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What is scattering?

Scattering theory compares the asymptotic behaviour of the solution flows
F (t) andD(t) of two different but ‘close’ evolution equations, linear or
nonlinear, in some Banach space of initial dataX (under the assumption
that the two flows are globally and uniquely defined)

Example

F (t)φ = eit∆φ = u(t, x) is the solution onRt × Rn
x of

iut + ∆u = 0, u(0, x) = φ(x) ∈ H1(Rn) = X

D(t)ψ = eit(∆−V )ψ = v(t, x) is the solution of

ivt + ∆v = V (x)v, v(0, x) = ψ(x) ∈ H1(Rn) = X

What is the relation between the global dynamics of the two flows?
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Writing oX(1) to mean ‖oX(1)‖X → 0, we aim at expansions like:

F (t)φ = D(t)φ± + oX(1) as t → ±∞ (1)

More precisely, given φ ∈ X , can we find φ+, φ− ∈ X such that (1) holds?

Conversely, we can try to prove the expansions

D(t)ψ = F (t)ψ± + oX(1) as t → ±∞ (2)

but the symmetry is only formal, indeed in typical situations:

F (t) is a ‘reference’ flow which is known in detail. Thus (1) is easier to solve
(it often reduces to a problem with small data at time infinity) and is called
the problem of the existence of the wave operator. The wave operator is the
mapW+ : φ 7→ φ+

D(t) is a ‘perturbed’ flow. Thus (2) contains more information and is harder
to prove than (1). When a solutionD(t)ψ satisfies (2) we say it scatters.
When all solutions scatter we say that asymptotic completeness holds
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Scattering theory is very extensive
In classical potential scattering: F (t) = eit∆,D(t) = eit(∆−V )

In modern nonlinear scattering:

F (t) = eit∆

D(t) = solution flow of NLS iut + ∆u = ±|u|γ−1u onR × Rn

+ = defocusing equation, − = focusing equation

If φ ∈ H1 and the equation is defocusing,D(t)φ is well defined for

1 ≤ γ ≤ γH1 := 1 + 4
(n−2)+

(γH1 = ∞ for n = 1, 2)

and scattering occurs in the intercritical range (Ginibre–Velo ∼1985)

γL2 < γ < γH1 , γL2 := 1 + 4
n

The most difficult energy critical case γ = γH1 in n ≥ 3 was solved by
Bourgain, Tao, Visan, Ryckman, CKSTT 1999–2005
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Of course scattering is not restricted to linear Schrödinger/NLS
Other settings:

Obstacle scattering (exterior domains)

Wave, Klein–Gordon, Dirac, Maxwell and other equations

Equations on manifolds

Scattering–like behaviour of solutions in compact settings (cubic
1DNLS on T: Kappeler–Schaad–Topalov 2017)
Stationary scattering fot the Helmholtz equation
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Main problem

I am interested in scattering for the flows

F (t)φ = e−itA whereA is a selfadjoint operator on L2(Rn) (elliptic
operator). This is the solution of the linear problem

iut − Au = 0, u(0, x) = φ

D(t)φ solution of

iut − Au = ±|u|γ−1u, u(0, x) = φ

Necessary ingredients are
1 A good understanding of the dispersive properties of e−itA

2 A good well posedness theory for the nonlinear equation
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Dispersion for linear flows

The model flow is eit∆. In decreasing order of strength:

Pointwise decay p ∈ [2.∞]

‖eit∆φ‖Lp . |t|
n
p

− n
2 ‖φ‖Lp′

Strichartz–Sobolev estimates p, r ∈ [2,∞]

‖eit∆φ‖LpLr . ‖φ‖Ḣs , 0 < n
r

≤ n
2 − 2

p
, s = n

2 − 2
p

− n
r

and the inhomogeneous variants for iut + ∆u = F (t, x)
Smoothing estimates

‖〈x〉−1/2−|D|1/2eit∆φ‖L2L2 . ‖φ‖L2

plus the inhomogeneous variants
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Dispersion forA = −∆ + V (x)
For the case of a potential Yajima 1995–2002 developed a very general
theory based on a property of the wave operatorW

Intertwining property: (Pac = projection on the ac spectrum of ∆ − V )

W ∗a(t,∆)W = Paca(t,∆ − V )

Under suitable decay, smoothness and spectral assumptions on V

W,W ∗ : Lp(Rn) → Lp(Rn) are bounded

This gives, like in the free case

‖Pace
it(∆−V )φ‖Lp . |t|

n
p

− n
2 ‖φ‖Lp′

and Strichartz estimates follow
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In 1D Yajima’s result was improved by Weder, D.–Fanelli (see below)

Goldberg–Visan 2006: pointwise estimates fail if V ∈ C
n−3

2 −(Rn)
Strichartz estimates alone hold under weaker assumptions on the
potential

Beceanu–Goldberg 2012: Strichartz estimates in 3D for potentials of
Kato class and small negative part

Burq–Planchon–Stalker-TZadeh 2004: Strichartz estimates in n ≥ 3
for repulsive potential of critical decay ∼ |x|−2
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Dispersion forA = (i∂x + b(x))2 + V (x)

For electromagnetic potentials, i.e. with first order terms, pointwise
estimates are an open problem (some results for the 3D wave equation
Cuccagna–Schirmer 1999, D.–Fanelli 2006, Cacciafesta–D. 2013)

Strichartz estimates hold for potentials of almost critical decay and
minimal regularity D.–Fanelli 2008, Erdogan–Goldberg–Schlag 2009
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Dispersion forA elliptic

Fully variable coefficients

Aφ = −∂b(a(x)∂bφ) + V (x), ∂b = ∂x + ib(x)

Strichartz estimates for e−itA hold under various assumptions
Staffilani-Tataru 2002, Robbiano-Zuily 2005, Bouclet-Tzvetkov 2008

Tataru 2008: sufficient conditions are (ε � 1, δ > 0)

|a− I| + 〈x〉(|a′| + |b|) + 〈x〉2(|a′′| + |b′| + |V |) ≤ ε〈x〉−δ

Cassano–D. 2015: V can be taken large, repulsive, with almost critical
decay

For large a(x) the estimates fail (trapped energy). Nontrapping
conditions are necessary
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Dispersion in 1D

D.–Fanelli 2006: Lp boundedness of the wave operator for

A = −∂xa(x)∂x + b(x)∂x + V (x), a(x) ≥ c0 > 0

provided

Assumption (A)

a(x) ≥ c0 > 0

〈x〉(|a′| + |b|) ∈ L2(R), 〈x〉2(|V | + |a′′| + |b′|) ∈ L1(R)

In particular, pointwise decay and Strichartz estimates hold

Burq–Planchon 2004: Strichartz estimates hold for a ∈ BV (but they
require b = V = 0)

Q: what about −∂xa(x)∂x + V (x)? I can do this for odd solutions
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Well posedness of the NLS

If e−itA satisfies Strichartz estimates, or a suitable subset, the nonlinear
theory is essentially identical to the free case. We consider the problem

iut − Au = |u|γ−1u, u(0, x) = φ(x)

or rather its integral version

u(t, x) = e−itAψ − i
´ t

0 e
−i(t−s)A|u|γ−1uds (3)

We fix the following (standard) indices:

p = 2(γ2−1)
γ+3 r = γ + 1 q = 2(γ2−1)

γ2−2γ−3

Note in particular the Strichartz estimates

‖e−itAφ‖LpLr . ‖φ‖H1 , ‖
´ t

0 e
−i(t−s)AG(s)ds‖LpLr . ‖G‖Lq′ Lr′

Since (r′γ, q′γ) = (p, r) we have also ‖|u|γ−1u‖Lq′ Lr′ = ‖u‖γ
LpLr
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Denote byD(t)ψ the solution to (3), with ψ ∈ H1

We say thatD(t)ψ scatters at ±∞ if for some ψ+, ψ− ∈ H1 one has

‖D(t)ψ − e−itAψ±‖H1 → 0 as t → ±∞

We say that the wave operator forA exists if for any φ ∈ H1 there exist
φ+, φ− ∈ H1 such that

‖e−itAφ−D(t)φ±‖H1 → 0 as t → ±∞

Theorem

Let Assumption (A) be satisfied, and γ > 5. Then for any ψ ∈ H1 Problem
(3) has a unique global solution u ∈ C(R;H1). Moreover,

if u ∈ LpLr then u scatters

if ‖ψ‖H1 is sufficiently small then u scatters

the wave operator forA exists.
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An essential property for the construction of a solution with critical energy:

Theorem (Nonlinear perturbation)

Let Assumption (A) be satisfied, γ > 5.
For anyM > 0 there exist ε, C > 0 such that the following holds. Let
‖ψ‖H1 < M and ‖G(t, x)‖LpLr < ε. Suppose v(t, x) ∈ LpLr satisfies

v(t, x) = e−itAψ − i
´ t

0 e
−i(t−s)A|v|γ−1vds+G(t, x).

Then the solution of

u(t, x) = e−itAψ − i
´ t

0 e
−i(t−s)A|u|γ−1uds

belongs to LpLr , hence scatters, and ‖u− v‖LpLr ≤ Cε
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Scattering: classical approaches

In order to prove scattering of a global solution to

iut − Au = |u|γ−1u

there exist several scattering criteria i.e. sufficient conditions

Morawetz estimate: a bound of the form
ˆ
R

ˆ
Rn

|u|γ+1

|x|
dxdt < ∞

which can be proved by multiplier methods
One deduces that ‖u(t)‖Lq → 0 as t → +∞ and scattering follows
Classical approach for n ≥ 3 by Lin–Strauss, Ginibre–Velo
Nakanishi modifies this method in dimension n = 1, 2 (time
dependent Morawetz estimate)
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Bilinear smoothing, or Quadratic Morawetz estimate. A more efficient
approach popularized by CKSTT (but used also by Ginibre and Velo)
based on the bound

ˆ ˆ
Rn×Rn

|u(t, x)|2|u(t, y)|2
|x− y|3

dxdydt < ∞

This method works in dimension n ≥ 4, and also for n = 3 by a
suitable modification

We used it in Cassano–D. 2015 to prove scattering for the intercritical
defocusing NLS

iut − Au = |u|γ−1u

with fully variable coefficients in dimension n ≥ 3
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The Kenig–Merle approach

We follow a different approach, introduced by Kenig–Merle 2006 to study
the radial, energy critical, focusing NLS

The method is flexible and has been applied and improved in a large
number of works both on focusing and defocusing NLS (Holmer–Roudenko
2008, Duyckaerts–Holmer–Roudenko 2008, Fang–Xie–Cazenave 2011) and on
other equations (wave, Klein–Gordon, Yang–Mills, wave maps)

For NLS with potentials translation invariance is broken. This difficulty was
overcome in

Hong 2016: cubic focusing 3DNLS with a short range potential
Banica–Visciglia 2016: intercritical, defocusing 1DNLS with δ potential
Lafontaine 2016: intercritical, defocusing 1DNLS with repulsive
potential
Ikeda 2021: intercritical, focusing 1DNLS with repulsive potential
Dinh 2021: 3DNLS with potential
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In particular in Banica–Visciglia 2016 an effort was done to streamline the
KM technique and make it applicable to more general equations

We pursue their idea towards a black–box approach and an ‘abstract’ profile
decomposition method
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Main result

Recall Assumption (A) implying Strichartz estimates: a(x) ≥ c0 > 0, and

〈x〉(|a′| + |b|) ∈ L2(R), 〈x〉2(|V | + |a′′| + |b′|) ∈ L1(R)

(This is work in progress and the assumptions can certainly be improved!)

Theorem (D.–Zanni)

Let γ > 5. Suppose Assumption (A) is satisfied. There exist ε > 0 such that
the following holds. If V ≥ 0, xV ′(x) ≤ 0, 〈x〉(|V | + |V ′|) < ∞ and

〈x〉2(|a− 1| + |a′| + |a′′| + |a′′′|) < ε

then asymptotic completeness inH1 holds for the equation

iut − Au = |u|γ−1u

whereAu = −∂ba(x)∂bu+ V (x)u.
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Outline of the KM method

Recall the choice

p = 2(γ2−1)
γ+3 r = γ + 1 q = 2(γ2−1)

γ2−2γ−3

which implies ‖|u|γ−1u‖Lq′ Lr′ = ‖u‖γ
LpLr and the Strichartz estimates

‖e−itAφ‖LpLr . ‖φ‖H1 , ‖
´ t

0 e
−i(t−s)AG(s)ds‖LpLr . ‖G‖Lq′ Lr′

Steps:
1 Linear profile decomposition
2 Construction of a critical solution
3 Rigidity and scattering
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1: Linear profiles

The idea of profile decomposition was initally developed for the NLWE
Gerard 1998, Bahouri–Gerard 1999 and then extended to the NLS Merle–Vega
1998, Keraani 2001. Its origin might be traced back to the
concentration–compactness principle of Lions 1984

Main idea: let (vn) be a bounded sequence inH1(Rn) and let p ∈ [2, 2∗)
If the supports of vn are localized in a bounded set, we can extract a
convergent subsequence in Lp

But in general this does not happen and the mass of vn may split in
several bumps moving towards infinity, or may flatten out

Can we single out one of the bumps and follow it? yes!

The trick is to smoothen out vn (by frequency truncation) and find a
point xn where the smoothed vn is large. Then a significant part of
the Lp norm of vn must be localized near xn
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The translated sequence τxnvn = v(x− xn) is bounded inH1. We
extract a subsequence which converges weakly to the first profile

τxnvn ⇀ ψ1 in H1, ψ1 6= 0

Define the remainderR1
n = vn − ψ1(x+ xn)

If ‖R1
n‖Lp → 0 we stop. If not, we iterate takingR1

n as the new
sequence vn and obtaining a second sequence x2

n and a second
profile ψ2, and so on

Conclusion: for every J we can find ψ1, . . . , ψJ ∈ H1 and sequences
(x1

n), . . . , (xJ
n) such that |xj

n − xk
n| → +∞ if j 6= k and

vn = ∑J
j=1 ψ

j(x− xj
n) +RJ

n,

lim
J→+∞

lim
n→+∞

‖RJ
n‖Lp = 0

‖vn‖2
H1 = ∑J

j=1 ‖ψj‖2
H1 + ‖RJ

n‖2
H1 + o(1) as n → +∞
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The property |xj
n − xk

n| → +∞ if j 6= k is crucial and is called the
orthogonality of the two–index sequence xj

n. (It is also obvious: if x
j
n ∼ xk

n

the two bumps are running together and form a single bump)

The idea works also for the critical embeddingH1 ↪→ L2∗
, but then one

must also account for concentration effects, and an additional scaling
parameter is needed

Keraani’s idea is to do the same for a sequence of solutions eit∆φn(x) of
the linear Schrödinger equation. The embeddingH1 ↪→ Lp is replaced by
the Strichartz estimateH1 ↪→ LpLr
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To state the result for our problem we use the notations

τzu(x) = u(x− z) the translation operator
Az = τ−zAτz . For instance, ifAu = ∂x(a(x)∂xu(x)) then

Azu = ∂x(a(x+ z)∂xu(x))

Assumptions onAz for z → +∞ are asymtotic assumptions on the
coefficients ofA at spatial infinity

A standard sequence (xn) ⊂ R is such that either xn → +∞, or
xn → −∞, or xn = 0 for all n
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Abstract assumptions

For every ψ ∈ H1, all real sequences (xn), (yn), (sn) and a p ∈ (2,∞)
1 ‖eitAψ‖L∞H1 . ‖ψ‖H1 and |(Azψ, ψ)| . ‖ψ‖2

H1

2 (Axnψ) is precompact inH−1

3 (eisnAxnψ) is precompact in Lp and, for sn = s constant, inH1.
4 if |sn| → +∞ then eisnAynψ ⇀ 0 inH1 up to a subsequence
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Theorem (First Profile)

Assume (1)–(2)–(3). Given any bounded sequence inH1(R) we can find a
subsequence (vn), ψ ∈ H1, standard sequences (xn), (tn) ⊂ R s.t.

1 τ−xne
−itnAvn = ψ +Wn withWn ⇀ 0 inH1

2 lim sup ‖e−itAvn‖L∞L∞ . ‖ψ‖1/2
L2 sup ‖vn‖1/2

H1

3 we have the asymptotic behaviours for n → +∞
‖vn‖2

L2 = ‖ψ‖2
L2 + ‖Wn‖2

L2 + o(1)
(Avn, vn)L2 = (Axnψ,ψ)L2 + (AxnWn,Wn)L2 + o(1)
‖vn‖p

Lp = ‖eitnAxnψ‖p
Lp + ‖eitnAxnWn‖p

Lp + o(1).
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Theorem (Profile decomposition)

Assume (1)–(2)–(3)–(4). Given any bounded sequence inH1 we can find a
subsequence (un)n≥1, and ∀j ∈ N we can find ψj ∈ H1 and standard
sequences (tnj )n≥1, (xn

j )n≥1 as follows. Writing J ∈ N

un = ∑J
j=1 e

itn
j Aτxn

j
ψj +Rn

J , (4)

1 for all j 6= k we have |tnj − tnk | + |xn
j − xn

k | → +∞
2 lim supn ‖e−itARn

J‖L∞L∞ → 0
3 for each J we have the asymptotic behaviours as n → +∞

‖un‖2
L2 =

∑J
j=1 ‖ψj‖2

L2 + ‖Rn
J‖2

L2 + o(1)
(Aun, un)L2 =

∑J
j=1(Aτxn

j
ψj , τxn

j
ψj)L2 +(ARn

J , R
n
J)L2 +o(1)

‖un‖p
Lp =

∑J
j=1 ‖eitn

j Aτxn
j
ψj‖p

Lp + ‖Rn
J‖p

Lp + o(1).
4 if ψJ = 0 for some J then ψj = 0 for all j ≥ J
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2: The critical solution

If φ ∈ H1 let u(φ) the unique solution of the nonlinear equation
iut + Au = |u|γ−1u, u(0) = φ

with energy

E(φ) = (Au, u)L2 + 1
γ + 1‖u‖γ+1

Lγ+1

Define the critical energyEcrit as

Ecrit = sup{E > 0 : ∀φ ∈ H1, E(φ) < E ⇒ u(φ) ∈ LpLr}.
Out goal: prove thatEcrit = ∞

Assume by contradictionEcrit < ∞ and pick φn ∈ H1 such that

E(φn) ↓ Ecrit and u(φn) 6∈ LpLr.

We apply the profile decomposition

φn = ∑J
j=1 e

itn
j Aτxn

j
ψj +Rn

J
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In particular we have

Ecrit = ∑J
j=1 E(eitn

j Aτxn
j
ψj) + E(Rn

J) + o(1)

and hence

∞ > Ecrit ≥ lim sup
n

J∑
j=1

E(eitn
j Aτxn

j
ψj). (5)

Theorem

There is at most one profile i.e. J = 1, with tn1 = xn
1 = 0 and

E(ψ1) = Ecrit. The corresponding solution u(ψ1) 6∈ LpLr , and
{u(ψ1)(t) : t ≥ 0} is precompact inH1
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The procedure is the following:

Using the profiles ψj as data, construct an approximate solution of
the nonlinear equation, which is close to u(φn)
Assume by contradiction J ≥ 2; thenE(ψj) < Ecrit, hence the
approximate solution is in LpLr and scatters

By the nonlinear perturbation property, also u(φn) scatters, giving a
contradiction

We deduce J = 1 and henceE(ψ1) = Ecrit

Compactness of the flow follows by applying the same profile
decomposition to the bounded sequence u(ψ1)|tn with tn → ∞
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We try to perform also this step in an ‘abstract’ setting

Abstract assumptions B

The operatorA satisfies

‖e−itAz − e−itA‖H1→H1 → 0 as z → 0

and if xn → +∞ or −∞ then

‖eit∆ − e−itAxn ‖H1→LpLr → 0

‖
´ t

0 (ei(t−s)∆ − e−i(t−s)Axn ) · ds‖Lq′ Lr′ →LpLr → 0

In the following we write for brevity

F (u) = |u|γ−1u
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Recall the profile decomposition of φn

φn = ∑J
j=1 e

itn
j Aτxn

j
ψj +Rn

J

To each profile ψj we associate a nonlinear solution, but the construction
depends on the sequences. We will use each ψj as initial data ‘at the point’
(tnj , xn

j ), thus we set
Un

j (t, x) = Uj(t− tnj , x− xn
j )

where each Uj is defined according to four possible cases:

Case 1: tnj = xn
j = 0 for all n. Then Uj is simply the solution with data ψj :

Uj = u(ψj)
Note that by orthogonality this case happens at most for one profile

Case 2: tnj → ±∞ and xn
j = 0 for all n, e.g. tnj → +∞. Then we use ψj

as ‘data at infinity’, i.e. as scattering data. We know that the wave operator
at −∞ exists forA, thus we can define Uj as the solution of

i∂tu− Au = F (u), lim
t→−∞

‖Uj(t) − e−itAψj‖H1 = 0.
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Case 3: tnj = 0 for all n and xn
j → ±∞. We rely on the Abstract

assumption B: for x large, e−itA ' eit∆. Thus we set Uj as the solution of

iut + ∆u = F (u), u(0, x) = ψj

Case 4: tnj → ±∞ and xn
j → ±∞, e.g. tnj → +∞. As in Case 2, we use

ψj as scattering data, but this time we use ∆ instead ofA in view of the
Abstract assumption B since |xn

j | → ∞. Now Uj is the solution of

i∂tu+ ∆u = F (u), lim
t→−∞

‖Uj(t) − e−itAψj‖H1 = 0.
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If we plug Un
j (t, x) = Uj(t− tnj , x− xn

j ) in the equation we check that

Un
j (t, x) = e−itAψj + i

´ t

0 e
−i(t−s)AF (Un

j (s, x))ds+ rn
j

and in all cases the error rn
j satisfies

‖rn
j ‖LpLr . ‖ψj‖H1 · o(1)

The approximate solution is obtained by summing the Un
j :

W n
J =

J∑
j=1

Un
j
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We assume by contradiction that J ≥ 2; then theH1 norm of φn must split
between the profiles. Hence the profiles are subcritical, Un

j ∈ LpLr , and

W n
J ∈ LpLr and scatters

PluggingW n
J in the equation we get

W n
J = e−itAφn + i

´ t

0 e
−i(t−s)AF (W n

J )ds+ ρn
J

where the error ρn
J =

∑J
j=1 r

n
j −e−itARn

J + i
´ t

0 e
−i(t−s)A

[∑J
j=1 F (Un

j ) − F (∑J
j=1 U

n
j )

]
ds.

If we show that
‖ρn

J‖LpLr → 0,

then by nonlinear perturbation u(φn) ∈ LpLr =⇒ contradiction
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The terms rn
j and e

−itARn
J tend to 0 in L

pLr trivially by construction

For the last term we have by Strichartz

‖
´ t

0 e
−i(t−s)A

[∑J
j=1 F (Un

j ) − F (∑J
j=1 U

n
j )

]
ds‖LpLr

. ‖ ∑J
j=1 F (Un

j ) − F (∑J
j=1 U

n
j )‖Lq′ Lr′ .

∑
j 6=k ‖|Un

j |β−1Un
k ‖Lq′ Lr′

Also this term tends to 0, using the orthogonality

|tnj − tnk | + |xn
j − xn

k | → +∞

This is an exercise: if f, g ∈ L2a, a < ∞, and |xn − yn| → ∞, then

‖f(x− xn)g(x− yn)‖La → 0

by density of Cc in L2a
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3: Rigidity and scattering

AssumingEcrit < ∞, we have constructed a solution ucrit of critical
energy with precompact flow inH1

Compactness implies easily localization: ∀ε > 0 ∃R such that for all t

‖ucrit(t)‖H1(|x|≥R) + ‖ucrit(t)‖Lγ+1(|x|≥R) ≤ ε

To reach the final contradiction we rely on the explicit form of the equation,
via a virial inequality of the form

∂2
t

ˆ
χR(x)|ucrit(t, x)|2dx ≥ CEcrit

where χR = x2 for |x| ≤ R and vanishes for |x| ≥ 2R, which is absurd

Only in this final step the smallness assumptions on a′, a′′, a′′′ and the
repulsivity condition xV ′ ≤ 0 are used
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