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Main idea of the Solvability Complexity Index (SCI)
Q r (M., d)

( \ Black Box
“ “ Algorithm

Does there exist an algorithm I, that can approximate = for any A € Q7?
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Not always. Sometimes multiple limits might be necessary, requiring
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Main idea of the Solvability Complexity Index (SCI)
Q r (M, d)

'/A\\ Black Box pare

Algorithm

Does there exist an algorithm I, that can approximate = for any A € Q7?

Not always. Sometimes multiple limits might be necessary, requiring
Cnene_y....ns- 1he SCI theory characterizes this, as well as questions of

error control.
Hansen (JAMS 2011), JBA—Colbrook—Hansen—Nevanlinna—Seidel

(arXiv:1508.03280)
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S. Smale, Bull. AMS, 1985

Let &4 be the space of polynomials of degree < d. A purely iterative
algorithm is a rational map T, : C — C depending on p € &4 and its
derivatives up to some fixed order k, and having the form
To(2) = F(z,p(2),...,p")(2)) where F is a rational map.

e.g. Newton’s algorithm
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algorithm is a rational map T, : C — C depending on p € &4 and its
derivatives up to some fixed order k, and having the form
To(2) = F(z,p(2),...,p")(2)) where F is a rational map.

e.g. Newton’s algorithm

Tp is generally convergent if 3 set i € C x P4 of full measure s.t.
T9(z) == root of p for any (z,p) € U.
Newton’s algorithm isn’t for d > 2

If d > 2 does there exist a generally convergent purely
iterative algorithm?
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S. Smale, Bull. AMS, 1985

Let &4 be the space of polynomials of degree < d. A purely iterative
algorithm is a rational map T, : C — C depending on p € &4 and its
derivatives up to some fixed order k, and having the form
To(2) = F(z,p(2),...,p")(2)) where F is a rational map.

e.g. Newton’s algorithm

Tp is generally convergent if 3 set i € C x P4 of full measure s.t.
T9(z) == root of p for any (z,p) € U.

Newton’s algorithm isn’t for d > 2

If d > 2 does there exist a generally convergent purely
iterative algorithm?

McMullen, Ann. Math. 1987: yes for d = 3, no otherwise
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The Quintic

Doyle—McMullen, Acta Math. 1989: the cases d = 4,5 can be solved
by towers of algorithms

A tower of algorithms is a finite sequence of generally convergent
algorithms, linked together serially, so the output of one or more can
be used to compute the input to the next. The final output of the tower
is a single number, computed rationally from the original input and the
outputs of the intermediate generally convergent algorithms.
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Main Questions

Q r (M, d)

[ A, ‘ Black Box d
Algorithm s = (

1. Does there exist an algorithm for computing the resonances Res(Hy)
of Hy := —A + g for any ‘nice’ g : RY — C?

2. Does there exist an algorithm for computing the resonances Res(U)
of —A on R\ U for any ‘nice’ U c R9?
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MAIN RESULTS
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Quantum Scattering Resonances

Theorem (JBA—Marletta—Rdsler, to appear in JEMS)

There exists an arithmetic algorithm that can approximate the
resonances of Hy = —A +q foranyq € Q = Cg (RY; C).
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resonances of Hy = —A +q foranyq € Q = Cg, (RY; C).

Moreover, if one knows a priori that 3IM > 0 such that
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with error control.
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Quantum Scattering Resonances

Theorem (JBA—Marletta—Rdsler, to appear in JEMS)

There exists an arithmetic algorithm that can approximate the
resonances of Hy = —A + q forany q € Q = C{ (RY; C).

Moreover, if one knows a priori that 3IM > 0 such that

diam(supp(q)) + |19l < M then the computation can be performed
with error control.

Potential

Comparison of our algorithm with \ / ]

MatScat (Bindel-Zworski) for a ; e

Gaussian well supported in of ‘

[=1.1] S| TR
2% 5“0 s 0 5 0 5 2"
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Classical Scattering Resonances

Theorem (JBA-Marletta—Rdésler, FoOCM 2022)

There exists an arithmetic algorithm that can approximate the Dirichlet
resonances of U for any

UecQ={0+UcR?| U open, bounded and dU € C?}.

el
(N°
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PROOF:
QUANTUM SCATTERING RESONANCES
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hy = —A + g, where q € C}(RY; C).
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).

(-A+q)u=Z%u
(-A - Z2)u+qu=0
—_—

v
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).

(-A+q)u=Z%u
(-A - Z2)u+qu=0
—_—
v

v+q(-A-2%)"v=0

But v = (—A — z2)u = —qu = —xqu = yv for any y € C°(R%; [0, 1])
which is identically 1 on supp(q).
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).

(-A+q)u=Z%u
(A —-Z%)u+qu=0
—_—
v
v+g(-A-Z22)"v=0
v+g(-A—-22)""xv=0

X
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).

(-A+q)u=Z%u
(-A - Z2)u+qu=0
—_—

v

v+g(-A-Z22)"v=0

v+g(-A—-22)""xv=0
(Ide +q(=A = 2%)Tx)v =

o
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hy = —A + q, where g € C&(Rd; C).

(-A+q)u=Z%u
(A - Z22)u+qu=0
—
v+q(-A—-Z23)"Ty
v+ q(—A—2%)"Txv
(Idge + q(—A = 22)"x)v

0
0
0

2. So we are looking for poles of (Id;> + g(—A — z2)~'x)~".
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Proof: Quantum Scattering Resonances
1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).
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Proof: Quantum Scattering Resonances
1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).
2. So we are looking for poles of (Id;2 + g(—A — z2)~"y)~".

3. Obtain quantitative resolvent norm estimates for

K(z) == q(—A — z2)y.
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Proof: Quantum Scattering Resonances
1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).
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3. Obtain quantitative resolvent norm estimates for

K(z) = q(—A — z2) 7y,

4. Define a discretized version K,(z) which can be computed with
finitely many arithmetic operations.

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 12/34



Proof: Quantum Scattering Resonances
1. Looking for resonances of Hy = —A + g, where g € C}(R?; C).
2. So we are looking for poles of (Id;2 + g(—A — z2)~"y)~".

3. Obtain quantitative resolvent norm estimates for

K(z) = q(—A — z2) 7y,

4. Define a discretized version K,(z) which can be computed with
finitely many arithmetic operations.

5. Identify the poles of (Id,2 + K(z))~" via the discretized operator
(I+ Kn(2)) 7"
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An Abstract Approximation Result

‘H separable Hilbert space, H, C H finite-dimensional subspace,
Py : H — Hp orthogonal projection.

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 13/34



An Abstract Approximation Result
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Pn : H — H, orthogonal projection. Let K : C — L(#) be continuous
in operator norm, K, : C — L(#H,) be analytic for every n.
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An Abstract Approximation Result

‘H separable Hilbert space, H, C H finite-dimensional subspace,

Pn : H — H, orthogonal projection. Let K : C — L(#) be continuous
in operator norm, K, : C — L(*) be analytic for every n. Assume that
for any B ¢ C compact 3 a sequence a, J. 0 and a constant C > 0
such that for all z € B

|K(2) — PnK(2)PnllL2) < Can,
I1K(2) = Kn(2)Pnll () < Can,
HPHK(Z)|Hn - Kn(Z)HL(Hn) < Ca,,.
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An Abstract Approximation Result

‘H separable Hilbert space, H, C H finite-dimensional subspace,

Pn : H — H, orthogonal projection. Let K : C — L(#) be continuous
in operator norm, K, : C — L(*) be analytic for every n. Assume that
for any B c C compact 3 a sequence a, | 0 and a constant C > 0
such that for all z € B

1K(2) = PnK(2)PhnllLn) < Can,
1K (2) = Kn(2) Pall(3) < Can,
1PnK(2) 3, — Kn(2)ll (34,) < Can.

Let Gp = 5-(Z + iZ) and define

k)= {ze ong| |04 k@) 2 50 )
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An Abstract Approximation Result (cont)

Proposition
We have TB(K) — {z € B| — 1 € o(K(2))} in the Hausdorff metric. J

Where we remind that

(k) = {z < Gon 8| 0+ k), 2 7 )

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 14/34



An Abstract Approximation Result (cont)

Proposition
We have TB(K) — {z € B| — 1 € o(K(2))} in the Hausdorff metric. J

Where we remind that

(k) = {z < Gon 8| 0+ k), 2 7 )

Crucially: if we assume that K,(z) can be computed with finitely
arithmetic operations, then I'3(K) can be completely determined with
finitely many operations.
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The Operator K(z) = g(—A — z%)~ 'y

For x € R, z € C, the Green’s function of the Helmholtz operator
—A—2Z%is

ad—2

i z 2
Giz)— L4 () T Hea(zixl), d=2
27izeiz\x|’ d— 1

where H,, = Hankel function of the first kind.
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The Operator K(z) = g(—A — z%)~ 'y

For x € R, z € C, the Green’s function of the Helmholtz operator
—A—2Z%is

ad—2

i z 2
Giz)— L4 () T Hea(zixl), d=2
27izeiz\x|’ d— 1

where H,, = Hankel function of the first kind. Therefore

(-2 - 2%)""xNx) =q(x) [ Glx—y,2)x(y)f(y)dy

Rd
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The Operator K(z) = g(—A — z%)~ 'y

For x € R, z € C, the Green’s function of the Helmholtz operator
—A—2Z%is

ad—2

i z 2
Giz)— L4 () T Hea(zixl), d=2
27izeiz\x|’ d— 1

where H,, = Hankel function of the first kind. Therefore

(-2 - 2%)""xNx) =q(x) [ Glx—y,2)x(y)f(y)dy

Rd
We shall approximate the kernel (slight abuse of notation)

K(x,y) :=q(x)G(x — y,Z)x(y)
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Approximation of K(x,y) = q(x)G(x — y, 2)x(¥)
Split R? into small cubes:

R = |J Sni= U ([0.0)7+i).

ielzd ielzd
let

H, = L? functions that are constant on each S,
P, = orthogonal projection onto H,,
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Approximation of K(x,y) = q(x)G(x — y, 2)x(¥)
Split R? into small cubes:

R = |J Sni= U ([0.0)7+i).

ielzd ielzd
let
n = L2 functions that are constant on each S,
P, = orthogonal projection onto H,,
Define

Kn(x,y):= Y K(i.j)xs,,(X)xs,,(¥)-

ijelzd
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The Algorithm: the Poles of (/ + K(z2))™’
Let ) # B C C be compact and let G, := 2-(Z + iZ)
re.q—d)

r2ta) = {z < Gon 8| 0+ KD % 7 )
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The Algorithm: the Poles of (/ + K,(z))~

Let ) # B C C be compact and let G, := 2-(Z + iZ)

re.q—d)
1
H = AN >
r2ta) = {z < Gon 8| 0+ KD % 7 )
Theorem
For any q € Q we have T'2(q) — Res(q) N B in the Hausdorff distance
as n— +oo.
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We need to extend this to the whole of C. We do this by tiling C with
compact sets:
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We need to extend this to the whole of C. We do this by tiling C with
compact sets:

Im~z
\
oa]o]
5‘1 Ba
\
B, Bs
|
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We need to extend this to the whole of C. We do this by tiling C with
compact sets:

Im~z
\
B B‘G Bs Rez
\
5‘1 Ba
\
Bg B3
\
And finally define:
n
B
() :=Jr(a)
j=1
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PROOF:
CLASSICAL SCATTERING RESONANCES
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Proof: Classical Scattering Resonances

1. Assume that the support Bg of U is known.

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 20/34



Proof: Classical Scattering Resonances

1. Assume that the support Bg of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for —A — k2, k € C*:

Mn(k) in Bg\U
Mowe(k) in RY\ Bg

These can be extended meromorphically to k € C.
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Proof: Classical Scattering Resonances

1. Assume that the support Bg of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for —A — k2, k € C*:

M, (k) in BR\U
Mowe(k) in RY\ Bg

These can be extended meromorphically to k € C.
3. k € C~ is a resonance if and only if ker(Min(k) + Mout(k)) # {0}.

4. Find a compact operator C(k) in a p-Schatten class (Vp > 2) such
that ker(Id;2 + C(k)) # {0} <  ker(Min(k) + Mout(k)) # {0}

5. Approximate C & find values of k for which |det4(Id;2 + C(k))| < e.
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Proof: Classical Scattering Resonances

1. Assume that the support Bg of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for —A — k2, k € C*:

Mi (k) in BR\U
Mowe(k) in RY\ Bg

These can be extended meromorphically to k € C.
3. k € C~ is a resonance if and only if ker(Min(k) + Mout(k)) # {0}.

4. Find a compact operator C(k) in a p-Schatten class (Vp > 2) such
that ker(Id;2 + C(k)) # {0} <  ker(Min(k) + Mout(k)) # {0}

5. Approximate C & find values of k for which |det)(Id,2 + C(k))| < e.

6. Get rid of R dependence.
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DtN Maps (d = 2)

. ein@
) ’ 27R
(

) kH‘/n‘ kR)\ dine [ 171 & Hip—1(kR)
out( ) =diag | — H‘n‘(kR) = diag R W
N———

H,, = Hankel functions of the first kind.

In the orthonormal basis ex(0
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DtN Maps (d = 2)

ein@

In the orthonormal basis es(0) := ~—= On 0Bg:
H.(kR) In| Hpi—1(kR)
Moui(K) = diag | — k-2 = dia SR
our(k) = diag ( Hn (KR) - ( R Hn (KR)
N —’
~ 2l
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DtN Maps (d = 2)

ein@

In the orthonormal basis e,(6) := ~— On 9Bg
H' (kR) Hy 1 (kR
. In| . n| inj—1(KR)
Mout(k) = dia —k =diag| 5= —k—F—F+—
(k) g( H,,(kR)> 8 ( R Hn (kR)
—_——
kR
2|n|
Min(k) = Min o(k) + K(k)
J(kR) Jn1 (KR
. In| . |n| nj+1(kR)
Mino(k) = diag | k =diag| = ~k———-——
o(k) g( J|,,|(kR)> & ( R " U (kR)
————
~ 2l

J, = Bessel functions of the first kind.
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DtN Maps (d = 2)

em@

In the orthonormal basis e,(6) := Ja=5 ON 0Bg:
. H/, (kR) in| | Hin_1(kR)
Moui (k) = dia k =diag| ‘"5 — k="
our(k) = diag ( Hn (KR) - ( R Hn (KR)
N —’

kR

~ A

2|n|

Min(k) = Min,O(k) + IC(k)

Il dini+1(KR)
= diag [ 1o — kIO
8 ( R Jni(KR)
N———
~ 2l

. J|,n|(kF7’)
Mino(k) = diag kJ|,,|(kFi’)

Min(K) + Moui(K) = %N + H(k) + T (k) + K(k)
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DtN Maps (d = 2), cont.

Ma(K)+ Mo (K) = SN+ H(K) + T (K) + K(K)
- ERN% (Isz + ERN*% (H(K) + T (k) + K(K))N-

=
\_/
P4
nNI=
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DtN Maps (d = 2), cont.

Ma(K)+ Mo (K) = SN+ H(K) + T (K) + K(K)
— ERN% (Isz + ERN*% (H(K) + T (k) + /C(k))N%> Nz
Hence

ker(Min(k) 4+ Mout(k)) = {0}

)

er (mLz FONE(H(K) + T(K) + KRN ) _ {0}

C(k)
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Approximation of C(k)

1

C(k) = N~z (H(K) + T (k) + K(k))N"2
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Approximation of C(k)

C(k) = N~z (H(K) + T (k) + K(k))N"2

1. Truncate the matrix:

Lemma

Letk € C~,p>2,andforneN let P,: L?(0BR) — span{e_p,...en}
be the orthogonal projection. Then there exists a constant C > 0
depending only on the set U such that

lC(k) — PaC(k)Pallg, < Cn™2"5.
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Approximation of C(k)

C(k) = N~z (H(K) + T (k) + K(k))N"2

1. Truncate the matrix:

Lemma

Letk € C~,p>2,andforneN let P,: L?(0BR) — span{e_p,...en}
be the orthogonal projection. Then there exists a constant C > 0
depending only on the set U such that

lC(k) — PaC(k)Pallg, < Cn™2"5.

2. Approximate KC(k).
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The Operator K(k)

K(k) = 8,(Hp — k®)~'T,S(k) : L3(0BRr) — L?(9BgR)
where:

@ 0, is the normal derivative on 0Bg,

@ Hp denotes the Laplacian on L2(Bg \ U) with homogeneous
Dirichlet boundary condition on 9(Bg \ U),

@ 7,=2Vp-V + Apwhere pis a cutoff function that is 0 in Bg_1
and 1 near 0Bg,

@ and S(k) : H'(0BR) — H%(BR) is defined by S(k)¢ = w, where w
solves
(-A—-K>)w=0 inBpg,
w=¢ onodBg,

i.e. S(k)¢ is the harmonic extension of ¢ into Bg, which extends to
a bounded operator L2(9Bg) — Hz (Bg).
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Writing K(k) in the basis ep(6)

Recall: (k) = 8, (Hp — k2)~T,S(k) and e,(0) = (2xR) 2 e
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Writing K(k) in the basis ep(6)

Recall: K(k) = 8,(Hp — k2)~1T,S(k) and e,(8) = (2xR) 2 e

Goal: approximate
Kap ::/ esgk(k)e, do
9Bg

:/ 830, (Ho — k2)~1 T,8(k)e. do.
0Bgr ﬁr—’

/

Vo
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Writing K(k) in the basis ep(6)

Recall: K(k) = 8,(Hp — k2)~1T,S(k) and e,(8) = (2xR) 2 e

Goal: approximate
Kap ::/ esgk(k)e, do
9Bg

:/ 830, (Ho — k2)~1 T,8(k)e. do.
0BRr ﬁr—’

/

Vo

Define Ej(r,0) = p(r)en(0) and use Green’s first identity...
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Kop = / €30,Va do
9B
:/ EzAv, dx + VE; - Vv, dx
Bp\U Bp\U

:/ Eg(—fa—kzva)dx~|—/ _VEs - Vv, dx
Br\U Br\U

= VEg-Vvadx—kz/

Ejve dx — / Egf, dx
BR\U BH\U BH\U
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Kop = / €30,Va do
9B
:/ EzAv, dx + VE; - Vv, dx
Bp\U Bp\U

:/ Eg(—fa—kzva)dx+/ _VEs - Vv, dx
Br\U Br\U

= VEB-Vvadx—kz/ Eﬁvadx—/ Egf, dx
BR\U BH\U BH\U

X X 4

The last term can be approximated by standard methods; a mesh of
size h leads to error of order h?. First two terms are problematic.
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Kag :/ €30, Vo do
9Bg

:/ EzAv, dx + VE; - Vv, dx
Bg\U Bg\U

:/ Eg(—fa—kzva)dx+/ _VEs - Vv, dx
Br\U Br\U

= VEs - Vv, dx—k2/ EsV, dx—/ Egf, dx
BR\U BH\U BH\U
X X v

The last term can be approximated by standard methods; a mesh of
size h leads to error of order h?. First two terms are problematic.

We need to approximate v,.
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ICQB:/ V@;-Vvadx—kz/ Eﬁvadx—/ Egsf, dx
Br\U Br\U Bg\U

X X 4

Proposition

For small h > 0 there exists a piecewise linear function v which is
computable in finitely many algebraic steps, which satisfies the error
estimate

1
Ve = Vel gy < CH3 Il (8

where C is independent of h and «.
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ICQB:/ VE; Vv, dx—kz/ Ezv, dx—/ Egsf, dx
BR\U BH\U BF)\U

X X v/

Proposition

For small h > 0 there exists a piecewise linear function v which is
computable in finitely many algebraic steps, which satisfies the error
estimate

1
Vo — VonHH1(BR\U) S Ch3HfaHH‘(Bn\U)’

where C is independent of h and «.

Proof is about 4 pages, so we skip. Ingredients: triangulation of
Bgr \ U, tools from numerical analysis (e.g. Céa’s Lemma) and
functional analysis (e.g. Sobolev embeddings).
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Kap = vEﬂ'Vvadx—kz/ Eﬁvoedx_/ ffﬂfadx
BR\U BFI\U BH\U
v v v

Thus we have a quantitative way to approximate these integrals:

(/ch)(w:/ 7(I'I”VE7,3)-VVde—k2/ 7(I‘I”E75)v£dx—/ (NMEg)fh dx
Br\U Bp\U Bp\U
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Kag = VE,g-VVadX—kz/

Ezv, dx — / Egsf, dx
BR\U BH\U BH\U

Thus we have a quantitative way to approximate these integrals:

(/ch)(w:/ 7(I'I”VE7,3)-Vv2dx—k2/ 7(I‘I”E75)v£dx—/ (NMEg)fh dx
Br\U Bp\U Bp\U

This ultimately leads to
1
Kap = (Kndasl < C(K)E (M3 11fall 2(gm7) + Pl )

< C(k)8? (h3Ja] + FPlaf?)
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Kag = VE,g-VVadX—kz/

Ezv, dx — / Egsf, dx
BR\U BH\U BH\U

Thus we have a quantitative way to approximate these integrals:

(ic,,)w:/ 7(I'I”VE7,3)-VVL’dx—k2/ 7(I‘I”E75)vgdx—/ (N"E5)f" ox
Br\U Bp\U Bp\U

Finally, a Young'’s inequality leads to:

Proposition
For any n € N, one has the operator norm estimate:

1PAICPn — Kpllizy < C(K)(h3n® + H2nP),
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Approximation of C(k) Revisited

Recall that we had to approximate

1

C(k) = N~z (H(K) + T (k) + K(k))N"z.
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Approximation of C(k) Revisited

Recall that we had to approximate

1

C(K) = N~ (H(k) + T (k) + K(K))N"2.
We know from before that

IC(k) — PaC(K)Pallg, < Cn™2*%.
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Approximation of C(k) Revisited

Recall that we had to approximate

1

C(k) = N~z (H(K) + T (k) + K(k))N"z.
We know from before that
IC(k) — PaC(K)Pallg, < Cn™2*%.
The Proposition on the last slide leads to

[C(k) — PaN"2(H +T + ICh(n))N_%Pn le, < Cn*5

Cn(k)
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Approximation of C(k) Revisited

Recall that we had to approximate

1

C(k) = N~z (H(K) + T (k) + K(k))N"z.
We know from before that
IC(k) — PaC(K)Pallg, < Cn™2*%.
The Proposition on the last slide leads to

[C(k) — PaN"2(H +T + ICh(n))N_%Pn le, < Cn*5

Cn(k)

Cn(k) is something that we can compute with finitely many arithmetic
operations!
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Approximation of C(k) Revisited

1

2 (H(k) + T (k) + K(K)) N2
PaN"2(H(k) + T (K) + K (K))N "2 P

I
=2

We finally have:
Proposition

There exists C > 0 which is independent of k for k in a compact
subset of C~ such that:

| detp (Id,2 + C(K)) — det;p (Id;2 + Ca(K))| < Cn™ 2 ¥ ToT
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The Algorithm

Goal: find values of k for which det, (Id;2 + Cn(k)) is small.
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The Algorithm

Goal: find values of k for which det, (Id;2 + Cn(k)) is small.

Let ) # Q C C~ be compact and let G, = 1(Z + iZ). Define

re.q—c(C)

1
F,C,’(U) = {k c GpnN Q‘ |detm (Isz —I-Cn(k))‘ < |Og(n) } .
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The Algorithm

Goal: find values of k for which det, (Id;2 + Cn(k)) is small.

Let ) # Q C C~ be compact and let G, = 1(Z + iZ). Define

r?:Q - c(C)

1
ro) = {k € GnN Q‘ |det ) (Id,2 + Ca(K))| < =0 } .

For any U € Q we have TQ(U) — Res(U) N Q in the Hausdorff distance

Theorem
as n — +oo. J
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We need to extend this to the whole of C~. We do this by tiling C~ with
compact sets:
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We need to extend this to the whole of C~. We do this by tiling C~ with

compact sets:

Imz
Rez

05 Q4 OS
\

Q| @ | Q

Q&
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We need to extend this to the whole of C~. We do this by tiling C~ with
compact sets:

Imz
Rez

05 Q4 OS
Q | Q| Q
Q
And finally define:
n
ra(U) = (V)
j=1
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Solution of

(-A—Kk?)u=0 inBg\U,
u=es onadBg,
u=0 onadU.

Left: k = 1.0 (far from resonance)
Right: k = 2.049 — 0.026/ (near second resonance)
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—0.05 - :Cg

— 20
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0
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Thank you for your attention!
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