The method of multipliers in spectral theory

Lucrezia Cossetti | July 11, 2022
Joint works with L. Fanelli and D. Krejčirík
BIRS Workshop: Mathematical aspects of the Physics with non-self-Adjoint Operators, Banff, Alberta

The problem

Perturbed setting

$$
H_{V}=H_{0}+V
$$

V possibly complex-valued (non-self-adjoint)
Question
$\sigma\left(H_{0}\right)$ known $\Longrightarrow \sigma\left(H_{V}\right)$?
Goal
$\sigma_{\mathrm{p}}\left(H_{0}\right)=\varnothing \xrightarrow{\text { s.c. }} \sigma_{\mathrm{p}}\left(H_{V}\right)=\sigma_{\mathrm{p}}\left(H_{0}\right)=\varnothing$ (absence of bound states)

- repulsive V
- V (attractive) small if compared to H_{0}

The problem

Perturbed setting

$$
H_{V}=H_{0}+V
$$

V possibly complex-valued (non-self-adjoint)

Question

$\sigma\left(H_{0}\right)$ known $\Longrightarrow \sigma\left(H_{V}\right)$?
Goal
$\sigma_{\mathrm{p}}\left(H_{0}\right)=\varnothing \xrightarrow{\text { s.c. }} \sigma_{\mathrm{p}}\left(H_{V}\right)=\sigma_{\mathrm{p}}\left(H_{0}\right)=\varnothing$ (absence of bound states)

- repulsive V
- V (attractive) small if compared to H_{0}

The method of multipliers: the origine

Toy model: Linear Schrödinger equation

$$
\begin{equation*}
i \partial_{t} u=-\Delta u \tag{*}
\end{equation*}
$$

Using (*)

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} \int|x|^{2}|u|^{2} & \left.=\left.\frac{d^{2}}{d t^{2}}\langle u,| x\right|^{2} u\right\rangle=\frac{d}{d t}\left(-i\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle\right) \\
& =-\left\langle u,\left[-\Delta,\left[-\Delta,|x|^{2}\right]\right] u\right\rangle
\end{align*}
$$

Since $\left[-\Delta,\left[-\Delta,|x|^{2}\right]\right]=8 \Delta$, then

$$
\frac{d^{2}}{d t^{2}} \int|x|^{2}|u|^{2}=8 \int|\nabla u|^{2}=16 E
$$

$\Longrightarrow \int|x|^{2}|u|^{2} \rightarrow \infty \quad$ for $t \rightarrow \pm \infty \quad$ dispersion(Morawetz' 70)

The method of multipliers: the origine

Toy model: Linear Schrödinger equation

$$
\begin{equation*}
i \partial_{t} u=-\Delta u \tag{*}
\end{equation*}
$$

Using (*)

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} \int|x|^{2}|u|^{2} & \left.=\left.\frac{d^{2}}{d t^{2}}\langle u,| x\right|^{2} u\right\rangle=\frac{d}{d t}\left(-i\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle\right) \\
& =-\left\langle u,\left[-\Delta,\left[-\Delta,|x|^{2}\right]\right] u\right\rangle
\end{align*}
$$

Since $\left[-\Delta,\left[-\Delta,|x|^{2}\right]\right]=8 \Delta$, then

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} \int|x|^{2}|u|^{2}=8 \int|\nabla u|^{2}=16 E \\
\Longrightarrow \int|x|^{2}|u|^{2} \rightarrow \infty \quad \text { for } t \rightarrow \pm \infty \quad \text { dispersion(Morawetz'70) }
\end{gathered}
$$

- Identity (\bullet) alternatively multiplying $(*)$ by $\left[-\Delta,|x|^{2}\right]$ and taking \Re

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\triangle,|x|^{2}\right] u$, take the real parts

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\Re\left\langle H_{V} u,\left[-\Delta,|x|^{2}\right] u\right\rangle=\lambda \Re\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle
$$

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\Re\left\langle H_{V} u,\left[-\Delta,|x|^{2}\right] u\right\rangle=\lambda \Re \underbrace{\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle}_{\substack{\text { purely imaginary } \\\left(\left[-\Delta,|x|^{2}\right] \text { skew-symm }\right)}}
$$

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\Re\left\langle H_{V} u,\left[-\Delta,|x|^{2}\right] u\right\rangle=0
$$

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\left\langle u,\left[H_{V},\left[-\Delta,|x|^{2}\right]\right] u\right\rangle=0
$$

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\left\langle u,\left[H_{V},\left[-\Delta,|x|^{2}\right]\right] u\right\rangle=0
$$

- Compute the double commutator $\Longrightarrow \int|\nabla u|^{2}-\frac{1}{2} \int x \cdot \nabla V|u|^{2}=0$

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\left\langle u,\left[H_{V},\left[-\Delta,|x|^{2}\right]\right] u\right\rangle=0
$$

- Compute the double commutator $\Longrightarrow \int|\nabla u|^{2}-\frac{1}{2} \int x \cdot \nabla V|u|^{2}=0$
- If $x \cdot \nabla V \leq 0 \Longrightarrow \int|\nabla u|^{2} \leq 0 \Longrightarrow \sigma_{p}(-\Delta+V)=\varnothing$

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\left\langle u,\left[H_{V},\left[-\Delta,|x|^{2}\right]\right] u\right\rangle=0
$$

- Compute the double commutator $\Longrightarrow \int|\nabla u|^{2}-\frac{1}{2} \int x \cdot \nabla V|u|^{2}=0$
- Let $0 \neq a^{2}<1$ be such that

$$
\frac{1}{2} \int[x \cdot \nabla V]_{+}|u|^{2} \leq a^{2} \int|\nabla u|^{2}
$$

Absence of bound states I

Self adjoint Schrödinger operator

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad d \geq 3
$$

- By contradiction: $-\Delta u+V u=\lambda u, \quad \lambda \in \mathbb{R}$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$, take the real parts

$$
\left\langle u,\left[H_{V},\left[-\Delta,|x|^{2}\right]\right] u\right\rangle=0
$$

- Compute the double commutator $\Longrightarrow \int|\nabla u|^{2}-\frac{1}{2} \int x \cdot \nabla V|u|^{2}=0$
- Let $0 \neq a^{2}<1$ be such that

$$
\begin{gathered}
\frac{1}{2} \int[x \cdot \nabla V]_{+}|u|^{2} \leq a^{2} \int|\nabla u|^{2} \\
\left(1-a^{2}\right) \int|\nabla u|^{2} \leq 0 \xrightarrow{a^{2}<1} \sigma_{p}(-\Delta+V)=\varnothing
\end{gathered}
$$

Mourre Theory

$$
H_{V}=-\Delta+V(x), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

$$
H_{v} u=\lambda u \quad \xrightarrow{H_{v} \text { symmetric }}\left\langle u, i\left[H_{V}, A\right] u\right\rangle=0
$$

How does the method of multipliers meet the Mourre theory?

- $A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad$ (dilation onerator) $\quad \Longrightarrow\left[\triangle,|x|^{2}\right]=4 i A$
- $\sigma_{p}\left(H_{V}\right)=\varnothing$ under same condition on V

Mourre theory does not fit well with the non self-adjoint framework

Mourre Theory

$$
\begin{gathered}
H_{V}=-\Delta+V(x), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
H_{V} u=\lambda u \xrightarrow{H_{V} \text { symmetric }}\left\langle u, i\left[H_{V}, A\right] u\right\rangle=0 \\
A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad \text { (dilation operator) } \Longrightarrow i\left[H_{V}, A\right]=-2 \Delta-x \cdot \nabla V \\
\langle u,-2 \Delta u\rangle=\langle u, x \cdot \nabla V u\rangle
\end{gathered}
$$

How does the method of multipliers meet the Mourre theory?

- $A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad$ (dilation operator) $\Longrightarrow\left[\triangle,|x|^{2}\right]=4 i A$
- $\sigma_{p}\left(H_{V}\right)=\varnothing$ under same condition on V

Mourre theory does not fit well with the non self-adjoint framework

Mourre Theory

$$
\begin{gathered}
H_{V}=-\Delta+V(x), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
H_{V} u=\lambda u \xrightarrow{H_{v} \text { symmetric }}\left\langle u, i\left[H_{V}, A\right] u\right\rangle=0 \\
A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad \text { (dilation operator) } \Longrightarrow i\left[H_{V}, A\right]=-2 \Delta-x \cdot \nabla V \\
\langle u,-2 \Delta u\rangle=\langle u, x \cdot \nabla V u\rangle \\
\text { if } x \cdot \nabla V \leq 0 \Longrightarrow \sigma_{p}\left(H_{V}\right)=\varnothing
\end{gathered}
$$

How does the method of multipliers meet the Mourre theory?

- $A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad$ (dilation onerator) $\Longrightarrow\left[\triangle,|x|^{2}\right]=4 i A$
- $\sigma_{p}\left(H_{V}\right)=\varnothing$ under same condition on V

Mourre theory does not fit well with the non self-adjoint framework

Mourre Theory

$$
\begin{gathered}
H_{V}=-\Delta+V(x), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
H_{V} u=\lambda u \quad \xrightarrow{H_{V} \text { symmetric }} \quad\left\langle u, i\left[H_{V}, A\right] u\right\rangle=0 \\
A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad \text { (dilation operator) } \Longrightarrow i\left[H_{V}, A\right]=-2 \Delta-x \cdot \nabla V \\
\langle u,-2 \Delta u\rangle=\langle u, x \cdot \nabla V u\rangle \\
\text { if } x \cdot \nabla V \leq 0 \Longrightarrow \sigma_{p}\left(H_{V}\right)=\varnothing
\end{gathered}
$$

How does the method of multipliers meet the Mourre theory?

- $A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad$ (dilation operator) $\Longrightarrow\left[\Delta,|x|^{2}\right]=4 i A$
- $\sigma_{p}\left(H_{V}\right)=\varnothing$ under same condition on V

Mourre theory does not fit well with the non self-adjoint framework

Mourre Theory

$$
\begin{gathered}
H_{V}=-\Delta+V(x), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
H_{V} u=\lambda u \quad \xrightarrow{H_{V} \text { symmetric }} \quad\left\langle u, i\left[H_{V}, A\right] u\right\rangle=0 \\
A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad \text { (dilation operator) } \Longrightarrow i\left[H_{V}, A\right]=-2 \Delta-x \cdot \nabla V \\
\langle u,-2 \Delta u\rangle=\langle u, x \cdot \nabla V u\rangle \\
\text { if } x \cdot \nabla V \leq 0 \Longrightarrow \sigma_{p}\left(H_{V}\right)=\varnothing
\end{gathered}
$$

How does the method of multipliers meet the Mourre theory?

- $A:=-\frac{i}{2}(x \cdot \nabla+\nabla \cdot x) \quad$ (dilation operator) $\Longrightarrow\left[\Delta,|x|^{2}\right]=4 i A$
- $\sigma_{p}\left(H_{V}\right)=\varnothing$ under same condition on V

Mourre theory does not fit well with the non self-adjoint framework

Absence of bound states II

Non self-adjoint Schrödinger operator (Fanelli, Krejčirír, Vega '18)

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}, \quad d \geq 3
$$

\Longrightarrow the spectrum is no more necessarily real

- By contradiction: $H_{V} u=(\lambda+i \varepsilon) u$
- Multinly (in $\underline{1}^{2}$) by $\left[-\Lambda,|x|^{2}\right] u$ and take the real parts

- Note $a, b \geq 0 \Longrightarrow-2 a b \leq 0$, but $a^{2}-2 a b+b^{2}=(a-b)^{2} \geq 0$
- Multiply (in 1^{2}) by cu and take the real parts and the imaginary parts
- Good algebra and suitable choices of φ gives

Absence of bound states II

Non self-adjoint Schrödinger operator (Fanelli, Krejčirír, Vega '18)

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}, \quad d \geq 3
$$

\Longrightarrow the spectrum is no more necessarily real

- By contradiction: $H_{v} u=(\lambda+i \varepsilon) u \quad($ Case $\lambda \geq|\varepsilon|>0)$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$ and take the real parts
\Longrightarrow one identity is not enough to get the absence of eigenvalues
- Note $a, b \geq 0 \longrightarrow-2 a b<0$, but $a^{2}-2 a b+b^{2}-(a-b)^{2} \geq 0$
- Multiply (in L^{2}) by φu and take the real parts and the imaginary parts
- Good algebra and suitable choices of φ gives

Absence of bound states II

Non self-adjoint Schrödinger operator (Fanelli, Krejčirík, Vega '18)

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}, \quad d \geq 3
$$

\Longrightarrow the spectrum is no more necessarily real

- By contradiction: $H_{V} u=(\lambda+i \varepsilon) u \quad($ Case $\lambda \geq|\varepsilon|>0)$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$ and take the real parts

$$
\Re\left\langle H_{V},\left[-\Delta,|x|^{2}\right] u\right\rangle=-\varepsilon \Im\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle
$$

- Note $a, b \geq 0 \Longrightarrow-2 a b \leq 0$, but $a^{2}-2 a b+b^{2}=(a-b)^{2} \geq 0$
- Multiply (in $\underline{1}^{2}$) by cu and take the real parts and the imaginary parts
- Good algebra and suitable choices of φ gives

Absence of bound states II

Non self-adjoint Schrödinger operator (Fanelli, Krejčirík, Vega '18)

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}, \quad d \geq 3
$$

\Longrightarrow the spectrum is no more necessarily real

- By contradiction: $H_{V} u=(\lambda+i \varepsilon) u \quad($ Case $\lambda \geq|\varepsilon|>0)$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$ and take the real parts

$$
\Re\left\langle H_{V},\left[-\Delta,|x|^{2}\right] u\right\rangle=-\varepsilon \Im\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle
$$

\Longrightarrow one identity is not enough to get the absence of eigenvalues!

- Multiply (in L^{2}) by φu and take the real parts and the imaginary parts
- Good algebra and suitable choices of φ gives

Absence of bound states II

Non self-adjoint Schrödinger operator (Fanelli, Krejčirík, Vega '18)

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}, \quad d \geq 3
$$

\Longrightarrow the spectrum is no more necessarily real

- By contradiction: $H_{V} u=(\lambda+i \varepsilon) u \quad($ Case $\lambda \geq|\varepsilon|>0)$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$ and take the real parts

$$
\Re\left\langle H_{V},\left[-\Delta,|x|^{2}\right] u\right\rangle=-\varepsilon \Im\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle
$$

\Longrightarrow one identity is not enough to get the absence of eigenvalues!

- Note $a, b \geq 0 \Longrightarrow-2 a b \leq 0$, but $a^{2}-2 a b+b^{2}=(a-b)^{2} \geq 0$
- Multiply (in L^{2}) by φu and take the real parts and the imaginary parts
- Good algebra and suitable choices of φ gives

Absence of bound states II

Non self-adjoint Schrödinger operator (Fanelli, Krejčirík, Vega '18)

$$
H_{V}=-\Delta+V, \quad \text { in } \quad L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}\right), \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}, \quad d \geq 3
$$

\Longrightarrow the spectrum is no more necessarily real

- By contradiction: $H_{V} u=(\lambda+i \varepsilon) u \quad($ Case $\lambda \geq|\varepsilon|>0)$
- Multiply (in L^{2}) by $\left[-\Delta,|x|^{2}\right] u$ and take the real parts

$$
\Re\left\langle H_{V},\left[-\Delta,|x|^{2}\right] u\right\rangle=-\varepsilon \Im\left\langle u,\left[-\Delta,|x|^{2}\right] u\right\rangle
$$

\Longrightarrow one identity is not enough to get the absence of eigenvalues!

- Note $a, b \geq 0 \Longrightarrow-2 a b \leq 0$, but $a^{2}-2 a b+b^{2}=(a-b)^{2} \geq 0$
- Multiply (in L^{2}) by φu and take the real parts and the imaginary parts
- Good algebra and suitable choices of φ gives

Absence of bound states II

$$
\begin{aligned}
& \int|\nabla u|^{2}+\lambda \int|u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int \frac{x}{|x|} \bar{u} \nabla u \\
& \quad+\frac{|\varepsilon|}{\lambda^{1 / 2}}\left[\int|x||\nabla u|^{2}+\lambda \int|x||u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int|x| \frac{x}{|x|} \nabla u \bar{u}\right] \\
& \quad+\int \Re V|u|^{2}+2 \Re \int x V u \nabla \bar{u}-2 \Im \lambda^{1 / 2} \operatorname{sgn} \varepsilon \int x \frac{x}{|x|} V|u|^{2}=0
\end{aligned}
$$

(Eidus '62, Ikebe-Saito '72)

Absence of bound states II

$$
\begin{aligned}
& \int|\nabla u|^{2}+\lambda \int|u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int \frac{x}{|x|} \bar{u} \nabla u \\
& \quad+\frac{|\varepsilon|}{\lambda^{1 / 2}}\left[\int|x||\nabla u|^{2}+\lambda \int|x||u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int|x| \frac{x}{|x|} \nabla u \bar{u}\right] \\
& \quad+\int \Re V|u|^{2}+2 \Re \int x V u \nabla \bar{u}-2 \Im \lambda^{1 / 2} \operatorname{sgn} \varepsilon \int x \frac{x}{|x|} V|u|^{2}=0
\end{aligned}
$$

$$
u^{-}(x):=e^{-i \lambda^{1 / 2}} \operatorname{sgn} \varepsilon|x| u(x)
$$

(Eidus '62, Ikebe-Saito '72)

Absence of bound states II

$$
\begin{aligned}
& \int|\nabla u|^{2}+\lambda \int|u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int \frac{x}{|x|} \bar{u} \nabla u \\
& \quad+\frac{|\varepsilon|}{\lambda^{1 / 2}}\left[\int|x||\nabla u|^{2}+\lambda \int|x||u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int|x| \frac{x}{|x|} \nabla u \bar{u}\right] \\
& \quad+\int \Re V|u|^{2}+2 \Re \int x V u \nabla \bar{u}-2 \Im \lambda^{1 / 2} \operatorname{sgn} \varepsilon \int x \frac{x}{|x|} V|u|^{2}=0
\end{aligned}
$$

$$
u^{-}(x):=e^{-i \lambda^{1 / 2} \operatorname{sgn} \varepsilon|x|} u(x) \quad \text { (Eidus '62, Ikebe-Saito '72) }
$$

$$
\left|\nabla u^{-}\right|^{2}=|\nabla u|^{2}+\lambda|u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \frac{x}{|x|} \Im(\bar{u} \nabla u)
$$

Absence of bound states II

$$
\begin{aligned}
& \int|\nabla u|^{2}+\lambda \int|u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int \frac{x}{|x|} \bar{u} \nabla u \\
& \quad+\frac{|\varepsilon|}{\lambda^{1 / 2}}\left[\int|x||\nabla u|^{2}+\lambda \int|x||u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \Im \int|x| \frac{x}{|x|} \nabla u \bar{u}\right] \\
& +(d-1) \int \Re V|u|^{2}+2 \Re \int x V u \nabla \bar{u}-2 \Im \lambda^{1 / 2} \operatorname{sgn} \varepsilon \int x \frac{x}{|x|} V|u|^{2}=0
\end{aligned}
$$

$$
u^{-}(x):=e^{-i \lambda^{1 / 2}} \operatorname{sgn} \varepsilon|x| u(x) \quad \text { (Eidus '62, Ikebe-Saito '72) }
$$

$$
\left|\nabla u^{-}\right|^{2}=|\nabla u|^{2}+\lambda|u|^{2}-2 \lambda^{1 / 2} \operatorname{sgn} \varepsilon \frac{x}{|x|} \Im(\bar{u} \nabla u)
$$

$$
\int\left|\nabla u^{-}\right|^{2}+\frac{|\varepsilon|}{\lambda^{1} / 2} \int|x|\left|\nabla u^{-}\right|^{2}+(d-1) \Re \int V\left|u^{-}\right|^{2}+2 \Re \int x V u^{-} \overline{\nabla u^{-}}=0
$$

Absence of bound states II

- Integrating by parts

$$
\int\left|\nabla u^{-}\right|^{2}+\frac{|\varepsilon|}{\lambda^{1 / 2}} \int|x|\left|\nabla u^{-}\right|^{2}-\int \partial_{r}(|x| \Re V)\left|u^{-}\right|^{2}-2 \Im \int x \Im V u^{-} \overline{\nabla u^{-}}=0
$$

- Let a, b be suitable constants such that

$$
\begin{gathered}
\int\left[\partial_{r}(|x| \Re V)\right]_{+}|u|^{2} \leq a^{2} \int|\nabla u|^{2} \\
\int|x|^{2}|\Im V|^{2}|u|^{2} \leq b^{2} \int|\nabla u|^{2} \\
\left(1-a^{2}-2 b\right) \int\left|\nabla u^{-}\right|^{2} \leq 0 \xrightarrow{a^{2}+2 b<1} \sigma_{p}(-\Delta+V)=\varnothing
\end{gathered}
$$

Absence of bound states III

Non self-adjoint Schrödinger operator on the half-space (C., Krejčirík '19)

$$
\begin{cases}-\Delta u=(\lambda+i \varepsilon) u & \Omega=\mathbb{R}^{d-1} \times(0, \infty) \\ \frac{\partial u}{\partial \nu}+\alpha u=0 & \partial \Omega=\left\{x_{d}=0\right\}\end{cases}
$$

with $\alpha: \partial \Omega \rightarrow \mathbb{C}, \alpha \in L^{\infty}(\partial \Omega)$
The analogous identity reads

- $\Re \alpha \geq 0 \quad$ (repulsivity)
- $\left\|\nabla^{1 / 2}\left(x^{\prime} \alpha\right)\right\|_{L^{2(d-1)}\left(\Pi^{d-1}\right)} \leq b \quad$ (smallness)

Absence of bound states III

Non self-adjoint Schrödinger operator on the half-space (C., Krejčirík '19)

$$
\begin{cases}-\Delta u=(\lambda+i \varepsilon) u & \Omega=\mathbb{R}^{d-1} \times(0, \infty) \\ \frac{\partial u}{\partial \nu}+\alpha u=0 & \partial \Omega=\left\{x_{d}=0\right\}\end{cases}
$$

with $\alpha: \partial \Omega \rightarrow \mathbb{C}, \alpha \in L^{\infty}(\partial \Omega)$
The analogous identity reads

$$
\int_{\Omega}\left|\nabla u^{-}\right|^{2}+\frac{|\varepsilon|}{\lambda^{1 / 2}} \int_{\Omega}|x|\left|\nabla u^{-}\right|^{2}+\int_{\partial \Omega} \Re \alpha|u|^{2} d \sigma+2 \Re \int_{\partial \Omega} x^{\prime} \alpha u^{-} \overline{\nabla u^{-}} d \sigma=0
$$

\square

Absence of bound states III

Non self-adjoint Schrödinger operator on the half-space (C., Krejčirík '19)

$$
\begin{cases}-\Delta u=(\lambda+i \varepsilon) u & \Omega=\mathbb{R}^{d-1} \times(0, \infty) \\ \frac{\partial u}{\partial \nu}+\alpha u=0 & \partial \Omega=\left\{x_{d}=0\right\}\end{cases}
$$

with $\alpha: \partial \Omega \rightarrow \mathbb{C}, \alpha \in L^{\infty}(\partial \Omega)$
The analogous identity reads

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u^{-}\right|^{2}+\frac{|\varepsilon|}{\lambda^{1 / 2}} \int_{\Omega}|x|\left|\nabla u^{-}\right|^{2}+\int_{\partial \Omega} \Re \alpha|u|^{2} d \sigma+2 \Re \int_{\partial \Omega} x^{\prime} \alpha u^{-} \overline{\nabla u^{-}} d \sigma=0 \\
& \quad \text { (repulsivity) } \\
& \quad \because \alpha \geq 0 \quad\left\|\nabla^{1 / 2}\left(x^{\prime} \alpha\right)\right\|_{L^{2(d-1)}\left(\mathbb{R}^{d-1}\right)} \leq b \quad \text { (smallness) } \\
& \Longrightarrow 2 \Re \int_{\partial \Omega} x^{\prime} \alpha u^{-} \nabla \bar{u}^{-} \leq C\left\|u^{-}\right\|_{\dot{H}^{1 / 2}(\partial \Omega)}^{2}
\end{aligned}
$$

Absence of bound states III

Non self-adjoint Schrödinger operator on the half-space (C., Krejčirík '19)

$$
\begin{cases}-\Delta u=(\lambda+i \varepsilon) u & \Omega=\mathbb{R}^{d-1} \times(0, \infty) \\ \frac{\partial u}{\partial \nu}+\alpha u=0 & \partial \Omega=\left\{x_{d}=0\right\}\end{cases}
$$

with $\alpha: \partial \Omega \rightarrow \mathbb{C}, \alpha \in L^{\infty}(\partial \Omega)$
The analogous identity reads

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u^{-}\right|^{2}+\frac{|\varepsilon|}{\lambda^{1 / 2}} \int_{\Omega}|x|\left|\nabla u^{-}\right|^{2}+\int_{\partial \Omega} \Re \alpha|u|^{2} d \sigma+2 \Re \int_{\partial \Omega} x^{\prime} \alpha u^{-} \overline{\nabla u^{-}} d \sigma=0 \\
& \quad \Re \alpha \geq 0 \quad \text { (repulsivity) } \\
& \quad\left\|\nabla^{1 / 2}\left(x^{\prime} \alpha\right)\right\|_{L^{2(d-1)}\left(\mathbb{R}^{d-1}\right)} \leq b \quad \text { (smallness) } \\
& \Longrightarrow 2 \Re \int_{\partial \Omega} x^{\prime} \alpha u^{-} \nabla \bar{u}^{-} \leq C\left\|u^{-}\right\|_{\dot{H}^{1 / 2}(\partial \Omega)}^{2}
\end{aligned}
$$

Trace argument $\Longrightarrow\left\|u^{-}\right\|_{\dot{H}^{1 / 2}(\partial \Omega)} \leq\left\|u^{-}\right\|_{\dot{H}^{1}(\Omega)} \Longrightarrow \sigma_{p}\left(-\Delta_{\Omega}\right)=\varnothing$

Absence of bound states IV

Generalizations to other models:

- Electromagnetic Schrödinger (Fanelli, Krejčirírí, Vega '18 $d \geq 2$)

$$
H_{A, V}:=-(\nabla+i A)^{2}+V \quad A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

New term depending on $B:=(\nabla A)-(\nabla A)^{T}$

[Koch,Tataru 2006] Gauge dependent conditions.

- Matrix-valued electromagnetic Schrödinger (C., Fanelli, Krejčirík '20)

Absence of bound states IV

Generalizations to other models:

- Electromagnetic Schrödinger (Fanelli, Krejčirík, Vega '18 $d \geq 2$)

$$
H_{A, V}:=-(\nabla+i A)^{2}+V \quad A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

New term depending on $B:=(\nabla A)-(\nabla A)^{T}$:

$$
\Im \int x \cdot B \cdot \overline{\nabla_{A} u} u d x
$$

if $\int|x|^{2}|B|^{2}|u|^{2} \leq b^{2} \int\left|\nabla_{A} u\right|^{2} \xrightarrow{b^{2} \text { small }} \sigma_{p}\left(H_{A, v}\right)=\varnothing$.
[Koch,Tataru 2006] Gauge dependent conditions.

Absence of bound states IV

Generalizations to other models:

- Electromagnetic Schrödinger (Fanelli, Krejčirík, Vega '18 $d \geq 2$)

$$
H_{A, V}:=-(\nabla+i A)^{2}+V \quad A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

New term depending on $B:=(\nabla A)-(\nabla A)^{T}$:

$$
\Im \int x \cdot B \cdot \overline{\nabla_{A} u} u d x
$$

$$
\text { if } \int|x|^{2}|B|^{2}|u|^{2} \leq b^{2} \int\left|\nabla_{A} u\right|^{2} \xrightarrow{b^{2} \text { small }} \sigma_{p}\left(H_{A, v}\right)=\varnothing \text {. }
$$

[Koch,Tataru 2006] Gauge dependent conditions.

- Lamé operators (C. '17)

$$
H_{V}:=-\mu \Delta-(\lambda+\mu) \nabla \operatorname{div}+V(x) \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d \times d}, \quad d \geq 3
$$

Absence of bound states IV

Generalizations to other models:

- Electromagnetic Schrödinger (Fanelli, Krejčirík, Vega '18 $d \geq 2$)

$$
H_{A, V}:=-(\nabla+i A)^{2}+V \quad A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

New term depending on $B:=(\nabla A)-(\nabla A)^{T}$:

$$
\Im \int x \cdot B \cdot \overline{\nabla_{A} u} u d x
$$

$$
\text { if } \int|x|^{2}|B|^{2}|u|^{2} \leq b^{2} \int\left|\nabla_{A} u\right|^{2} \xrightarrow{b^{2} \text { small }} \sigma_{p}\left(H_{A, V}\right)=\varnothing \text {. }
$$

[Koch,Tataru 2006] Gauge dependent conditions.

- Lamé operators (C. '17)

$$
H_{V}:=-\mu \Delta-(\lambda+\mu) \nabla \operatorname{div}+V(x) \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d \times d}, \quad d \geq 3
$$

- Matrix-valued electromagnetic Schrödinger (C., Fanelli, Krejčirík '20)

$$
\Longrightarrow H_{A, V}=-(\nabla+i A)^{2} /_{\mathbb{C}^{n}}+V(x) \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}^{n \times n}, \quad d \geq 1
$$

Absence of bound states IV

Generalizations to other models:

- Pauli operators (C., Fanelli, Krejčirík '20)

$$
\begin{aligned}
H_{P}(A, V):=-(\nabla+i A)^{2} I_{\mathbb{C}^{2}}-\sigma \cdot B+V & \sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \\
& \sigma_{i}, V(x) \in \mathbb{C}^{2 \times 2}
\end{aligned}
$$

- Dirac operators (C., Fanelli, Krejčirík '20)

Absence of bound states IV

Generalizations to other models:

- Pauli operators (C., Fanelli, Krejčirík '20)

$$
\begin{array}{ll}
H_{P}(A, V):=-(\nabla+i A)^{2} I_{\mathbb{C}^{2}}-\sigma \cdot B+V & \sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \\
& \sigma_{i}, V(x) \in \mathbb{C}^{2 \times 2}
\end{array}
$$

- Dirac operators (C., Fanelli, Krejčiríík '20)

$$
\begin{aligned}
H_{D}(A):=-i \alpha \cdot(\nabla+i A(x))+\frac{1}{2} \alpha_{4} & \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \\
& \alpha_{\mu} \in \mathbb{C}^{4 \times 4}, \quad \mu=1,2,3,4
\end{aligned}
$$

Absence of bound states IV

Generalizations to other models:

- Pauli operators (C., Fanelli, Krejčirík '20)

$$
\begin{array}{ll}
H_{P}(A, V):=-(\nabla+i A)^{2} I_{\mathbb{C}^{2}}-\sigma \cdot B+V & \sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \\
& \sigma_{i}, V(x) \in \mathbb{C}^{2 \times 2}
\end{array}
$$

- Dirac operators (C., Fanelli, Krejčiríík '20)

$$
\begin{aligned}
H_{D}(A):=-i \alpha \cdot(\nabla+i A(x))+\frac{1}{2} \alpha_{4} & \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \\
& \alpha_{\mu} \in \mathbb{C}^{4 \times 4}, \quad \mu=1,2,3,4
\end{aligned}
$$

$$
H_{D}(A)^{2}=\left(\begin{array}{cc}
H_{P}(A)+\frac{1}{4} I_{\mathbb{C}^{2}} & 0 \\
0 & H_{P}(A)+\frac{1}{4} l_{\mathbb{C}^{2}}
\end{array}\right) \quad \text { (supersymmetry) }
$$

Absence of bound states IV

Generalizations to other models:

- Pauli operators (C., Fanelli, Krejčirík '20)

$$
\begin{array}{ll}
H_{P}(A, V):=-(\nabla+i A)^{2} I_{\mathbb{C}^{2}}-\sigma \cdot B+V \quad & \sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \\
& \sigma_{i}, V(x) \in \mathbb{C}^{2 \times 2}
\end{array}
$$

- Dirac operators (C., Fanelli, Krejčiríík '20)

$$
\begin{aligned}
H_{D}(A):=-i \alpha \cdot(\nabla+i A(x))+\frac{1}{2} \alpha_{4} & \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \\
& \alpha_{\mu} \in \mathbb{C}^{4 \times 4}, \quad \mu=1,2,3,4
\end{aligned}
$$

$$
H_{D}(A)^{2}=\left(\begin{array}{cc}
H_{P}(A)+\frac{1}{4} l_{\mathbb{C}^{2}} & 0 \\
0 & H_{P}(A)+\frac{1}{4} l_{\mathbb{C}^{2}}
\end{array}\right) \quad \text { (supersymmetry) }
$$

Main theorem (C., Fanelli, Krejčiřík '20)

Let $d \geq 3, n \geq 1$ and let $A \in W_{\text {loc }}^{1, d}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right), V=V^{(1)}+V^{(2)}$, with $V^{(2)}=v_{\mathbb{C}^{n}}$ and $\Re v \in W_{\text {loc }}^{1, d / 2}$. If, $\forall \psi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\int_{\mathbb{R}^{d}} r^{2}\left(|B|^{2}+\left|V^{(1)}\right|^{2}+\left|\Re v_{-}\right|^{2}+|\Im v|^{2}+\left[\partial_{r}(r \Re v)\right]_{+}\right)|u|^{2} \leq c_{d} \int_{\mathbb{R}^{d}}\left|\nabla_{A} u\right|^{2},
$$

then $\sigma_{\mathrm{p}}(H(A, V))=\varnothing$.

