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What is scattering?

Scattering theory compares the asymptotic behaviour of the
F(t) and D(t) of two different but ‘close’ evolution equations,

, in some Banach space of initial data X (under the assumption
that the two flows are globally and uniquely defined)

Example

F(t)¢ = e"®¢ = u(t, ) is the solution on R; x R” of
iug + Au =0, u(0,7)=¢(zx) € H'(R") = X
D(t)p = etA=V)yh = v(t, z) is the solution of
vy +Av=V(z)y, v(0,z)=1y(x)eHR") =X

What is the relation between the of the two flows?
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Writing 0x (1) to mean ||ox (1)||x — 0, we aim at expansions like:

F(t)p = D(t)p+ + ox(1) as t— +oo (1)
More precisely, given ¢ € X, can we find ¢, »_ € X such that (1) holds?
Conversely, we can try to prove the expansions

D(t)y = F(t)yy +ox(1) as t— oo ()
but the symmetry is only formal, indeed in typical situations:

F(t) is a ‘reference’ flow which is known in detail. Thus (1) is easier to solve
(it often reduces to a problem with small data at time infinity) and is called
the problem of the . The is the

map W, : ¢ = ¢,

D(t) is a ‘perturbed’ flow. Thus (2) contains more information and is harder
to prove than (1). When a solution D(t)) satisfies (2) we say it
When all solutions scatter we say that holds
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Scattering theory is very extensive

In classical (F(t) = eits D(t) = eit(A=V)
In modern :
o F(t) =e”
e D(t) = solution flow of NLS i1y + Au = +|u|"tuon R x R”
+ = equation, — = equation

If € H' and the equation is defocusing, D(t)¢ is well defined for

1<~y <vm :fl—l—(n e (v = oo forn = 1,2)

and scattering occurs in the (Ginibre-Velo ~1985)
Y2 <Y <ym, =14y

The most difficult energy critical case ¥ = 7yg1 inn > 3 was solved by
Bourgain, Tao, Visan, Ryckman, CKSTT 1999-2005
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Of course scattering is not restricted to linear Schrodinger/NLS
Other settings:

Obstacle scattering (exterior domains)
Wave, Klein-Gordon, Dirac, Maxwell and other equations
Equations on manifolds

Scattering-like behaviour of solutions in compact settings (cubic
1DNLS on T: Kappeler-Schaad-Topalov 2017)

Stationary scattering fot the Helmholtz equation
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Main problem

| am interested in scattering for the flows
o F(t)¢ = e~ where A is a selfadjoint operator on L?(R™) (elliptic
operator). This is the solution of the linear problem

iug — Au=10, u(0,z)=2¢
e D(t)¢ solution of
iuy — Au = +|u|"ru,  w(0,z) = ¢

Necessary ingredients are

@ A good understanding of the of e 74

@ Agood theory for the nonlinear equation
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Dispersion for linear flows

The model flow is €2, In decreasing order of strength:

° p € [2.00]

le* 20l S 172 (1@l

(] b, T € [27 OO]
ol S follns O<B<E-3 s=j-2-
and the inhomogeneous variants for iu; + Au = F(t, x)
°
[(z) =27 | D[22 g 212 S (1012
plus the inhomogeneous variants
9/40
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Dispersion for A = —A + V (z)

For the case of a potential Yajima 19952002 developed a very general
theory based on a property of the wave operator W/

: (P, = projection on the ac spectrum of A — V)
W*a(t, A)W = P,a(t,A—-V)
Under suitable decay, smoothness and spectral assumptions on V'
W, W+ . LP(R") — LP(R"™) are bounded
This gives, like in the free case
1Pace™ V10 S 16172 (|

and Strichartz estimates follow
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@ In 1D Yajima'’s result was improved by Weder, D.~Fanelli (see below)
e Goldberg-Visan 2006: pointwise estimates fail if V € C"z" ~(R")

@ Strichartz estimates alone hold under weaker assumptions on the
potential

@ Beceanu-Goldberg 2012: Strichartz estimates in 3D for potentials of
Kato class and small negative part

@ Burg-Planchon-Stalker-TZadeh 2004: Strichartz estimatesinn > 3
for repulsive potential of critical decay ~ |z| ™2
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Dispersion for A = (i0, + b(x))? + V()

@ For potentials, i.e. with first order terms, pointwise
estimates are an open problem (some results for the 3D wave equation
Cuccagna-Schirmer 1999, D.-Fanelli 2006, Cacciafesta-D. 2013)

@ Strichartz estimates hold for potentials of almost critical decay and
minimal regularity D.-Fanelli 2008, Erdogan-Goldberg-Schlag 2009
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Dispersion for A elliptic

Fully variable coefficients
Ap = —0p(a(x)0pp) + V(x), Oy = 0y + 1b(2)

@ Strichartz estimates for e ~**4 hold under various assumptions
Staffilani-Tataru 2002, Robbiano-Zuily 2005, Bouclet-Tzvetkov 2008

@ Tataru 2008: sufficient conditions are (¢ < 1, § > 0)
la = I+ (@) (|a'| +[b]) + (2)?(|a"] + /| +|V]) < ela)™

@ Cassano-D.2015: V can be taken large, repulsive, with almost critical
decay

e For a(x) the estimates fail (trapped energy).
are necessary
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D.-Fanelli 2006: L” boundedness of the wave operator for
A=—-0,a(x)0, +b(x)0, + V(z), a(r)>c>0

provided

Assumption (A)

a(x) >co >0
(@)(ja'| +[b]) € LA(R),  (@)*(|V|+|a"] +[¥]) € L'(R)

In particular, pointwise decay and Strichartz estimates hold

Burg-Planchon 2004: Strichartz estimates hold for a € BV (but they
requireb =V =0)

Q: what about —0,.a(z)0, + V(x)? | can do this for odd solutions
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Well posedness of the NLS

If 4 satisfies Strichartz estimates, or a suitable subset, the nonlinear
theory is essentially identical to the free case. We consider the problem

iug — Au = [u]" tu,  u(0,7) = ¢(z)
or rather its integral version
u(t,z) = e ) — zfot e~ =) A |7 uds @3)
We fix the following (standard) indices:

201 . v+l g= 2(y*-1)

P== 72-27-3
Note in particular the Strichartz estimates
le™™ @l SNl | Jo e =9AG(s)ds )| porr S |Gl o e
since (1", ¢'v) = (p,7) we have also [|[u[" " ul| o 1 = [Jul|7p e
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Denote by D(t)1) the solution to (3), with 1) € H*
We say that D(t)1) at =00 if for some 1, ,1)_ € H" one has

1Dt — e py||pn — 0 as t — oo

We say that the if forany ¢ € H?* there exist
¢4, ¢_ € H' suchthat

le ¢ — D)+ 1 — 0 as t — Foo

Theorem

Let Assumption (A) be satisfied, and v > 5. Then for any 1) € H' Problem
(3) has a unique global solution u € C'(R; H'). Moreover,

e ifu € LPL" then u scatters
o if ||1|| g is sufficiently small then u scatters

@ the wave operator for A exists.
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An essential property for the construction of a solution with critical energy:
Theorem (Nonlinear perturbation)

Let Assumption (A) be satisfied, v > 5.
For any M > 0 there exist €, C' > 0 such that the following holds. Let
||l < M and |G (¢, x)||prr < €. Suppose v(t,x) € LPL" satisfies

v(t,x) = e %Ay — zfo =)y~ tuds 4+ G(t, x).
Then the solution of
u(t,z) = e 44y — zfot e~ =) A |7 uds

belongs to L”L", hence scatters, and ||u — v||zprr < Ce
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Scattering: classical approaches

In order to prove scattering of a global solution to
iy — Au = |u]"

there exist several i.e. sufficient conditions

® : a bound of the form

y+1
/ / [u] dxdt < 0o
RJrn  |7]

which can be proved by multiplier methods
One deduces that ||u(t)||z« — 0ast — +o00 and scattering follows
Classical approach for n > 3 by Lin-Strauss, Ginibre-Velo

Nakanishi modifies this method in dimensionn = 1, 2 (time
dependent Morawetz estimate)
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° , or Quadratic Morawetz estimate. A more efficient
approach popularized by CKSTT (but used also by Ginibre and Velo)
based on the bound

// ult, 2)” ]u(i 9" drdydt < oo
Rn xRn |z —y|

This method works in dimensionn > 4, and alsoforn = 3 by a
suitable modification

We used it in Cassano-D. 2015 to prove scattering for the intercritical
defocusing NLS
iug — Au = |u|""tu

with fully variable coefficients in dimensionn > 3
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The Kenig-Merle approach

We follow a different approach, introduced by Kenig-Merle 2006 to study
the radial, energy critical, focusing NLS

The method is flexible and has been applied and improved in a large
number of works both on focusing and defocusing NLS (Holmer-Roudenko
2008, Duyckaerts—-Holmer-Roudenko 2008, Fang-Xie-Cazenave 2011) and on
other equations (wave, Klein-Gordon, Yang-Mills, wave maps)

For NLS with potentials translation invariance is broken. This difficulty was
overcome in
@ Hong 2016: cubic focusing 3DNLS with a short range potential
@ Banica-Visciglia 2016: intercritical, defocusing 1DNLS with ¢ potential
@ Lafontaine 2016: intercritical, defocusing 1DNLS with repulsive
potential
@ lkeda 2021: intercritical, focusing 1DNLS with repulsive potential
@ Dinh 2021: 3DNLS with potential

Banff 2022-07-12 20/40



In particular in Banica-Visciglia 2016 an effort was done to streamline the
KM technique and make it applicable to more general equations

We pursue their idea towards a black-box approach and an ‘abstract’ profile
decomposition method
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Recall Assumption (A) implying Strichartz estimates: a(z) > ¢o > 0, and

(@)(Ja'| + o) € L*R),  (@)*([V]+]a"] +[V]) € L'(R)
(This is work in progress and the assumptions can certainly be improved!)
Theorem (D.-Zanni)

Let v > 5. Suppose Assumption (A) is satisfied. There exist € > ( such that
the following holds. If V' > 0, zV'(z) <0, (x)(|V| + |V']) < oo and

(@)*(la = 1| +|d'| + |a”"| + [a"]) <€
then asymptotic completeness in H' holds for the equation
iy — Au = |[u]""

where Au = —0ya(z)0pu + V (z)u.
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Outline of the KM method

Recall the choice

y2—2v—3
which implies |||u]" " u|| o ;v = ||ul|]» .- and the Strichartz estimates
le™ ollmer S Nollar, | Jo e DG (s)ds ] borr S NGl 1

@ Linear profile decomposition
@ Construction of a critical solution

@ Rigidity and scattering
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1: Linear profiles

The idea of profile decomposition was initally developed for the NLWE
Gerard 1998, Bahouri-Gerard 1999 and then extended to the NLS Merle-Vega
1998, Keraani 2001. Its origin might be traced back to the
concentration-compactness principle of Lions 1984

: let (v,,) be a bounded sequence in H'(R") and letp € [2,2*)

@ If the supports of v,, are localized in a bounded set, we can extract a
convergent subsequence in L?

@ Butin general this does not happen and the mass of v,, may split in
several bumps moving towards infinity, or may flatten out

@ Can we single out one of the bumps and it? yes!

@ The trick is to smoothen out v,, (by frequency truncation) and find a
point z,, where the smoothed v, is large. Then a significant part of
the L? norm of v,, must be localized near z,,
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@ The translated sequence 7., v, = v(x — xn) is bounded in H'. we
extract a subsequence which converges weakly to the first

Txnvn4¢l in H, ¢17é0

@ Define the remainder R}L =v, — Y (z +z,)

o If | RL||L» — O we stop. If not, we taking R} as the new
sequence v,, and obtaining a second sequence x% and a second
profile ¢/2, and so on

: for every J we can find ¢!, . .., 0/ € H' and sequences
(xl),..., (x)) suchthat |27 — 2%| — +ooif j # k and

Un = 3‘]:1 77/)](1’ - ZL‘%) + Ri?
. . J .
Jim  lim Rl =0

[onll7n = Z}‘]:1 N107112: + | R )20 +0(1) as n— 400
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The property |2) — x%| — +o0if j # ks and is called the
of the two-index sequence 2/ . (It is also obvious: if 2/ ~ x*
the two bumps are running together and form a single bump)

The idea works also for the critical embedding H' — LQ*, but then one

must also account for effects, and an additional scaling
parameter is needed

Keraani's idea is to do the same for a sequence of solutions e*2 ¢, (z) of

the linear Schrédinger equation. The embedding H' < LP is replaced by
the Strichartz estimate H' < LPL"
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To state the result for our problem we use the notations
o 7,u(x) = u(x — z) the translation operator
o A, =7_,Ar,.. Forinstance, if Au = 0,(a(z)0,u(zx)) then

Au = 0y(a(z + 2)0u(x))

Assumptions on A, for z — +00 are asymtotic assumptions on the
coefficients of A at spatial infinity

°A () C Ris such that either 2, — +00, or
T, — —oo,orx, = 0foralln
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Abstract assumptions

For every ¢» € H', all real sequences (,,), (Yn), (5,) anda p € (2, 00)

Q [l Y| S Y]l and [(A, )| S 9] 3

Q (A, 1) is precompactin H~*

Q (e**rAmnq)) is precompact in LP and, for s,, = 5 constant, in H'.
Q if|s,| — +o0then e®*nAumqh — 0in H' up to a subsequence
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Theorem (First Profile)

Assume (1)-(2)-(3). Given any bounded sequence in HI(R) we can find a
subsequence (v,,), 1 € H', standard sequences (z,,), (t,) C Rs.t.

Q@ 7, e iy, =+ W, withW, — 0in H'

Q limsup |le ™40, || g~ < ||¢||2/22 sup ||Un||1/2

© we have the asymptotic behaviours for n — 400
o [[vnllz = l[Ul72 + [Wall72 + o(1)
o (Auvn,vn)r2 = (Az, ¥, ) L2 + (Ag, Wi, Wi 2 + 0(1)
© an\lﬁp = HeztnAznw”Iip + Hezt"Az" Wn”gp + o(1).
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Theorem (Profile decomposition)

Assume (1)-(2)~(3)-(4). Given any bounded sequence inH ' we can find a
subsequence (uy,),>1, and Vj € N we can find ¢; € H' and standard
sequences (t7 )n>1, (2} )n>1 as follows. Writing J € N

it A
Uiy = 23721 " Tn; + RY, (4)

@ forall j # k we have [t} — t}| + |2} — 2} — 400
Q limsup, |le 4R peore — 0
© for each J we have the asymptotic behaviours as n — 400

o [lunll7. =35 H%HLz + [|R}]I7 2 + o(1)

o (A“mun)B = Z (ATw}LwJ7Tx"¢])L2+<AR9aRn)L2+0(1)
A

o [lunllf, = S0y [l Ton il + 1RG0 + o(1).

Q ify; = 0forsome J then); = Oforall j > J
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2: The critical solution

If ¢ € H' let u(¢) the unique solution of the nonlinear equation
iug + Au = |[u]""tu,  w(0) = ¢

with energy

1
s

1
E(¢) = (Au,u)r2 +
(6) = (Au,u)se + —
Define the critical energy E.,;; as

E.i=sup{E >0:Y¢ € H', E(¢) < E = u(¢) € LPL"}.

Assume by contradiction E,,;; < 0o and pick ¢,, € H* such that

E(¢n) 4 Eeir and u(¢,) & LPL".
We apply the profile decomposition

(bn J 16 7 Tzn%+Rn
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In particular we have

Ecrit = ] E(eit?ATx?wj> + E(RT}) + O<1>

j=1
and hence

J
00 > F.iy > limsup Z E(eZtﬂ'ATx?%).

Theorem

There is at most one profile i.e. J = 1, with t} = x = 0 and
E(¢1) = E_.;1. The corresponding solution u(1) ¢ LPL", and
{u(11)(t) : t > 0} is precompact in H!
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The procedure is the following:

@ Using the profiles @Z)j as data, construct an approximate solution of
the nonlinear equation, which is close to u(¢,,)

@ Assume by contradiction JJ > 2;then E(¢);) < E¢.t, hence the
approximate solution is in LPL" and scatters

@ By the nonlinear perturbation property, also u(qﬁn) scatters, giving a
contradiction

@ Wededuce J = 1 and hence E(¢) = Eit

@ Compactness of the flow follows by applying the same profile
decomposition to the bounded sequence u(¢1 )|y, with ¢, — 00
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We try to perform also this step in an ‘abstract’ setting
Abstract assumptions B

The operator A satisfies

—itA,

lle —e " gy =0 as z—0

and if z,, — +00 or —o0 then
||€z‘tA .

e_itAx" ||H1—>LPL’" — 0

| fot(ei(tfs)A — e =) en ) ds|| g o — 0

In the following we write for brevity

F(u) = |u|"tu
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Recall the profile decomposition of ¢,
J o ithA
Pn =251 € Tanth; + R
To each profile ¢j we associate a nonlinear solution, but the construction

depends on the sequences. We will use each 7); as initial data ‘at the point’

(t7,27), thus we set
Uit z) = Ut —t}, 2 — a})
where each Uj is defined according to

Case 1: t? = x? = 0 for all n. Then U is simply the solution with data v);:
U; = u(y;)

Note that by orthogonality this case happens at most for one profile

Case 2: t? — +o00 and ZB;L = (O foralln, eg. t? — 4-00. Then we use 1);

as ‘data at infinity’, i.e. as scattering data. We know that the wave operator
at —oo exists for A, thus we can define Uj as the solution of

O — Au=F(uw),  lim_[|U;(t) — ¢ oyl = 0.
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Case3: ¢ = (O forallnand Ty — +00. We rely on the Abstract

assumption B: for x large, e A ~ A Thys we set U as the solution of
J

iuy + Au = F(u), u(0,z) = (05

Case 4: t? — Fo00 and x"} — +o00, e8. t? — —400. As in Case 2, we use
1); as scattering data, but this time we use A instead of A in view of the
Abstract assumption B since ]91:?] — 00. Now Uj is the solution of

i0u + Au = F(u), Jim |U;(t) — e Aap;|| g = 0.
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If we plug U7 (¢, x) = U;(t — t}, 2 — x7) in the equation we check that
Ur(t,x) = e "p; + i IN e =DAP U (s, 2))ds + 7
and in all cases the error 7’;-1 satisfies

175 oz S sl - o(1)

The approximate solution is obtained by summing the U]”:
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We that J > 2; then the H'! norm of ¢,, must split
between the profiles. Hence the profiles are subcritical, U}‘ € LPL", and

W3 € LPL" and scatters
Plugging W7 in the equation we get
Wp = e ¢, +i fot e E=AR(W M ds + ph

where the error p’; =

n —1 n - et _i(t—s n n
If we show that
1ol o — 0,

then by nonlinear perturbation u(¢,) € LPL" —
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The terms 77/ and e*itARﬁ tend to o in LPL" trivially by construction

For the last term we have by Strichartz

| fle [ S FUP) — F(Z), U;L)} ds|| o

SIE FUR) = F(Si2 U e o S g NUF 1P UR N o e

Also this term tends to 0, using the orthogonality
|t —tp] + |2 — 2| — +oo
This is an exercise: if f, g € L??, a < oo,and |z, — y,| — 00, then

1 f(z — 2zn)g(z — yn)|la — O

by density of C., in L%
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3: Rigidity and scattering

Assuming E.,.;; < 00, we have constructed a solution w,.;; of critical
energy with precompact flow in H*

Compactness implies easily : Ve > 0 dR such that for all ¢
terit (O 1 (212 ) + [terie )| v (ejzr) < €

To reach the final contradiction we rely on the explicit form of the equation,
viaa of the form

5 / (@) terie(t, )2z > C B

where Yz = x° for |z| < R and vanishes for |z| > 2R, which is absurd

Only in this final step the smallness assumptions on a’, a”, a’”’ and the
repulsivity condition 2V’ < 0 are used
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