Scattering for 1DNLS with variable coefficients

Piero D'Ancona

Dipartimento di Matematica
Sapienza Università di Roma

Mathematical aspects of the Physics with non self-Adjoint Operators

BIRS 10-15 July 2022

References

Based in part on joint works with

- Luca Fanelli (Bilbao)
- Federico Cacciafesta (Padova)
- Biagio Cassano (Bari)
- Angelo Zanni (Dottorato, Sapienza) - work in progress

What is scattering?

Scattering theory compares the asymptotic behaviour of the solution flows $F(t)$ and $D(t)$ of two different but 'close' evolution equations, linear or nonlinear, in some Banach space of initial data X (under the assumption that the two flows are globally and uniquely defined)

Example

$$
\begin{aligned}
& F(t) \phi=e^{i t \Delta} \phi=u(t, x) \text { is the solution on } \mathbb{R}_{t} \times \mathbb{R}_{x}^{n} \text { of } \\
& \quad i u_{t}+\Delta u=0, \quad u(0, x)=\phi(x) \in H^{1}\left(\mathbb{R}^{n}\right)=X
\end{aligned}
$$

$D(t) \psi=e^{i t(\Delta-V)} \psi=v(t, x)$ is the solution of

$$
i v_{t}+\Delta v=V(x) v, \quad v(0, x)=\psi(x) \in H^{1}\left(\mathbb{R}^{n}\right)=X
$$

What is the relation between the global dynamics of the two flows?

Writing $o_{X}(1)$ to mean $\left\|o_{X}(1)\right\|_{X} \rightarrow 0$, we aim at expansions like:

$$
\begin{equation*}
F(t) \phi=D(t) \phi_{ \pm}+o_{X}(1) \quad \text { as } \quad t \rightarrow \pm \infty \tag{1}
\end{equation*}
$$

More precisely, given $\phi \in X$, can we find $\phi_{+}, \phi_{-} \in X$ such that (1) holds?
Conversely, we can try to prove the expansions

$$
\begin{equation*}
D(t) \psi=F(t) \psi_{ \pm}+o_{X}(1) \quad \text { as } \quad t \rightarrow \pm \infty \tag{2}
\end{equation*}
$$

but the symmetry is only formal, indeed in typical situations:
$F(t)$ is a 'reference' flow which is known in detail. Thus (1) is easier to solve (it often reduces to a problem with small data at time infinity) and is called the problem of the existence of the wave operator. The wave operator is the $\operatorname{map} W_{+}: \phi \mapsto \phi_{+}$
$D(t)$ is a 'perturbed' flow. Thus (2) contains more information and is harder to prove than (1). When a solution $D(t) \psi$ satisfies (2) we say it scatters. When all solutions scatter we say that asymptotic completeness holds

Scattering theory is very extensive In classical potential scattering: $F(t)=e^{i t \Delta}, D(t)=e^{i t(\Delta-V)}$ In modern nonlinear scattering:

- $F(t)=e^{i t \Delta}$
- $D(t)=$ solution flow of NLS $i u_{t}+\Delta u= \pm|u|^{\gamma-1} u$ on $\mathbb{R} \times \mathbb{R}^{n}$ $+=$ defocusing equation, $-=$ focusing equation

If $\phi \in H^{1}$ and the equation is defocusing, $D(t) \phi$ is well defined for

$$
1 \leq \gamma \leq \gamma_{H^{1}}:=1+\frac{4}{(n-2)_{+}} \quad\left(\gamma_{H^{1}}=\infty \text { for } n=1,2\right)
$$

and scattering occurs in the intercritical range (Ginibre-Velo ~ 1985)

$$
\gamma_{L^{2}}<\gamma<\gamma_{H^{1}}, \quad \gamma_{L^{2}}:=1+\frac{4}{n}
$$

The most difficult energy critical case $\gamma=\gamma_{H^{1}}$ in $n \geq 3$ was solved by Bourgain, Tao, Visan, Ryckman, CKSTT 1999-2005

Of course scattering is not restricted to linear Schrödinger/NLS Other settings:

- Obstacle scattering (exterior domains)
- Wave, Klein-Gordon, Dirac, Maxwell and other equations
- Equations on manifolds
- Scattering-like behaviour of solutions in compact settings (cubic 1DNLS on \mathbb{T} : Kappeler-Schaad-Topalov 2017)
- Stationary scattering fot the Helmholtz equation

Main problem

I am interested in scattering for the flows

- $F(t) \phi=e^{-i t A}$ where A is a selfadjoint operator on $L^{2}\left(\mathbb{R}^{n}\right)$ (elliptic operator). This is the solution of the linear problem

$$
i u_{t}-A u=0, \quad u(0, x)=\phi
$$

- $D(t) \phi$ solution of

$$
i u_{t}-A u= \pm|u|^{\gamma-1} u, \quad u(0, x)=\phi
$$

Necessary ingredients are
(1) A good understanding of the dispersive properties of $e^{-i t A}$
(2) A good well posedness theory for the nonlinear equation

Dispersion for linear flows

The model flow is $e^{i t \Delta}$. In decreasing order of strength:

- Pointwise decay $p \in[2 . \infty]$

$$
\left\|e^{i t \Delta} \phi\right\|_{L^{p}} \lesssim|t|^{\frac{n}{p}-\frac{n}{2}}\|\phi\|_{L^{p^{\prime}}}
$$

- Strichartz-Sobolev estimates $p, r \in[2, \infty]$

$$
\left\|e^{i t \Delta} \phi\right\|_{L^{p} L^{r}} \lesssim\|\phi\|_{\dot{H}^{s}}, \quad 0<\frac{n}{r} \leq \frac{n}{2}-\frac{2}{p}, \quad s=\frac{n}{2}-\frac{2}{p}-\frac{n}{r}
$$

and the inhomogeneous variants for $i u_{t}+\Delta u=F(t, x)$

- Smoothing estimates

$$
\left\|\langle x\rangle^{-1 / 2-}|D|^{1 / 2} e^{i t \Delta} \phi\right\|_{L^{2} L^{2}} \lesssim\|\phi\|_{L^{2}}
$$

plus the inhomogeneous variants

Dispersion for $A=-\Delta+V(x)$

For the case of a potential Yajima 1995-2002 developed a very general theory based on a property of the wave operator W

Intertwining property: ($P_{a c}=$ projection on the ac spectrum of $\left.\Delta-V\right)$

$$
W^{*} a(t, \Delta) W=P_{a c} a(t, \Delta-V)
$$

Under suitable decay, smoothness and spectral assumptions on V

$$
W, W^{*}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right) \quad \text { are bounded }
$$

This gives, like in the free case

$$
\left\|P_{a c} e^{i t(\Delta-V)} \phi\right\|_{L^{p}} \lesssim|t|^{\frac{n}{p}-\frac{n}{2}}\|\phi\|_{L^{p^{\prime}}}
$$

and Strichartz estimates follow

- In 1D Yajima's result was improved by Weder, D.-Fanelli (see below)
- Goldberg-Visan 2006: pointwise estimates fail if $V \in C^{\frac{n-3}{2}-}\left(\mathbb{R}^{n}\right)$
- Strichartz estimates alone hold under weaker assumptions on the potential
- Beceanu-Goldberg 2012: Strichartz estimates in 3D for potentials of Kato class and small negative part
- Burq-Planchon-Stalker-TZadeh 2004: Strichartz estimates in $n \geq 3$ for repulsive potential of critical decay $\sim|x|^{-2}$

Dispersion for $A=\left(i \partial_{x}+b(x)\right)^{2}+V(x)$

- For electromagnetic potentials, i.e. with first order terms, pointwise estimates are an open problem (some results for the 3D wave equation Cuccagna-Schirmer 1999, D.-Fanelli 2006, Cacciafesta-D. 2013)
- Strichartz estimates hold for potentials of almost critical decay and minimal regularity D.-Fanelli 2008, Erdogan-Goldberg-Schlag 2009

Dispersion for A elliptic

Fully variable coefficients

$$
A \phi=-\partial_{b}\left(a(x) \partial_{b} \phi\right)+V(x), \quad \partial_{b}=\partial_{x}+i b(x)
$$

- Strichartz estimates for $e^{-i t A}$ hold under various assumptions Staffilani-Tataru 2002, Robbiano-Zuily 2005, Bouclet-Tzvetkov 2008
- Tataru 2008: sufficient conditions are ($\epsilon \ll 1, \delta>0$)

$$
|a-I|+\langle x\rangle\left(\left|a^{\prime}\right|+|b|\right)+\langle x\rangle^{2}\left(\left|a^{\prime \prime}\right|+\left|b^{\prime}\right|+|V|\right) \leq \epsilon\langle x\rangle^{-\delta}
$$

- Cassano-D. 2015: V can be taken large, repulsive, with almost critical decay
- For large $a(x)$ the estimates fail (trapped energy). Nontrapping conditions are necessary

Dispersion in 1D

D.-Fanelli 2006: L^{p} boundedness of the wave operator for

$$
A=-\partial_{x} a(x) \partial_{x}+b(x) \partial_{x}+V(x), \quad a(x) \geq c_{0}>0
$$

provided

Assumption (A)

$$
\begin{gathered}
a(x) \geq c_{0}>0 \\
\langle x\rangle\left(\left|a^{\prime}\right|+|b|\right) \in L^{2}(\mathbb{R}), \quad\langle x\rangle^{2}\left(|V|+\left|a^{\prime \prime}\right|+\left|b^{\prime}\right|\right) \in L^{1}(\mathbb{R})
\end{gathered}
$$

In particular, pointwise decay and Strichartz estimates hold
Burq-Planchon 2004: Strichartz estimates hold for $a \in B V$ (but they require $b=V=0$)

Q: what about $-\partial_{x} a(x) \partial_{x}+V(x)$? I can do this for odd solutions

Well posedness of the NLS

If $e^{-i t A}$ satisfies Strichartz estimates, or a suitable subset, the nonlinear theory is essentially identical to the free case. We consider the problem

$$
i u_{t}-A u=|u|^{\gamma-1} u, \quad u(0, x)=\phi(x)
$$

or rather its integral version

$$
\begin{equation*}
u(t, x)=e^{-i t A} \psi-i \int_{0}^{t} e^{-i(t-s) A}|u|^{\gamma-1} u d s \tag{3}
\end{equation*}
$$

We fix the following (standard) indices:

$$
p=\frac{2\left(\gamma^{2}-1\right)}{\gamma+3} \quad r=\gamma+1 \quad q=\frac{2\left(\gamma^{2}-1\right)}{\gamma^{2}-2 \gamma-3}
$$

Note in particular the Strichartz estimates

$$
\left\|e^{-i t A} \phi\right\|_{L^{p} L^{r}} \lesssim\|\phi\|_{H^{1}}, \quad\left\|\int_{0}^{t} e^{-i(t-s) A} G(s) d s\right\|_{L^{p} L^{r}} \lesssim\|G\|_{L^{q^{\prime}} L^{r^{\prime}}}
$$

Since $\left(r^{\prime} \gamma, q^{\prime} \gamma\right)=(p, r)$ we have also $\left\||u|^{\gamma-1} u\right\|_{L^{q^{\prime} L^{r^{\prime}}}}=\|u\|_{L^{p} L^{r}}^{\gamma}$

Denote by $D(t) \psi$ the solution to (3), with $\psi \in H^{1}$
We say that $D(t) \psi$ scatters at $\pm \infty$ if for some $\psi_{+}, \psi_{-} \in H^{1}$ one has

$$
\left\|D(t) \psi-e^{-i t A} \psi_{ \pm}\right\|_{H^{1}} \rightarrow 0 \quad \text { as } \quad t \rightarrow \pm \infty
$$

We say that the wave operator for A exists if for any $\phi \in H^{1}$ there exist $\phi_{+}, \phi_{-} \in H^{1}$ such that

$$
\left\|e^{-i t A} \phi-D(t) \phi_{ \pm}\right\|_{H^{1}} \rightarrow 0 \quad \text { as } \quad t \rightarrow \pm \infty
$$

Theorem

Let Assumption (A) be satisfied, and $\gamma>5$. Then for any $\psi \in H^{1}$ Problem
(3) has a unique global solution $u \in C\left(\mathbb{R} ; H^{1}\right)$. Moreover,

- if $u \in L^{p} L^{r}$ then u scatters
- if $\|\psi\|_{H^{1}}$ is sufficiently small then u scatters
- the wave operator for A exists.

An essential property for the construction of a solution with critical energy:

Theorem (Nonlinear perturbation)

Let Assumption (A) be satisfied, $\gamma>5$.
For any $M>0$ there exist $\epsilon, C>0$ such that the following holds. Let $\|\psi\|_{H^{1}}<M$ and $\|G(t, x)\|_{L^{p} L^{r}}<\epsilon$. Suppose $v(t, x) \in L^{p} L^{r}$ satisfies

$$
v(t, x)=e^{-i t A} \psi-i \int_{0}^{t} e^{-i(t-s) A}|v|^{\gamma-1} v d s+G(t, x)
$$

Then the solution of

$$
u(t, x)=e^{-i t A} \psi-i \int_{0}^{t} e^{-i(t-s) A}|u|^{\gamma-1} u d s
$$

belongs to $L^{p} L^{r}$, hence scatters, and $\|u-v\|_{L^{p} L^{r}} \leq C \epsilon$

Scattering: classical approaches

In order to prove scattering of a global solution to

$$
i u_{t}-A u=|u|^{\gamma-1} u
$$

there exist several scattering criteria i.e. sufficient conditions

- Morawetz estimate: a bound of the form

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^{n}} \frac{|u|^{\gamma+1}}{|x|} d x d t<\infty
$$

which can be proved by multiplier methods
One deduces that $\|u(t)\|_{L^{q}} \rightarrow 0$ as $t \rightarrow+\infty$ and scattering follows Classical approach for $n \geq 3$ by Lin-Strauss, Ginibre-Velo
Nakanishi modifies this method in dimension $n=1,2$ (time dependent Morawetz estimate)

- Bilinear smoothing, or Quadratic Morawetz estimate. A more efficient approach popularized by CKSTT (but used also by Ginibre and Velo) based on the bound

$$
\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{|u(t, x)|^{2}|u(t, y)|^{2}}{|x-y|^{3}} d x d y d t<\infty
$$

This method works in dimension $n \geq 4$, and also for $n=3$ by a suitable modification

We used it in Cassano-D. 2015 to prove scattering for the intercritical defocusing NLS

$$
i u_{t}-A u=|u|^{\gamma-1} u
$$

with fully variable coefficients in dimension $n \geq 3$

The Kenig-Merle approach

We follow a different approach, introduced by Kenig-Merle 2006 to study the radial, energy critical, focusing NLS

The method is flexible and has been applied and improved in a large number of works both on focusing and defocusing NLS (Holmer-Roudenko 2008, Duyckaerts-Holmer-Roudenko 2008, Fang-Xie-Cazenave 2011) and on other equations (wave, Klein-Gordon, Yang-Mills, wave maps)

For NLS with potentials translation invariance is broken. This difficulty was overcome in

- Hong 2016: cubic focusing 3DNLS with a short range potential
- Banica-Visciglia 2016: intercritical, defocusing 1DNLS with δ potential
- Lafontaine 2016: intercritical, defocusing 1DNLS with repulsive potential
- Ikeda 2021: intercritical, focusing 1DNLS with repulsive potential
- Dinh 2021: 3DNLS with potential

In particular in Banica-Visciglia 2016 an effort was done to streamline the KM technique and make it applicable to more general equations

We pursue their idea towards a black-box approach and an 'abstract' profile decomposition method

Main result

Recall Assumption (A) implying Strichartz estimates: $a(x) \geq c_{0}>0$, and

$$
\langle x\rangle\left(\left|a^{\prime}\right|+|b|\right) \in L^{2}(\mathbb{R}), \quad\langle x\rangle^{2}\left(|V|+\left|a^{\prime \prime}\right|+\left|b^{\prime}\right|\right) \in L^{1}(\mathbb{R})
$$

(This is work in progress and the assumptions can certainly be improved!)

Theorem (D.-Zanni)

Let $\gamma>5$. Suppose Assumption (A) is satisfied. There exist $\epsilon>0$ such that the following holds. If $V \geq 0, x V^{\prime}(x) \leq 0,\langle x\rangle\left(|V|+\left|V^{\prime}\right|\right)<\infty$ and

$$
\langle x\rangle^{2}\left(|a-1|+\left|a^{\prime}\right|+\left|a^{\prime \prime}\right|+\left|a^{\prime \prime \prime}\right|\right)<\epsilon
$$

then asymptotic completeness in H^{1} holds for the equation

$$
i u_{t}-A u=|u|^{\gamma-1} u
$$

where $A u=-\partial_{b} a(x) \partial_{b} u+V(x) u$.

Outline of the KM method

Recall the choice

$$
p=\frac{2\left(\gamma^{2}-1\right)}{\gamma+3} \quad r=\gamma+1 \quad q=\frac{2\left(\gamma^{2}-1\right)}{\gamma^{2}-2 \gamma-3}
$$

which implies $\left\||u|^{\gamma-1} u\right\|_{L^{q^{\prime}} L^{r^{\prime}}}=\|u\|_{L^{p} L^{r}}^{\gamma}$ and the Strichartz estimates

$$
\left\|e^{-i t A} \phi\right\|_{L^{p} L^{r}} \lesssim\|\phi\|_{H^{1}}, \quad\left\|\int_{0}^{t} e^{-i(t-s) A} G(s) d s\right\|_{L^{p} L^{r}} \lesssim\|G\|_{L^{q^{\prime} L^{r^{\prime}}}}
$$

Steps:

(1) Linear profile decomposition
(2) Construction of a critical solution
(Rigidity and scattering

1: Linear profiles

The idea of profile decomposition was initally developed for the NLWE Gerard 1998, Bahouri-Gerard 1999 and then extended to the NLS Merle-Vega 1998, Keraani 2001. Its origin might be traced back to the concentration-compactness principle of Lions 1984

Main idea: let $\left(v_{n}\right)$ be a bounded sequence in $H^{1}\left(\mathbb{R}^{n}\right)$ and let $p \in\left[2,2^{*}\right)$

- If the supports of v_{n} are localized in a bounded set, we can extract a convergent subsequence in L^{p}
- But in general this does not happen and the mass of v_{n} may split in several bumps moving towards infinity, or may flatten out
- Can we single out one of the bumps and follow it? yes!
- The trick is to smoothen out v_{n} (by frequency truncation) and find a point x_{n} where the smoothed v_{n} is large. Then a significant part of the L^{p} norm of v_{n} must be localized near x_{n}
- The translated sequence $\tau_{x_{n}} v_{n}=v\left(x-x_{n}\right)$ is bounded in H^{1}. We extract a subsequence which converges weakly to the first profile

$$
\tau_{x_{n}} v_{n} \rightharpoonup \psi^{1} \quad \text { in } \quad H^{1}, \quad \psi^{1} \neq 0
$$

- Define the remainder $R_{n}^{1}=v_{n}-\psi^{1}\left(x+x_{n}\right)$
- If $\left\|R_{n}^{1}\right\|_{L^{p}} \rightarrow 0$ we stop. If not, we iterate taking R_{n}^{1} as the new sequence v_{n} and obtaining a second sequence x_{n}^{2} and a second profile ψ^{2}, and so on
Conclusion: for every J we can find $\psi^{1}, \ldots, \psi^{J} \in H^{1}$ and sequences $\left(x_{n}^{1}\right), \ldots,\left(x_{n}^{J}\right)$ such that $\left|x_{n}^{j}-x_{n}^{k}\right| \rightarrow+\infty$ if $j \neq k$ and

$$
\begin{gathered}
v_{n}=\sum_{j=1}^{J} \psi^{j}\left(x-x_{n}^{j}\right)+R_{n}^{J} \\
\lim _{J \rightarrow+\infty} \lim _{n \rightarrow+\infty}\left\|R_{n}^{J}\right\|_{L^{p}}=0 \\
\left\|v_{n}\right\|_{H^{1}}^{2}=\sum_{j=1}^{J}\left\|\psi^{j}\right\|_{H^{1}}^{2}+\left\|R_{n}^{J}\right\|_{H^{1}}^{2}+o(1) \text { as } n \rightarrow+\infty
\end{gathered}
$$

The property $\left|x_{n}^{j}-x_{n}^{k}\right| \rightarrow+\infty$ if $j \neq k$ is crucial and is called the orthogonality of the two-index sequence x_{n}^{j}. (It is also obvious: if $x_{n}^{j} \sim x_{n}^{k}$ the two bumps are running together and form a single bump)

The idea works also for the critical embedding $H^{1} \hookrightarrow L^{2^{*}}$, but then one must also account for concentration effects, and an additional scaling parameter is needed

Keraani's idea is to do the same for a sequence of solutions $e^{i t \Delta} \phi_{n}(x)$ of the linear Schrödinger equation. The embedding $H^{1} \hookrightarrow L^{p}$ is replaced by the Strichartz estimate $H^{1} \hookrightarrow L^{p} L^{r}$

To state the result for our problem we use the notations

- $\tau_{z} u(x)=u(x-z)$ the translation operator
- $A_{z}=\tau_{-z} A \tau_{z}$. For instance, if $A u=\partial_{x}\left(a(x) \partial_{x} u(x)\right)$ then

$$
A_{z} u=\partial_{x}\left(a(x+z) \partial_{x} u(x)\right)
$$

Assumptions on A_{z} for $z \rightarrow+\infty$ are asymtotic assumptions on the coefficients of A at spatial infinity

- A standard sequence $\left(x_{n}\right) \subset \mathbb{R}$ is such that either $x_{n} \rightarrow+\infty$, or $x_{n} \rightarrow-\infty$, or $x_{n}=0$ for all n

Abstract assumptions

For every $\psi \in H^{1}$, all real sequences $\left(x_{n}\right),\left(y_{n}\right),\left(s_{n}\right)$ and a $p \in(2, \infty)$
(1) $\left\|e^{i t A} \psi\right\|_{L^{\infty} H^{1}} \lesssim\|\psi\|_{H^{1}}$ and $\left|\left(A_{z} \psi, \psi\right)\right| \lesssim\|\psi\|_{H^{1}}^{2}$
(2) $\left(A_{x_{n}} \psi\right)$ is precompact in H^{-1}
(3) $\left(e^{i s_{n} A_{x_{n}}} \psi\right)$ is precompact in L^{p} and, for $s_{n}=\bar{s}$ constant, in H^{1}.
(9) if $\left|s_{n}\right| \rightarrow+\infty$ then $e^{i s_{n} A_{y_{n}}} \psi \rightharpoonup 0$ in H^{1} up to a subsequence

Theorem (First Profile)

Assume (1)-(2)-(3). Given any bounded sequence in $H^{1}(\mathbb{R})$ we can find a subsequence $\left(v_{n}\right), \psi \in H^{1}$, standard sequences $\left(x_{n}\right),\left(t_{n}\right) \subset \mathbb{R}$ s.t.
(1) $\tau_{-x_{n}} e^{-i t_{n} A} v_{n}=\psi+W_{n}$ with $W_{n} \rightharpoonup 0$ in H^{1}
(2) $\lim \sup \left\|e^{-i t A} v_{n}\right\|_{L^{\infty} L^{\infty}} \lesssim\|\psi\|_{L^{2}}^{1 / 2} \sup \left\|v_{n}\right\|_{H^{1}}^{1 / 2}$
(3) we have the asymptotic behaviours for $n \rightarrow+\infty$

- $\left\|v_{n}\right\|_{L^{2}}^{2}=\|\psi\|_{L^{2}}^{2}+\left\|W_{n}\right\|_{L^{2}}^{2}+o(1)$
- $\left(A v_{n}, v_{n}\right)_{L^{2}}=\left(A_{x_{n}} \psi, \psi\right)_{L^{2}}+\left(A_{x_{n}} W_{n}, W_{n}\right)_{L^{2}}+o(1)$
- $\left\|v_{n}\right\|_{L^{p}}^{p}=\left\|e^{i t_{n} A_{x_{n}}} \psi\right\|_{L^{p}}^{p}+\left\|e^{i t_{n} A_{x_{n}}} W_{n}\right\|_{L^{p}}^{p}+o(1)$.

Theorem (Profile decomposition)

Assume (1)-(2)-(3)-(4). Given any bounded sequence in H^{1} we can find a subsequence $\left(u_{n}\right)_{n \geq 1}$, and $\forall j \in \mathbb{N}$ we can find $\psi_{j} \in H^{1}$ and standard sequences $\left(t_{j}^{n}\right)_{n \geq 1},\left(x_{j}^{n}\right)_{n \geq 1}$ as follows. Writing $J \in \mathbb{N}$

$$
\begin{equation*}
u_{n}=\sum_{j=1}^{J} e^{i t_{j}^{n} A} \tau_{x_{j}^{n}} \psi_{j}+R_{J}^{n} \tag{4}
\end{equation*}
$$

(1) for all $j \neq k$ we have $\left|t_{j}^{n}-t_{k}^{n}\right|+\left|x_{j}^{n}-x_{k}^{n}\right| \rightarrow+\infty$
(2) $\lim \sup _{n}\left\|e^{-i t A} R_{J}^{n}\right\|_{L^{\infty} L^{\infty}} \rightarrow 0$
(3) for each J we have the asymptotic behaviours as $n \rightarrow+\infty$

$$
\begin{aligned}
& \text { - }\left\|u_{n}\right\|_{L^{2}}^{2}=\sum_{j=1}^{J}\left\|\psi_{j}\right\|_{L^{2}}^{2}+\left\|R_{J}^{n}\right\|_{L^{2}}^{2}+o(1) \\
& \text { - }\left(A u_{n}, u_{n}\right)_{L^{2}}=\sum_{j=1}^{J}\left(A \tau_{x_{j}^{n}} \psi_{j}, \tau_{x_{j}^{n}} \psi_{j}\right)_{L^{2}}+\left(A R_{J}^{n}, R_{J}^{n}\right)_{L^{2}}+o(1) \\
& \text { - }\left\|u_{n}\right\|_{L^{p}}^{p}=\sum_{j=1}^{J}\left\|e^{i t_{j}^{n}} A \tau_{x_{j}^{n}} \psi_{j}\right\|_{L^{p}}^{p}+\left\|R_{J}^{n}\right\|_{L^{p}}^{p}+o(1) .
\end{aligned}
$$

(9) if $\psi_{J}=0$ for some J then $\psi_{j}=0$ for all $j \geq J$

2: The critical solution

If $\phi \in H^{1}$ let $u(\phi)$ the unique solution of the nonlinear equation

$$
i u_{t}+A u=|u|^{\gamma-1} u, \quad u(0)=\phi
$$

with energy

$$
E(\phi)=(A u, u)_{L^{2}}+\frac{1}{\gamma+1}\|u\|_{L^{\gamma+1}}^{\gamma+1}
$$

Define the critical energy $E_{\text {crit }}$ as

$$
E_{c r i t}=\sup \left\{E>0: \forall \phi \in H^{1}, E(\phi)<E \Rightarrow u(\phi) \in L^{p} L^{r}\right\}
$$

Out goal: prove that $E_{\text {crit }}=\infty$
Assume by contradiction $E_{\text {crit }}<\infty$ and pick $\phi_{n} \in H^{1}$ such that

$$
E\left(\phi_{n}\right) \downarrow E_{\text {crit }} \quad \text { and } \quad u\left(\phi_{n}\right) \notin L^{p} L^{r} .
$$

We apply the profile decomposition

$$
\phi_{n}=\sum_{j=1}^{J} e^{i t_{j}^{n} A} \tau_{x_{j}^{n}} \psi_{j}+R_{J}^{n}
$$

In particular we have

$$
E_{c r i t}=\sum_{j=1}^{J} E\left(e^{i t_{j}^{n} A} \tau_{x_{j}^{n}} \psi_{j}\right)+E\left(R_{J}^{n}\right)+o(1)
$$

and hence

$$
\begin{equation*}
\infty>E_{c r i t} \geq \limsup _{n} \sum_{j=1}^{J} E\left(e^{i t_{j}^{n} A} \tau_{x_{j}^{n}} \psi_{j}\right) \tag{5}
\end{equation*}
$$

Theorem

There is at most one profile i.e. $J=1$, with $t_{1}^{n}=x_{1}^{n}=0$ and $E\left(\psi_{1}\right)=E_{\text {crit }}$. The corresponding solution $u\left(\psi_{1}\right) \notin L^{p} L^{r}$, and $\left\{u\left(\psi_{1}\right)(t): t \geq 0\right\}$ is precompact in H^{1}

The procedure is the following:

- Using the profiles ψ_{j} as data, construct an approximate solution of the nonlinear equation, which is close to $u\left(\phi_{n}\right)$
- Assume by contradiction $J \geq 2$; then $E\left(\psi_{j}\right)<E_{\text {crit }}$, hence the approximate solution is in $L^{p} L^{r}$ and scatters
- By the nonlinear perturbation property, also $u\left(\phi_{n}\right)$ scatters, giving a contradiction
- We deduce $J=1$ and hence $E\left(\psi_{1}\right)=E_{\text {crit }}$
- Compactness of the flow follows by applying the same profile decomposition to the bounded sequence $\left.u\left(\psi_{1}\right)\right|_{t_{n}}$ with $t_{n} \rightarrow \infty$

We try to perform also this step in an 'abstract' setting

Abstract assumptions B

The operator A satisfies

$$
\left\|e^{-i t A_{z}}-e^{-i t A}\right\|_{H^{1} \rightarrow H^{1}} \rightarrow 0 \quad \text { as } \quad z \rightarrow 0
$$

and if $x_{n} \rightarrow+\infty$ or $-\infty$ then

$$
\begin{gathered}
\left\|e^{i t \Delta}-e^{-i t A_{x_{n}}}\right\|_{H^{1} \rightarrow L^{p} L^{r}} \rightarrow 0 \\
\left\|\int_{0}^{t}\left(e^{i(t-s) \Delta}-e^{-i(t-s) A_{x_{n}}}\right) \cdot d s\right\|_{L^{q^{\prime}} L^{r^{\prime}} \rightarrow L^{p} L^{r}} \rightarrow 0
\end{gathered}
$$

In the following we write for brevity

$$
F(u)=|u|^{\gamma-1} u
$$

Recall the profile decomposition of ϕ_{n}

$$
\phi_{n}=\sum_{j=1}^{J} e^{i t_{j}^{n} A} \tau_{x_{j}^{n}} \psi_{j}+R_{J}^{n}
$$

To each profile ψ_{j} we associate a nonlinear solution, but the construction depends on the sequences. We will use each ψ_{j} as initial data 'at the point' $\left(t_{j}^{n}, x_{j}^{n}\right)$, thus we set

$$
U_{j}^{n}(t, x)=U_{j}\left(t-t_{j}^{n}, x-x_{j}^{n}\right)
$$

where each U_{j} is defined according to four possible cases:
Case 1: $t_{j}^{n}=x_{j}^{n}=0$ for all n. Then U_{j} is simply the solution with data ψ_{j} :

$$
U_{j}=u\left(\psi_{j}\right)
$$

Note that by orthogonality this case happens at most for one profile
Case 2: $t_{j}^{n} \rightarrow \pm \infty$ and $x_{j}^{n}=0$ for all n, e.g. $t_{j}^{n} \rightarrow+\infty$. Then we use ψ_{j} as 'data at infinity', i.e. as scattering data. We know that the wave operator at $-\infty$ exists for A, thus we can define U_{j} as the solution of

$$
i \partial_{t} u-A u=F(u), \quad \lim _{t \rightarrow-\infty}\left\|U_{j}(t)-e^{-i t A} \psi_{j}\right\|_{H^{1}}=0
$$

Case 3: $t_{j}^{n}=0$ for all n and $x_{j}^{n} \rightarrow \pm \infty$. We rely on the Abstract assumption B: for x large, $e^{-i t A} \simeq e^{i t \Delta}$. Thus we set U_{j} as the solution of

$$
i u_{t}+\Delta u=F(u), \quad u(0, x)=\psi_{j}
$$

Case 4: $t_{j}^{n} \rightarrow \pm \infty$ and $x_{j}^{n} \rightarrow \pm \infty$, e.g. $t_{j}^{n} \rightarrow+\infty$. As in Case 2, we use ψ_{j} as scattering data, but this time we use Δ instead of A in view of the Abstract assumption B since $\left|x_{j}^{n}\right| \rightarrow \infty$. Now U_{j} is the solution of

$$
i \partial_{t} u+\Delta u=F(u), \quad \lim _{t \rightarrow-\infty}\left\|U_{j}(t)-e^{-i t A} \psi_{j}\right\|_{H^{1}}=0
$$

If we plug $U_{j}^{n}(t, x)=U_{j}\left(t-t_{j}^{n}, x-x_{j}^{n}\right)$ in the equation we check that

$$
U_{j}^{n}(t, x)=e^{-i t A} \psi_{j}+i \int_{0}^{t} e^{-i(t-s) A} F\left(U_{j}^{n}(s, x)\right) d s+r_{j}^{n}
$$

and in all cases the error r_{j}^{n} satisfies

$$
\left\|r_{j}^{n}\right\|_{L^{p} L^{r}} \lesssim\left\|\psi_{j}\right\|_{H^{1}} \cdot o(1)
$$

The approximate solution is obtained by summing the U_{j}^{n} :

$$
W_{J}^{n}=\sum_{j=1}^{J} U_{j}^{n}
$$

We assume by contradiction that $J \geq 2$; then the H^{1} norm of ϕ_{n} must split between the profiles. Hence the profiles are subcritical, $U_{j}^{n} \in L^{p} L^{r}$, and

$$
W_{J}^{n} \in L^{p} L^{r} \quad \text { and scatters }
$$

Plugging W_{J}^{n} in the equation we get

$$
W_{J}^{n}=e^{-i t A} \phi_{n}+i \int_{0}^{t} e^{-i(t-s) A} F\left(W_{J}^{n}\right) d s+\rho_{J}^{n}
$$

where the error $\rho_{J}^{n}=$
$\sum_{j=1}^{J} r_{j}^{n}-e^{-i t A} R_{J}^{n}+i \int_{0}^{t} e^{-i(t-s) A}\left[\sum_{j=1}^{J} F\left(U_{j}^{n}\right)-F\left(\sum_{j=1}^{J} U_{j}^{n}\right)\right] d s$.
If we show that

$$
\left\|\rho_{J}^{n}\right\|_{L^{p} L^{r}} \rightarrow 0
$$

then by nonlinear perturbation $u\left(\phi_{n}\right) \in L^{p} L^{r} \Longrightarrow$ contradiction

The terms r_{j}^{n} and $e^{-i t A} R_{J}^{n}$ tend to o in $L^{p} L^{r}$ trivially by construction
For the last term we have by Strichartz

$$
\begin{gathered}
\left\|\int_{0}^{t} e^{-i(t-s) A}\left[\sum_{j=1}^{J} F\left(U_{j}^{n}\right)-F\left(\sum_{j=1}^{J} U_{j}^{n}\right)\right] d s\right\|_{L^{p} L^{r}} \\
\lesssim\left\|\sum_{j=1}^{J} F\left(U_{j}^{n}\right)-F\left(\sum_{j=1}^{J} U_{j}^{n}\right)\right\|_{L^{q^{\prime} L^{r^{\prime}}}} \lesssim \sum_{j \neq k}\left\|\left|U_{j}^{n}\right|^{\beta-1} U_{k}^{n}\right\|_{L^{q^{\prime}} L^{r^{\prime}}}
\end{gathered}
$$

Also this term tends to 0 , using the orthogonality

$$
\left|t_{j}^{n}-t_{k}^{n}\right|+\left|x_{j}^{n}-x_{k}^{n}\right| \rightarrow+\infty
$$

This is an exercise: if $f, g \in L^{2 a}, a<\infty$, and $\left|x_{n}-y_{n}\right| \rightarrow \infty$, then

$$
\left\|f\left(x-x_{n}\right) g\left(x-y_{n}\right)\right\|_{L^{a}} \rightarrow 0
$$

by density of C_{c} in $L^{2 a}$

3: Rigidity and scattering

Assuming $E_{\text {crit }}<\infty$, we have constructed a solution $u_{\text {crit }}$ of critical energy with precompact flow in H^{1}

Compactness implies easily localization: $\forall \epsilon>0 \exists R$ such that for all t

$$
\left\|u_{\text {crit }}(t)\right\|_{H^{1}(|x| \geq R)}+\left\|u_{\text {crit }}(t)\right\|_{L^{\gamma+1}(|x| \geq R)} \leq \epsilon
$$

To reach the final contradiction we rely on the explicit form of the equation, via a virial inequality of the form

$$
\partial_{t}^{2} \int \chi_{R}(x)\left|u_{\text {crit }}(t, x)\right|^{2} d x \geq C E_{\text {crit }}
$$

where $\chi_{R}=x^{2}$ for $|x| \leq R$ and vanishes for $|x| \geq 2 R$, which is absurd
Only in this final step the smallness assumptions on $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$ and the repulsivity condition $x V^{\prime} \leq 0$ are used

