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Main idea of the Solvability Complexity Index (SCI)

Black Box
Algorithm

Ω

A

(M,d)

Ξ(A)

Γn(A)

Ξ

Γ

Does there exist an algorithm Γn that can approximate Ξ for any A ∈ Ω?

Not always. Sometimes multiple limits might be necessary, requiring
Γnk ,nk−1,...,n1 . The SCI theory characterizes this, as well as questions of
error control.
Hansen (JAMS 2011), JBA–Colbrook–Hansen–Nevanlinna–Seidel
(arXiv:1508.03280)
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S. Smale, Bull. AMS, 1985

Let Pd be the space of polynomials of degree ≤ d . A purely iterative
algorithm is a rational map Tp : C→ C depending on p ∈Pd and its
derivatives up to some fixed order k , and having the form
Tp(z) = F (z,p(z), . . . ,p(k)(z)) where F is a rational map.

e.g. Newton’s algorithm

Tp is generally convergent if ∃ set U ⊂ C×Pd of full measure s.t.
T n

p (z)
n→∞−−−→ root of p for any (z,p) ∈ U .

Newton’s algorithm isn’t for d > 2

If d > 2 does there exist a generally convergent purely
iterative algorithm?

McMullen, Ann. Math. 1987: yes for d = 3, no otherwise
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The Quintic

Doyle–McMullen, Acta Math. 1989: the cases d = 4,5 can be solved
by towers of algorithms

A tower of algorithms is a finite sequence of generally convergent
algorithms, linked together serially, so the output of one or more can
be used to compute the input to the next. The final output of the tower
is a single number, computed rationally from the original input and the
outputs of the intermediate generally convergent algorithms.
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Main Questions

Black Box
Algorithm

Ω

A

(M,d)

Ξ(A)

Γn(A)

Ξ

Γ

1. Does there exist an algorithm for computing the resonances Res(Hq)
of Hq := −∆ + q for any ‘nice’ q : Rd → C?

2. Does there exist an algorithm for computing the resonances Res(U)
of −∆ on Rd \ U for any ‘nice’ U ⊂ Rd?
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MAIN RESULTS
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Quantum Scattering Resonances

Theorem (JBA–Marletta–Rösler, to appear in JEMS)
There exists an arithmetic algorithm that can approximate the
resonances of Hq = −∆ + q for any q ∈ Ω = C1

0(Rd ;C).

Moreover, if one knows a priori that ∃M > 0 such that
diam(supp(q)) + ‖q‖∞ ≤ M then the computation can be performed
with error control.

Comparison of our algorithm with
MatScat (Bindel–Zworski) for a
Gaussian well supported in
[−1,1].
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Classical Scattering Resonances

Theorem (JBA–Marletta–Rösler, FoCM 2022)
There exists an arithmetic algorithm that can approximate the Dirichlet
resonances of U for any
U ∈ Ω = {∅ 6= U ⊂ Rd | U open, bounded and ∂U ∈ C2}.

U
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PROOF:

QUANTUM SCATTERING RESONANCES
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hq = −∆ + q, where q ∈ C1
0(Rd ;C).
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hq = −∆ + q, where q ∈ C1
0(Rd ;C).

(−∆ + q)u = z2u

(−∆− z2)u + qu = 0
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hq = −∆ + q, where q ∈ C1
0(Rd ;C).

(−∆ + q)u = z2u

(−∆− z2)u︸ ︷︷ ︸
v

+ qu = 0

v + q(−∆− z2)−1v = 0

But v = (−∆− z2)u = −qu = −χqu = χv for any χ ∈ C∞0 (Rd ; [0,1])
which is identically 1 on supp(q).
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Proof: Quantum Scattering Resonances

1. Looking for resonances of Hq = −∆ + q, where q ∈ C1
0(Rd ;C).

2. So we are looking for poles of (IdL2 + q(−∆− z2)−1χ)−1.

3. Obtain quantitative resolvent norm estimates for

K (z) := q(−∆− z2)−1χ.

4. Define a discretized version Kn(z) which can be computed with
finitely many arithmetic operations.

5. Identify the poles of (IdL2 + K (z))−1 via the discretized operator
(I + Kn(z))−1.
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An Abstract Approximation Result

H separable Hilbert space, Hn ⊂ H finite-dimensional subspace,
Pn : H → Hn orthogonal projection.
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An Abstract Approximation Result

H separable Hilbert space, Hn ⊂ H finite-dimensional subspace,
Pn : H → Hn orthogonal projection. Let K : C→ L(H) be continuous
in operator norm, Kn : C→ L(Hn) be analytic for every n. Assume that
for any B ⊂ C compact ∃ a sequence an ↓ 0 and a constant C > 0
such that for all z ∈ B

‖K (z)− PnK (z)Pn‖L(H) ≤ Can,

‖K (z)− Kn(z)Pn‖L(H) ≤ Can,

‖PnK (z)|Hn − Kn(z)‖L(Hn)
≤ Can.
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for any B ⊂ C compact ∃ a sequence an ↓ 0 and a constant C > 0
such that for all z ∈ B

‖K (z)− PnK (z)Pn‖L(H) ≤ Can,

‖K (z)− Kn(z)Pn‖L(H) ≤ Can,

‖PnK (z)|Hn − Kn(z)‖L(Hn)
≤ Can.

Let Gn = 1
an

(Z + iZ) and define

ΓB
n (K ) =

{
z ∈ Gn ∩ B

∣∣∣∣ ∥∥∥(I + Kn(z))−1
∥∥∥

L(Hn)
≥ 1

2
√

an

}
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An Abstract Approximation Result (cont)

Proposition

We have ΓB
n (K )→ {z ∈ B | − 1 ∈ σ(K (z))} in the Hausdorff metric.

Where we remind that

ΓB
n (K ) =

{
z ∈ Gn ∩ B

∣∣∣∣ ∥∥∥(I + Kn(z))−1
∥∥∥

L(Hn)
≥ 1

2
√

an

}

Crucially: if we assume that Kn(z) can be computed with finitely
arithmetic operations, then ΓB

n (K ) can be completely determined with
finitely many operations.
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The Operator K (z) = q(−∆− z2)−1χ

For x ∈ Rd , z ∈ C, the Green’s function of the Helmholtz operator
−∆− z2 is

G(x , z) :=

 i
4

(
z

2π|x |

) d−2
2 H d−2

2

(
z|x |

)
, d ≥ 2,

i
2z eiz|x |, d = 1,

where Hν = Hankel function of the first kind.

Therefore

(q(−∆− z2)−1χf )(x) = q(x)

∫
Rd

G(x − y , z)χ(y)f (y) dy

We shall approximate the kernel (slight abuse of notation)

K (x , y) := q(x)G(x − y , z)χ(y)
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Approximation of K (x , y) = q(x)G(x − y , z)χ(y)

Split Rd into small cubes:

Rd =
⋃

i∈ 1
nZ

d

Sn,i :=
⋃

i∈ 1
nZ

d

([
0, 1

n

)d
+ i
)
,

let

Hn = L2 functions that are constant on each Sn,i

Pn = orthogonal projection onto Hn

Define

Kn(x , y) :=
∑

i,j∈ 1
nZ

d

K (i , j)χSn,i (x)χSn,j (y).
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The Algorithm: the Poles of (I + Kn(z))−1

Let ∅ 6= B ⊂ C be compact and let Gn := 1
an

(Z + iZ)

ΓB
n : Ω→ cl(C)

ΓB
n (q) =

{
z ∈ Gn ∩ B

∣∣∣∣ ∥∥∥(I + Kn(·, ·))−1
∥∥∥

L(Hn)
≥ 1

2
√

an

}

Theorem

For any q ∈ Ω we have ΓB
n (q)→ Res(q) ∩ B in the Hausdorff distance

as n→ +∞.
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We need to extend this to the whole of C. We do this by tiling C with
compact sets:

Re z

Im z

B1B1

B2B2 B3

B4

B5B6B6B7

...

...

And finally define:

Γn(q) :=
n⋃

j=1

Γ
Bj
n (q)
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PROOF:

CLASSICAL SCATTERING RESONANCES
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Proof: Classical Scattering Resonances

1. Assume that the support BR of U is known.

U

BR−1
BR

2. Write the Dirichlet-to-Neumann (DtN) maps for −∆− k2, k ∈ C+:

Min(k) in BR \ U
Mout(k) in Rd \ BR

These can be extended meromorphically to k ∈ C.
3. k ∈ C− is a resonance if and only if ker(Min(k) + Mout(k)) 6= {0}.
4. Find a compact operator C(k) in a p-Schatten class (∀p > 2) such
that ker(IdL2 + C(k)) 6= {0} ⇔ ker(Min(k) + Mout(k)) 6= {0}
5. Approximate C & find values of k for which

∣∣detdpe(IdL2 + C(k))
∣∣ < ε.

6. Get rid of R dependence.
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DtN Maps (d = 2)

In the orthonormal basis en(θ) := einθ
√

2πR
on ∂BR:

Mout(k) = diag

(
− k

H ′|n|(kR)

H|n|(kR)

)
= diag

(
|n|
R
− k

H|n|−1(kR)

H|n|(kR)︸ ︷︷ ︸
∼ kR

2|n|

)

Hν = Hankel functions of the first kind.

Min(k) = Min,0(k) +K(k)

Min,0(k) = diag

(
k

J ′|n|(kR)

J|n|(kR)

)
= diag

(
|n|
R
− k

J|n|+1(kR)

J|n|(kR)︸ ︷︷ ︸
∼ kR

2|n|

)

Min(k) + Mout(k) =
2
R

N +H(k) + J (k) +K(k)
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Jν = Bessel functions of the first kind.
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DtN Maps (d = 2), cont.

Min(k)+Mout(k) =
2
R

N +H(k) + J (k) +K(k)

=
2
R

N
1
2

(
IdL2 +

R
2

N−
1
2
(
H(k) + J (k) +K(k)

)
N−

1
2

)
N

1
2

Hence

ker(Min(k) + Mout(k)) = {0}

m

ker

(
IdL2 +

R
2

N−
1
2
(
H(k) + J (k) +K(k)

)
N−

1
2︸ ︷︷ ︸

C(k)

)
= {0}
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Approximation of C(k)

C(k) = N−
1
2
(
H(k) + J (k) +K(k)

)
N−

1
2

1. Truncate the matrix:

Lemma

Let k ∈ C−, p > 2, and for n ∈ N let Pn : L2(∂BR)→ span{e−n, . . .en}
be the orthogonal projection. Then there exists a constant C > 0
depending only on the set U such that

‖C(k)− PnC(k)Pn‖Cp
≤ Cn−

1
2+

1
p .

2. Approximate K(k).
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The Operator K(k)

K(k) = ∂ν(HD − k2)−1TρS(k) : L2(∂BR)→ L2(∂BR)

where:
∂ν is the normal derivative on ∂BR,
HD denotes the Laplacian on L2(BR \ U) with homogeneous
Dirichlet boundary condition on ∂(BR \ U),
Tρ = 2∇ρ · ∇+ ∆ρ where ρ is a cutoff function that is 0 in BR−1
and 1 near ∂BR,

and S(k) : H1(∂BR)→ H
3
2 (BR) is defined by S(k)φ = w , where w

solves {
(−∆− k2)w = 0 in BR,

w = φ on ∂BR,

i.e. S(k)φ is the harmonic extension of φ into BR, which extends to
a bounded operator L2(∂BR)→ H

1
2 (BR).

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 24 / 34



The Operator K(k)

K(k) = ∂ν(HD − k2)−1TρS(k) : L2(∂BR)→ L2(∂BR)

where:
∂ν is the normal derivative on ∂BR,
HD denotes the Laplacian on L2(BR \ U) with homogeneous
Dirichlet boundary condition on ∂(BR \ U),
Tρ = 2∇ρ · ∇+ ∆ρ where ρ is a cutoff function that is 0 in BR−1
and 1 near ∂BR,

and S(k) : H1(∂BR)→ H
3
2 (BR) is defined by S(k)φ = w , where w

solves {
(−∆− k2)w = 0 in BR,

w = φ on ∂BR,

i.e. S(k)φ is the harmonic extension of φ into BR, which extends to
a bounded operator L2(∂BR)→ H

1
2 (BR).

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 24 / 34



The Operator K(k)

K(k) = ∂ν(HD − k2)−1TρS(k) : L2(∂BR)→ L2(∂BR)

where:
∂ν is the normal derivative on ∂BR,
HD denotes the Laplacian on L2(BR \ U) with homogeneous
Dirichlet boundary condition on ∂(BR \ U),
Tρ = 2∇ρ · ∇+ ∆ρ where ρ is a cutoff function that is 0 in BR−1
and 1 near ∂BR,

and S(k) : H1(∂BR)→ H
3
2 (BR) is defined by S(k)φ = w , where w

solves {
(−∆− k2)w = 0 in BR,

w = φ on ∂BR,

i.e. S(k)φ is the harmonic extension of φ into BR, which extends to
a bounded operator L2(∂BR)→ H

1
2 (BR).

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 24 / 34



The Operator K(k)

K(k) = ∂ν(HD − k2)−1TρS(k) : L2(∂BR)→ L2(∂BR)

where:
∂ν is the normal derivative on ∂BR,
HD denotes the Laplacian on L2(BR \ U) with homogeneous
Dirichlet boundary condition on ∂(BR \ U),
Tρ = 2∇ρ · ∇+ ∆ρ where ρ is a cutoff function that is 0 in BR−1
and 1 near ∂BR,

and S(k) : H1(∂BR)→ H
3
2 (BR) is defined by S(k)φ = w , where w

solves {
(−∆− k2)w = 0 in BR,

w = φ on ∂BR,

i.e. S(k)φ is the harmonic extension of φ into BR, which extends to
a bounded operator L2(∂BR)→ H

1
2 (BR).

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 24 / 34



The Operator K(k)

K(k) = ∂ν(HD − k2)−1TρS(k) : L2(∂BR)→ L2(∂BR)

where:
∂ν is the normal derivative on ∂BR,
HD denotes the Laplacian on L2(BR \ U) with homogeneous
Dirichlet boundary condition on ∂(BR \ U),
Tρ = 2∇ρ · ∇+ ∆ρ where ρ is a cutoff function that is 0 in BR−1
and 1 near ∂BR,

and S(k) : H1(∂BR)→ H
3
2 (BR) is defined by S(k)φ = w , where w

solves {
(−∆− k2)w = 0 in BR,

w = φ on ∂BR,

i.e. S(k)φ is the harmonic extension of φ into BR, which extends to
a bounded operator L2(∂BR)→ H

1
2 (BR).

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 24 / 34



Writing K(k) in the basis en(θ)

Recall: K(k) = ∂ν(HD − k2)−1TρS(k) and en(θ) = (2πR)−
1
2 einθ

Goal: approximate

Kαβ :=

∫
∂BR

eβK(k)eα dσ

=

∫
∂BR

eβ∂ν (HD − k2)−1 TρS(k)eα︸ ︷︷ ︸
fα︸ ︷︷ ︸

vα

dσ.

Define En(r , θ) = ρ(r)en(θ) and use Green’s first identity...
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Kαβ =

∫
∂BR

eβ∂νvα dσ

=

∫
BR\U

Eβ∆vα dx +

∫
BR\U

∇Eβ · ∇vα dx

=

∫
BR\U

Eβ(−fα − k2vα) dx +

∫
BR\U

∇Eβ · ∇vα dx

=

∫
BR\U

∇Eβ · ∇vα dx − k2
∫

BR\U
Eβvα dx −

∫
BR\U

Eβfα dx
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7 7 3

The last term can be approximated by standard methods; a mesh of
size h leads to error of order h2. First two terms are problematic.
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7 7 3

The last term can be approximated by standard methods; a mesh of
size h leads to error of order h2. First two terms are problematic.

We need to approximate vα.

Jonathan Ben-Artzi (Cardiff) Computing Resonances 10-15 July 2022 26 / 34



Kαβ =

∫
BR\U

∇Eβ · ∇vα dx − k2
∫

BR\U
Eβvα dx −

∫
BR\U

Eβfα dx

7 7 3

Proposition

For small h > 0 there exists a piecewise linear function vh
α which is

computable in finitely many algebraic steps, which satisfies the error
estimate

‖vα − vh
α‖H1(BR\U) ≤ Ch

1
3 ‖fα‖H1(BR\U),

where C is independent of h and α.
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7 7 3

Proposition

For small h > 0 there exists a piecewise linear function vh
α which is

computable in finitely many algebraic steps, which satisfies the error
estimate

‖vα − vh
α‖H1(BR\U) ≤ Ch

1
3 ‖fα‖H1(BR\U),

where C is independent of h and α.

Proof is about 4 pages, so we skip. Ingredients: triangulation of
BR \ U, tools from numerical analysis (e.g. Céa’s Lemma) and
functional analysis (e.g. Sobolev embeddings).
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Kαβ =

∫
BR\U

∇Eβ · ∇vα dx − k2
∫

BR\U
Eβvα dx −

∫
BR\U

Eβfα dx

3 3 3

Thus we have a quantitative way to approximate these integrals:

(Kh)αβ =

∫
BR\U

(Πh∇Eβ) · ∇vh
α dx − k2

∫
BR\U

(ΠhEβ)vh
α dx −

∫
BR\U

(ΠhEβ)f h
α dx
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(Πh∇Eβ) · ∇vh
α dx − k2

∫
BR\U

(ΠhEβ)vh
α dx −

∫
BR\U

(ΠhEβ)f h
α dx

This ultimately leads to

|Kαβ − (Kh)αβ| ≤ C(k)β2
(

h
1
3 ‖fα‖L2(BR\U) + h2‖fα‖H2(BR\U)

)
≤ C(k)β2

(
h

1
3 |α|+ h2|α|3

)
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α dx − k2

∫
BR\U

(ΠhEβ)vh
α dx −

∫
BR\U

(ΠhEβ)f h
α dx

Finally, a Young’s inequality leads to:

Proposition
For any n ∈ N, one has the operator norm estimate:

‖PnKPn −Kh‖L(H) ≤ C(k)(h
1
3 n3 + h2n5),
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Approximation of C(k) Revisited

Recall that we had to approximate

C(k) = N−
1
2
(
H(k) + J (k) +K(k)

)
N−

1
2 .
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‖C(k)− PnC(k)Pn‖Cp
≤ Cn−

1
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1
p .

The Proposition on the last slide leads to∥∥C(k)− PnN−
1
2 (H+ J +Kh(n))N−

1
2 Pn︸ ︷︷ ︸

Cn(k)

∥∥
Cp
≤ Cn−

1
2+

1
p
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)
N−

1
2 .

We know from before that

‖C(k)− PnC(k)Pn‖Cp
≤ Cn−

1
2+

1
p .

The Proposition on the last slide leads to∥∥C(k)− PnN−
1
2 (H+ J +Kh(n))N−

1
2 Pn︸ ︷︷ ︸

Cn(k)

∥∥
Cp
≤ Cn−

1
2+

1
p

Cn(k) is something that we can compute with finitely many arithmetic
operations!
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Approximation of C(k) Revisited

C(k) = N−
1
2
(
H(k) + J (k) +K(k)

)
N−

1
2

Cn(k) = PnN−
1
2 (H(k) + J (k) +Kh(n)(k))N−

1
2 Pn

We finally have:

Proposition
There exists C > 0 which is independent of k for k in a compact
subset of C− such that:∣∣detdpe (IdL2 + C(k))− detdpe (IdL2 + Cn(k))

∣∣ ≤ Cn−
1
2+

1
dpe
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The Algorithm

Goal: find values of k for which detdpe (IdL2 + Cn(k)) is small.

Let ∅ 6= Q ⊂ C− be compact and let Gn = 1
n (Z + iZ). Define

ΓQ
n : Ω→ cl(C)

ΓQ
n (U) :=

{
k ∈ Gn ∩Q

∣∣∣∣ ∣∣detdpe (IdL2 + Cn(k))
∣∣ ≤ 1

log(n)

}
.

Theorem

For any U ∈ Ω we have ΓQ
n (U)→ Res(U) ∩Q in the Hausdorff distance

as n→ +∞.
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We need to extend this to the whole of C−. We do this by tiling C− with
compact sets:

Re z

Im z

Q1Q1 Q2

Q3Q4Q4Q5

Q6

Q7 · · ·· · ·

And finally define:

Γn(U) :=
n⋃

j=1

Γ
Qj
n (U)
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d 2rinner
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Solution of 
(−∆− k2)u = 0 in BR \ U,

u = e5 on ∂BR,

u = 0 on ∂U.

Left: k = 1.0 (far from resonance)
Right: k = 2.049− 0.026i (near second resonance)
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Thank you for your attention!
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