positive 
number 𝜖, we define the 𝜖-pseudospectrum of an operator 

𝜎𝜖 𝐿 ≔ 𝜎 𝐿 ∪ { 𝑧 ∈ ℂ | 𝐻 − 𝑧 −1 > 𝜖−1}

Definition. We say that the pseudospectrum of 𝐻 is trivial if there exists a fixed constant 𝐶
such that for all 𝜖 > 0, 

𝜎𝜖 𝐿 ⊆ 𝑧 ∈ ℂ 𝑑𝑖𝑠𝑡 𝑧, 𝜎 𝐻 ≤ 𝐶𝜖}
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Figure 6a.  (Trivial Pseudospectra) Pseudospectra of the Orr-

Sommerfeld operator 𝑖𝛼𝑇−1
1

𝑖𝛼𝑅
𝑇2 − 1 − 𝑥2 𝑇2 − 2 [16]

Figure 6b.  (Non-trivial Pseudospectra) of the Davies Oscillator

−
𝑑2

𝑑𝑥2
+ 𝑖𝑥2 operator [16]
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Next consider the following two spaces. The first is a space of real valued functions, 
whereas the second is a space that maps from real valued functions to complex valued 
functions. 

𝐻𝑉𝑟
2 ℝ = 𝑢 ∈ 𝐻2 ℝ,ℝ : 𝑉𝑢 ∈ 𝐿2 ℝ,ℝ ,

and

𝐻𝑉𝑐
2 ℝ = 𝑢 ∈ 𝐻2 ℝ,ℂ : 𝑉𝑢 ∈ 𝐿2 ℝ,ℂ .

We equip the spaces 𝐻𝑉𝑟
2 ℝ and 𝐻𝑉𝑐

2 ℝ , with the respective norms

𝑢 𝐻𝑉𝑟 = 𝑢 𝐻2(ℝ,ℝ) + 𝑉𝑢 𝐿2(ℝ,ℝ)

and 

𝑢 𝐻𝑉𝑐 = 𝑢 𝐻2(ℝ,ℂ) + 𝑉𝑢 𝐿2(ℝ,ℂ).

Under these conditions, 𝐻𝑉𝑟
2 ℝ and 𝐻𝑉𝑐

2 ℝ are Banach spaces. 
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