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• finite connected

compact metric graph

• edges ∼ [0, 1]

• transport equation on the edges:

∂tuj(t, s) = cj(s)∂suj(t, s)

• standard boundary conditions in
the vertices

• distribution rules

•
∑

in-flow =
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out-flow

Studied by

Barletti, Sikolya, KF, Klöss, Engel, Radl,
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Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



The Setting

...
. . .

· · ·· · ·

· · ·

...
...

Our aims

1. consider non-compact graphs

2. take general coefficients c(•)

3. consider operators on Lp-spaces,

p ∈ [1,∞)

4. treat general boundary conditions

5. obtain necessary and sufficient

conditions for well-posedness

3



Main idea: Boundary Perturbations



Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

· · ·

· · ·

· · ·
 

· · ·

...
...

4



Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

· · ·

· · ·

· · ·
 

· · ·

...
...

4



Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

· · ·

· · ·

· · ·

 
· · ·

...
...

4



Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

· · ·

· · ·

· · ·
 

· · ·

...
...

4



Main idea: Boundary Perturbations

Consider graph as boundary perturbation of a set of intervals.

· · ·

· · ·

· · ·
 

· · ·

...
...

4



Main idea: Boundary Perturbations

Abstract formulation

(ACP)

ẋ(t) = Ax(t),

x(0) = x0,
on X = Lp(R+,C`)× Lp

(
[0, 1],Cm

)
where

A = (cij(•)∂s)ij

D(A) =
{
f ∈W1,p(R+,C`)×W1,p([0, 1],Cm) | Φf = 0

}
and Φ: X → ∂X ⊂ Cm+` is boundary operator
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Boundary perturbations of domains of generators

Greiner (1987), Weiss (1994), Staffans (2005),

Adler-Bombieri-Engel (2014), Hadd-Manzo-Rhandi (2015)

• X and ∂X two Banach spaces

• Am : D(Am) ⊆ X → X a closed, densely defined maximal

operator

• boundary operator Φ = L− C : X → ∂X

• A0,A ⊂ Am with D(A0) = ker(L), D(A) = ker(Φ)

• A0 generates a C0-semigroup (T (t))t≥0 on X

Problem

Find conditions on Φ so that A generates a C0-semigroup on X .
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Special case: Boundary matrices

Assumptions

• coefficients cij(•) are bounded functions

•
c(•) =

(
qe(•) 0

0 qi (•)

)
·
(
λe(•) 0

0 λi (•)

)
·
(

qe(•) 0

0 qi (•)

)−1

• λe , λi are diagonal whose diagonal entries are functions with

strictly constant sign

• q is bounded, Lipschitz continuous with bounded inverse

Boundary space

Denote by Pe
+,P

e
− ∈ M`(C) and P i

+,P
i
− ∈ Mm(C) the spectral

projections corresponding to positive/negative values of λe , λi ,

respectively. Then ∂X = rg(Pe
−)× Cm = Cn ⊆ C`+m.
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Special case: Boundary matrices

Theorem

Let Φ :=
(
V e
0 δ0,V

i
0δ0 − V i

1δ1
)
− B for some V e

0 ∈ Mn×`(C),

V i
0,V

i
1 ∈ Mn×m(C), and B ∈ L(X , ∂X ). Then A generates a

C0-semigroup on X if and only if(
V e
0 q

e(0),V i
1q

i (1)P i
+ − V i

0q
i (0)P i

−
)
∈ L

(
∂X
)

is invertible.

8



Special case: Boundary matrices

For compact graph and diagonal velocities we obtain

Corollary

Let X = Lp([0, 1],Cm) and Φ := V0δ0 − V1δ1 − B for some

V0,V1 ∈ Mm(C) and B ∈ L(X ,Cm). Then A generates a

C0-semigroup on X if and only if

det
(
V1P+ − V0P−

)
6= 0.

Moreover, it generates C0-group if and only if in addition

det
(
V1P− − V0P+

)
6= 0.

9



Standard boundary conditions



Standard boundary conditions

Compact graph

• Assume diagonal velocities and λ(•) < 0.

• Standard boundary conditions:

Φf = V0f (0)− V1f (1) = 0

• A is generator ⇐⇒ V0 invertible.

• V0f (0) = V1f (1) ⇐⇒ f (0) = V−1
0 V1f (1)
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Standard boundary conditions

Non-compact graph

• Assume diagonal velocities and λi (•) < 0.

• Standard boundary conditions:

(
V e
0 ,V

i
0

)(f e(0)

f i (0)

)
= V i

1f
i (1)

• A is generator ⇐⇒
(
V e
0 ,V

i
0

)
has full rank.

•
(
V e
0 ,V

i
0

)
is Moore-Penrose invertible and boundary conditions

can be equivalently written as(
f e(0)

f i (0)

)
=
(
V e
0 ,V

i
0

)+
V i
1f

i (1)
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Examples

Compact graph, diagonal velocities

e1
e2

e3

A ⊆ λ(•) d
ds , λ1(•), λ2(•), λ3(•) < 0

• Standard conditions:

u1(0) = αu3(1)

u2(0) = (1− α)u3(1)

u3(0) = u1(1) + u2(1)

⇐⇒ V0 = I , V1 =
(

0 0 α
0 0 1−α
1 1 0

)

• A generates a C0-semigroup but not a group
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Examples

Non-compact graph, diagonal velocities

ei1

ei2

ee2ee1

A ⊆ λ(•) d
ds , λi1(•), λi2(•) < 0, λe1(•) > 0, λe2(•) < 0

V i
0 =

(
a 0
0 d
0 0

)
, V i

1 =

(
0 β
γ 0
0 0

)
, V e

0 =
(
λ 0
0 0
0 µ

)

• A is generator ⇐⇒ adµ 6= 0.
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Examples

Compact graph, non-diagonal velocities

e1

e2

A ⊆ c(•) d
ds with q(s) =

(
2−s s−1
1−s s

)

• Recall: A is generator ⇐⇒ V1q(1)P+ −V0q(0)P− invertible.

• If λ1(•), λ2(•) both positive/negative, invertibility of V1/V1

yields C0-semigroup.

• If λ1(•) > 0 > λ2(•) and V0 = V1 = Id , this matrix is singular!

• However, if q(•) = Id , we obtain the generation of a C0-group.
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Examples

General non-local boundary conditons

X = Lp[0, 1], ∂X = C, A ⊆ d
ds , Φ = δ1 − B where

Bf :=

∫ 1

0
h(s)f (s) ds for some h ∈ Lq[0, 1],

1

p
+

1

q
= 1.

• A generates a C0-semigroup but not a group on Lp[0, 1].
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