Transport Equation on Metric Graphs

Mathematical aspects of the Physics with non-self-Adjoint
Operators, BIRS, July 2022

Marjeta Kramar Fijavž (University of Ljubljana)
Joint work with Klaus-Jochen Engel (University of L'Aquila)

The Setting

The Setting

$$
\square
$$

The Setting

- finite connected compact metric graph

The Setting

- finite connected
compact metric graph
- edges $\sim[0,1]$

The Setting

- finite connected
compact metric graph
- edges $\sim[0,1]$

The Setting

- finite connected
compact metric graph
- edges $\sim[0,1]$

The Setting

- transport equation on the edges:

$$
\partial_{t} u_{j}(t, s)=c_{j}(s) \partial_{s} u_{j}(t, s)
$$

- finite connected compact metric graph
- edges $\sim[0,1]$

The Setting

- transport equation on the edges:

$$
\partial_{t} u_{j}(t, s)=c_{j}(s) \partial_{s} u_{j}(t, s)
$$

- standard boundary conditions in the vertices
- finite connected compact metric graph
- edges $\sim[0,1]$

The Setting

- transport equation on the edges:

$$
\partial_{t} u_{j}(t, s)=c_{j}(s) \partial_{s} u_{j}(t, s)
$$

- standard boundary conditions in the vertices
- distribution rules
- finite connected compact metric graph
- edges $\sim[0,1]$

The Setting

- transport equation on the edges:

- finite connected compact metric graph
- edges $\sim[0,1]$

$$
\partial_{t} u_{j}(t, s)=c_{j}(s) \partial_{s} u_{j}(t, s)
$$

- standard boundary conditions in the vertices
- distribution rules
- \sum in-flow $=\sum$ out-flow

The Setting

- transport equation on the edges:

$$
\partial_{t} u_{j}(t, s)=c_{j}(s) \partial_{s} u_{j}(t, s)
$$

- standard boundary conditions in the vertices
- distribution rules
- \sum in-flow $=\sum$ out-flow
- finite connected compact metric graph
- edges $\sim[0,1]$

Studied by

Barletti, Sikolya, KF, Klöss, Engel, Radl, Dorn, Bayazit, Banasiak, Puchalska, Namayanja, Błoch, Jacob, Zwart, Le Gorrec, Maschke, Villegas, Kaiser, Wegner,

The Setting

The Setting

The Setting

The Setting

The Setting

Our aims

1. consider non-compact graphs

The Setting

Our aims

1. consider non-compact graphs
2. take general coefficients $c(\cdot)$

The Setting

Our aims

1. consider non-compact graphs
2. take general coefficients $c(\cdot)$
3. consider operators on L^{p}-spaces, $p \in[1, \infty)$

The Setting

Our aims

1. consider non-compact graphs
2. take general coefficients $c(\cdot)$
3. consider operators on L^{p}-spaces, $p \in[1, \infty)$
4. treat general boundary conditions

The Setting

Our aims

1. consider non-compact graphs
2. take general coefficients $c(\bullet)$
3. consider operators on L^{p}-spaces, $p \in[1, \infty)$
4. treat general boundary conditions
5. obtain necessary and sufficient conditions for well-posedness

Main idea: Boundary Perturbations

Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.
 . .

Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

Main idea: Boundary Perturbations

Abstract formulation

$(A C P)\left\{\begin{array}{l}\dot{x}(t)=A x(t), \\ x(0)=x_{0},\end{array} \quad\right.$ on $\quad X=L^{p}\left(\mathbb{R}_{+}, \mathbb{C}^{\ell}\right) \times \mathrm{L}^{p}\left([0,1], \mathbb{C}^{m}\right)$
where

$$
\begin{aligned}
A & =\left(c_{i j}(\cdot) \partial_{s}\right)_{i j} \\
D(A) & =\left\{f \in \mathrm{~W}^{1, p}\left(\mathbb{R}_{+}, \mathbb{C}^{\ell}\right) \times \mathrm{W}^{1, p}\left([0,1], \mathbb{C}^{m}\right) \mid \Phi f=0\right\}
\end{aligned}
$$

and $\Phi: X \rightarrow \partial X \subset \mathbb{C}^{m+\ell}$ is boundary operator

Boundary perturbations of domains of generators

围 Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

Boundary perturbations of domains of generators

围 Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

Boundary perturbations of domains of generators

击 Greiner (1987), Weiss (1994), Staffans (2005), Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

- X and ∂X two Banach spaces

Boundary perturbations of domains of generators

囯 Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

- X and ∂X two Banach spaces
- $A_{m}: D\left(A_{m}\right) \subseteq X \rightarrow X$ a closed, densely defined maximal operator

Boundary perturbations of domains of generators

囯 Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

- X and ∂X two Banach spaces
- $A_{m}: D\left(A_{m}\right) \subseteq X \rightarrow X$ a closed, densely defined maximal operator
- boundary operator $\Phi=L-C: X \rightarrow \partial X$

Boundary perturbations of domains of generators

围 Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

- X and ∂X two Banach spaces
- $A_{m}: D\left(A_{m}\right) \subseteq X \rightarrow X$ a closed, densely defined maximal operator
- boundary operator $\Phi=L-C: X \rightarrow \partial X$
- $A_{0}, A \subset A_{m}$ with $D\left(A_{0}\right)=\operatorname{ker}(L), D(A)=\operatorname{ker}(\Phi)$

Boundary perturbations of domains of generators

围 Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

- X and ∂X two Banach spaces
- $A_{m}: D\left(A_{m}\right) \subseteq X \rightarrow X$ a closed, densely defined maximal operator
- boundary operator $\Phi=L-C: X \rightarrow \partial X$
- $A_{0}, A \subset A_{m}$ with $D\left(A_{0}\right)=\operatorname{ker}(L), D(A)=\operatorname{ker}(\Phi)$
- A_{0} generates a C_{0}-semigroup $(T(t))_{t \geq 0}$ on X

Boundary perturbations of domains of generators

囯 Greiner (1987), Weiss (1994), Staffans (2005),
Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

- X and ∂X two Banach spaces
- $A_{m}: D\left(A_{m}\right) \subseteq X \rightarrow X$ a closed, densely defined maximal operator
- boundary operator $\Phi=L-C: X \rightarrow \partial X$
- $A_{0}, A \subset A_{m}$ with $D\left(A_{0}\right)=\operatorname{ker}(L), D(A)=\operatorname{ker}(\Phi)$
- A_{0} generates a C_{0}-semigroup $(T(t))_{t \geq 0}$ on X

Problem

Find conditions on Φ so that A generates a C_{0}-semigroup on X.

Special case: Boundary matrices

Special case: Boundary matrices

Assumptions

Special case: Boundary matrices

Assumptions

- coefficients $c_{i j}(\cdot)$ are bounded functions

Special case: Boundary matrices

Assumptions

- coefficients $c_{i j}(\cdot)$ are bounded functions

$$
c(\bullet)=\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\bullet)
\end{array}\right) \cdot\left(\begin{array}{cc}
\lambda^{e}(\bullet) & 0 \\
0 & \lambda^{i}(\bullet)
\end{array}\right) \cdot\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\bullet)
\end{array}\right)^{-1}
$$

Special case: Boundary matrices

Assumptions

- coefficients $c_{i j}(\cdot)$ are bounded functions

$$
c(\cdot)=\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\bullet)
\end{array}\right) \cdot\left(\begin{array}{cc}
\lambda^{e}(\bullet) & 0 \\
0 & \lambda^{i}(\bullet)
\end{array}\right) \cdot\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\bullet)
\end{array}\right)^{-1}
$$

- λ^{e}, λ^{i} are diagonal whose diagonal entries are functions with strictly constant sign

Special case: Boundary matrices

Assumptions

- coefficients $c_{i j}(\cdot)$ are bounded functions

$$
c(\cdot)=\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\cdot)
\end{array}\right) \cdot\left(\begin{array}{cc}
\lambda^{e}(\bullet) & 0 \\
0 & \lambda^{i}(\bullet)
\end{array}\right) \cdot\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\bullet)
\end{array}\right)^{-1}
$$

- λ^{e}, λ^{i} are diagonal whose diagonal entries are functions with strictly constant sign
- q is bounded, Lipschitz continuous with bounded inverse

Special case: Boundary matrices

Assumptions

- coefficients $c_{i j}(\cdot)$ are bounded functions

$$
c(\cdot)=\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\cdot)
\end{array}\right) \cdot\left(\begin{array}{cc}
\lambda^{e}(\cdot) & 0 \\
0 & \lambda^{i}(\bullet)
\end{array}\right) \cdot\left(\begin{array}{cc}
q^{e}(\bullet) & 0 \\
0 & q^{i}(\bullet)
\end{array}\right)^{-1}
$$

- λ^{e}, λ^{i} are diagonal whose diagonal entries are functions with strictly constant sign
- q is bounded, Lipschitz continuous with bounded inverse

Boundary space

Denote by $P_{+}^{e}, P_{-}^{e} \in \mathrm{M}_{\ell}(\mathbb{C})$ and $P_{+}^{i}, P_{-}^{i} \in \mathrm{M}_{m}(\mathbb{C})$ the spectral projections corresponding to positive/negative values of λ^{e}, λ^{i}, respectively. Then $\partial X=\operatorname{rg}\left(P_{-}^{e}\right) \times \mathbb{C}^{m}=\mathbb{C}^{n} \subseteq \mathbb{C}^{\ell+m}$.

Special case: Boundary matrices

Theorem

Let $\Phi:=\left(V_{0}^{e} \delta_{0}, V_{0}^{i} \delta_{0}-V_{1}^{i} \delta_{1}\right)-B$ for some $V_{0}^{e} \in M_{n \times \ell}(\mathbb{C})$, $V_{0}^{i}, V_{1}^{i} \in M_{n \times m}(\mathbb{C})$, and $B \in \mathcal{L}(X, \partial X)$. Then A generates a C_{0}-semigroup on X if and only if

$$
\left(V_{0}^{e} q^{e}(0), V_{1}^{i} q^{i}(1) P_{+}^{i}-V_{0}^{i} q^{i}(0) P_{-}^{i}\right) \in \mathcal{L}(\partial X)
$$

is invertible.

Special case: Boundary matrices

For compact graph and diagonal velocities we obtain
Corollary
Let $X=\mathrm{L}^{p}\left([0,1], \mathbb{C}^{m}\right)$ and $\Phi:=V_{0} \delta_{0}-V_{1} \delta_{1}-B$ for some $V_{0}, V_{1} \in \mathrm{M}_{m}(\mathbb{C})$ and $B \in \mathcal{L}\left(X, \mathbb{C}^{m}\right)$. Then A generates a C_{0}-semigroup on X if and only if

$$
\operatorname{det}\left(V_{1} P_{+}-V_{0} P_{-}\right) \neq 0
$$

Moreover, it generates C_{0}-group if and only if in addition

$$
\operatorname{det}\left(V_{1} P_{-}-V_{0} P_{+}\right) \neq 0
$$

Standard boundary conditions

Standard boundary conditions

Compact graph

Standard boundary conditions

Compact graph

- Assume diagonal velocities and $\lambda(\cdot)<0$.

Standard boundary conditions

Compact graph

- Assume diagonal velocities and $\lambda(\cdot)<0$.
- Standard boundary conditions:

$$
\Phi f=V_{0} f(0)-V_{1} f(1)=0
$$

Standard boundary conditions

Compact graph

- Assume diagonal velocities and $\lambda(\cdot)<0$.
- Standard boundary conditions:

$$
\Phi f=V_{0} f(0)-V_{1} f(1)=0
$$

- A is generator $\Longleftrightarrow V_{0}$ invertible.

Standard boundary conditions

Compact graph

- Assume diagonal velocities and $\lambda(\cdot)<0$.
- Standard boundary conditions:

$$
\Phi f=V_{0} f(0)-V_{1} f(1)=0
$$

- A is generator $\Longleftrightarrow V_{0}$ invertible.
- $V_{0} f(0)=V_{1} f(1) \Longleftrightarrow f(0)=V_{0}^{-1} V_{1} f(1)$

Standard boundary conditions

Non-compact graph

Standard boundary conditions

Non-compact graph

- Assume diagonal velocities and $\lambda^{i}(\cdot)<0$.

Standard boundary conditions

Non-compact graph

- Assume diagonal velocities and $\lambda^{i}(\cdot)<0$.
- Standard boundary conditions:

$$
\left(V_{0}^{e}, V_{0}^{i}\right)\binom{f^{e}(0)}{f^{i}(0)}=V_{1}^{i} f^{i}(1)
$$

Standard boundary conditions

Non-compact graph

- Assume diagonal velocities and $\lambda^{i}(\cdot)<0$.
- Standard boundary conditions:

$$
\left(V_{0}^{e}, V_{0}^{i}\right)\binom{f^{e}(0)}{f^{i}(0)}=V_{1}^{i} f^{i}(1)
$$

- A is generator $\Longleftrightarrow\left(V_{0}^{e}, V_{0}^{i}\right)$ has full rank.

Standard boundary conditions

Non-compact graph

- Assume diagonal velocities and $\lambda^{i}(\cdot)<0$.
- Standard boundary conditions:

$$
\left(V_{0}^{e}, V_{0}^{i}\right)\binom{f^{e}(0)}{f^{i}(0)}=V_{1}^{i} f^{i}(1)
$$

- A is generator $\Longleftrightarrow\left(V_{0}^{e}, V_{0}^{i}\right)$ has full rank.
- $\left(V_{0}^{e}, V_{0}^{i}\right)$ is Moore-Penrose invertible and boundary conditions can be equivalently written as

$$
\binom{f^{e}(0)}{f^{i}(0)}=\left(V_{0}^{e}, V_{0}^{i}\right)^{+} V_{1}^{i} f^{i}(1)
$$

Examples

Examples

Compact graph, diagonal velocities

$$
A \subseteq \lambda(\cdot) \frac{d}{d s}, \lambda_{1}(\cdot), \lambda_{2}(\cdot), \lambda_{3}(\cdot)<0
$$

Examples

Compact graph, diagonal velocities

$$
A \subseteq \lambda(\cdot) \frac{d}{d s}, \lambda_{1}(\cdot), \lambda_{2}(\cdot), \lambda_{3}(\cdot)<0
$$

- Standard conditions:

$$
\begin{aligned}
& u_{1}(0)=\alpha u_{3}(1) \\
& u_{2}(0)=(1-\alpha) u_{3}(1) \quad \Longleftrightarrow \quad V_{0}=I, \quad V_{1}=\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
& u_{3}(0)=u_{1}(1)+u_{2}(1)
\end{aligned}
$$

Examples

Compact graph, diagonal velocities

$$
A \subseteq \lambda(\cdot) \frac{d}{d s}, \lambda_{1}(\cdot), \lambda_{2}(\cdot), \lambda_{3}(\cdot)<0
$$

- Standard conditions:

$$
\begin{aligned}
& u_{1}(0)=\alpha u_{3}(1) \\
& u_{2}(0)=(1-\alpha) u_{3}(1) \quad \Longleftrightarrow V_{0}=I, \quad V_{1}=\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
& u_{3}(0)=u_{1}(1)+u_{2}(1)
\end{aligned}
$$

- A generates a C_{0}-semigroup but not a group

Examples

Non-compact graph, diagonal velocities

$$
\begin{gathered}
\xrightarrow[e_{2}^{i}]{\mathrm{e}_{1}^{e}} \overbrace{\text { - }}^{\mathrm{e}_{1}^{i}} \mathrm{C}_{2}^{\mathrm{e}_{2}^{e}} \\
V_{0}^{i}=\left(\cdot\left(\begin{array}{ll}
a & 0 \\
0 & d \\
0 & d
\end{array}\right), \quad \lambda_{1}^{i}(\cdot), \lambda_{2}^{i}(\cdot)<0, \lambda_{1}^{e}(\cdot)>0, \lambda_{2}^{e}(\cdot)<0\right. \\
V_{1}^{i}=\left(\begin{array}{cc}
0 & \beta \\
\gamma & 0 \\
0 & 0
\end{array}\right), \quad V_{0}^{e}=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 0 \\
0 & \mu
\end{array}\right)
\end{gathered}
$$

Examples

Non-compact graph, diagonal velocities

$$
\begin{aligned}
& \xrightarrow{\mathrm{e}_{1}^{e}} \overbrace{\mathrm{e}_{2}^{i}}^{\mathrm{e}_{1}^{i}} \mathrm{C} \\
& A \subseteq \lambda(\cdot) \frac{d}{d s}, \lambda_{1}^{i}(\cdot), \lambda_{2}^{i}(\cdot)<0, \lambda_{1}^{e}(\cdot)>0, \lambda_{2}^{e}(\cdot)<0 \\
& V_{0}^{i}=\left(\begin{array}{ll}
a & 0 \\
0 & d \\
0 & 0
\end{array}\right), \quad V_{1}^{i}=\left(\begin{array}{cc}
0 & \beta \\
\gamma & 0 \\
0 & 0
\end{array}\right), \quad V_{0}^{e}=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 0 \\
0 & \mu
\end{array}\right)
\end{aligned}
$$

- A is generator $\Longleftrightarrow a d \mu \neq 0$.

Examples

Compact graph, non-diagonal velocities

$$
A \subseteq c(\cdot) \frac{d}{d s} \text { with } q(s)=\left(\begin{array}{cc}
2-s s-1 \\
1-s & s
\end{array}\right)
$$

Examples

Compact graph, non-diagonal velocities

$$
A \subseteq c(\cdot) \frac{d}{d s} \text { with } q(s)=\left(\begin{array}{cc}
2-s s-1 \\
1-s & s
\end{array}\right)
$$

- Recall: A is generator $\Longleftrightarrow V_{1} q(1) P_{+}-V_{0} q(0) P_{-}$invertible.

Examples

Compact graph, non-diagonal velocities

$$
A \subseteq c(\cdot) \frac{d}{d s} \text { with } q(s)=\left(\begin{array}{cc}
2-s & s-1 \\
1-s & s
\end{array}\right)
$$

- Recall: A is generator $\Longleftrightarrow V_{1} q(1) P_{+}-V_{0} q(0) P_{-}$invertible.
- If $\lambda_{1}(\cdot), \lambda_{2}(\cdot)$ both positive/negative, invertibility of V_{1} / V_{1} yields C_{0}-semigroup.

Examples

Compact graph, non-diagonal velocities

$$
A \subseteq c(\cdot) \frac{d}{d s} \text { with } q(s)=\left(\begin{array}{cc}
2-s & s-1 \\
1-s & s
\end{array}\right)
$$

- Recall: A is generator $\Longleftrightarrow V_{1} q(1) P_{+}-V_{0} q(0) P_{-}$invertible.
- If $\lambda_{1}(\cdot), \lambda_{2}(\cdot)$ both positive/negative, invertibility of V_{1} / V_{1} yields C_{0}-semigroup.
- If $\lambda_{1}(\cdot)>0>\lambda_{2}(\cdot)$ and $V_{0}=V_{1}=I d$, this matrix is singular!

Examples

Compact graph, non-diagonal velocities

$$
A \subseteq c(\bullet) \frac{d}{d s} \text { with } q(s)=\left(\begin{array}{cc}
2-s & s-1 \\
1-s & s
\end{array}\right)
$$

- Recall: A is generator $\Longleftrightarrow V_{1} q(1) P_{+}-V_{0} q(0) P_{-}$invertible.
- If $\lambda_{1}(\cdot), \lambda_{2}(\cdot)$ both positive/negative, invertibility of V_{1} / V_{1} yields C_{0}-semigroup.
- If $\lambda_{1}(\cdot)>0>\lambda_{2}(\cdot)$ and $V_{0}=V_{1}=l d$, this matrix is singular!
- However, if $q(\cdot)=l d$, we obtain the generation of a C_{0}-group.

Examples

General non-local boundary conditons

$$
\begin{aligned}
& X=\mathrm{L}^{p}[0,1], \partial X=\mathbb{C}, A \subseteq \frac{d}{d s}, \Phi=\delta_{1}-B \text { where } \\
& \quad B f:=\int_{0}^{1} h(s) f(s) d s \quad \text { for some } h \in \mathrm{~L}^{q}[0,1], \frac{1}{p}+\frac{1}{q}=1 .
\end{aligned}
$$

Examples

General non-local boundary conditons

$$
\begin{aligned}
& X=L^{p}[0,1], \partial X=\mathbb{C}, A \subseteq \frac{d}{d s}, \Phi=\delta_{1}-B \text { where } \\
& B f:=\int_{0}^{1} h(s) f(s) d s \text { for some } h \in \mathrm{~L}^{q}[0,1], \frac{1}{p}+\frac{1}{q}=1 .
\end{aligned}
$$

- A generates a C_{0}-semigroup but not a group on $\mathrm{L}^{p}[0,1]$.

References

围 K.-J. Engel, MKF, Flows on metric graphs with general boundary conditions, J. Math. Anal. Appl 513 (2022), 126214.

References

目 K.-J. Engel, MKF, Flows on metric graphs with general boundary conditions, J. Math. Anal. Appl 513 (2022), 126214.
(i) MKF, A. Puchalska, Semigroups for dynamical processes on metric graphs, Phil. Trans. R. Soc. A. 378: 20190619 (2020).

References

雷 K.-J. Engel, MKF, Flows on metric graphs with general boundary conditions, J. Math. Anal. Appl 513 (2022), 126214.

围 MKF, A. Puchalska, Semigroups for dynamical processes on metric graphs, Phil. Trans. R. Soc. A. 378: 20190619 (2020).

COST Action CA18232, Mathematical models for interacting dynamics on networks, www.mat-dyn-net.eu

References

雷 K.-J. Engel, MKF, Flows on metric graphs with general boundary conditions, J. Math. Anal. Appl 513 (2022), 126214.

围 MKF, A. Puchalska, Semigroups for dynamical processes on metric graphs, Phil. Trans. R. Soc. A. 378: 20190619 (2020).

COST Action CA18232, Mathematical models for interacting dynamics on networks, www.mat-dyn-net.eu

References

雷 K.-J. Engel, MKF, Flows on metric graphs with general boundary conditions, J. Math. Anal. Appl 513 (2022), 126214.
围 MKF, A. Puchalska, Semigroups for dynamical processes on metric graphs, Phil. Trans. R. Soc. A. 378: 20190619 (2020).
COST Action CA18232, Mathematical models for interacting dynamics on networks, www.mat-dyn-net.eu

Thank you!

