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The study of orbital stability of solitary waves for nonlinear dispersive
equations goes back to Benjamin and Bona in the early 1970. In the
late 1980, Grillakis, Shatah and Strauss developed a general theory
for orbital stability of nonlinear systems with symmetries. Many later
works rely on the GSS approach in the sense that they establish
orbital stability based on conservation laws. This almost always
requires a C1 dependence on the wave speed parameters, which is
not always easy to establish and has to be assumed in some cases.

The alternative index counting approach (early 2000) to study
spectral/linear stability has several advantages over the classical
GSS approach since one can study the linear problem without paying
attention to the actual conservation laws. This is especially important
for systems of coupled PDEs as the linearized operators become
non-diagonal matrix operators, which are harder to analyze.
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We study two different PDE systems and analyze the spectral stability
of their periodic traveling wave solutions. We construct the periodic
traveling waves of dnoidal and snoidal type for the Benney system
and the dnoidal solutions for the Zakharov system. We then study the
corresponding linearized problems and use the index counting theory
to analyze the spectral stability of these periodic traveling waves.

The stability of waves, especially in the context of systems of coupled
PDE and especially in the spatially periodic context, is a challenging
topic and an active area of research. Progress was made in the last
fifteen years regarding dispersive equations for scalar quantities, note
the works by Bronski, Johnson and Kapitula for KdV type models and
their index counting formula for abstract second order in time models.
Very few results are available for systems of dispersive PDE, mostly
due to the difficulties associated with the spectral analysis of the
linearized operators in these cases.
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We use the original presentation by Kevrekidis, Kapitula, Sandstede,
but the same result appears by Pelinovsky, while the most general
version can be found in a recent paper by Lin, Zeng. Consider the
Hamiltonian eigenvalue problem

JLu = λu, (1)

where J ,H map real-valued elements into real-valued elements.

Introduce the Morse index of a self-adjoint, bounded from below
operator S, by setting n(S) = #{λ ∈ σ(S) : λ < 0}, counted with
multiplicities. Let kr := #{λ ∈ σpt.(JL) : λ > 0} represents the
number of positive real eigenvalues of JL, counted with multiplicities,
kc := #{λ ∈ σpt.(JL) : <λ > 0,=λ > 0} - the number of quadruplets
of complex eigenvalues of JL with non-zero real and imaginary parts,
whereas k−i = #{iλ, λ > 0 : JLf = iλf , 〈Lf , f 〉 < 0} is the number of
pairs of purely imaginary eigenvalues of negative Krein signature.
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Consider the generalized kernel of JH, and introduce a symmetric
matrix D by

D := {{Dij}N
i,j=1 : Dij = 〈Lηi, ηj〉}.

We have the following formula for the Hamiltonian index,

kHam := kr + 2kc + 2k−i = n(L)− n(D). (2)

Clearly, spectral stability for (1) follows from kHam = 0, but such a
condition is not necessary for spectral stability. For example, one
might encounter a situation where kHam = 2, but with k−i = 1, which is
an example of spectrally stable configuration with a non-zero KHam..
On the other hand, it is clear that if kHam is an odd integer, then kr ≥ 1,
guaranteeing instability.
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Construction of periodic traveling waves
Linearized Equations
Main results

We start with the following Benney system, where β is a real
parameter, u is complex valued function, and v is real-valued function.{

iut + uxx = uv + β|u|2u, −T ≤ x ≤ T, t ∈ R1
+

vt = (|u|2)x,
(3)

Introduced by Benney in late seventies to model the interaction of
short and long waves in a nonlinear medium.

The Cauchy problem on the whole line for the Benney system was
studied in 1998 by Bekiranov, Ogawa, Ponce and later by Corcho.
The existence and nonlinear stability of solitary waves was studied by
Laurencot in 1995 and independently by by Guo, Chen in 1998.
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We consider such model on a periodic domain, that is, we impose
periodic boundary conditions. We study the spectral stability of
periodic traveling waves of dnoidal and snoidal type, which we
construct first. We are interested in the stability of these periodic
traveling wave solutions with respect to perturbations that are
periodic of the same period as the corresponding wave solutions.
The main results are that, for all natural values of the parameters, the
periodic dnoidal waves are spectrally stable with respect to
perturbations of the same period. For another natural set of
parameters, we construct the snoidal waves, which exhibit
instabilities, in the same setup.
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The problem has been studied in this context by Angulo, Corcho and
Hakkaev. The authors proved, via the Fourier restriction method, that
the problem is locally well-posed for (u0, v0) ∈ Hr[−T,T]×Hs[−T,T], if
max(0, r − 1) ≤ s ≤ min(r, 2r − 1). In particular, it is well posed in
H

1
2 ([−T,T])× L2[−T,T] and also H1([−T,T])× L2[−T,T]. It is

ill-posed (non-uniformly continuous dependence on initial conditions)
in Hr × Hs, whenever r < 0.

In addition, the authors constructed a
family of smooth periodic traveling waves of dnoidal type and proved
their orbital stability. This was done for certain β and by relying on the
GSS approach using the conservation laws for the Benney system,

M(u) =
∫ T
−T |u(t, x)|2dx

E(u, v) =
∫ T
−T

[
v(t, x)|u(t, x)|2 + |ux(t, x)|2 + β

2 |u(t, x)|4
]

dx

P(u, v) =
∫ T
−T

[
|v(t, x)|2 + 2=(u(t, x)ux(t, x))

]
dx.
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Consider periodic waves of the form

u(t, x) = eiωtei c
2 (x−ct)ϕ(x− ct), v(t, x) = ψ(x− ct),

for the Benney system, which satisfy{
ϕ′′ −

(
ω − c2

4

)
ϕ = ϕψ + βϕ3

−cψ′ = 2ϕϕ′
(4)

Integrating second equation in (4), we get ψ = − 1
cϕ

2 + γ, where γ is a
constant of integration. Substituting ψ in the first equation, we get

ϕ′′ − σϕ =

(
β − 1

c

)
ϕ3, (5)

where we have introduced the important parameter σ = ω − c2

4 + γ.
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Integrating, we get

ϕ′2 =
1
2

(
β − 1

c

)
ϕ4 + σϕ2 + a =: U(ϕ), (6)

with a constant of integration a.

It is well known that ϕ is a periodic
function provided that the energy level set H(x; y) = a of the
Hamiltonian system dH = 0 with

H(x; y) = y2 − σx2 +
1
2

(
1
c
− β

)
x4

contains an oval (a simple closed real curve free of critical points).
Depending on the properties of the bi-quadratic polynomial U(ϕ), we
distinguish two cases, which give rise to different explicit solutions,
both in term of the Jacobi elliptic functions.
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Proposition

Let (c, β, σ) are three real parameters and κ ∈ (0, 1). Then, we can
identify the following families of solutions of (6). If c 6= 0 and
β < 1

c , σ > 0, then ϕ is a family of dnoidal solutions given by

ϕ(x) = ϕ0dn(αx, κ)

with parameters ϕ2
0 = 2σ

(2−κ2)( 1
c−β)

, α2 = σ
2−κ2 and a fundamental

period 2T = 2K(κ)
α = 2K(κ)

√
2−κ2

√
σ

.
If β > 1

c , σ < 0, we obtain the snoidal family

ϕ(x) = ϕ0sn(αx, κ),

where ϕ2
0 = 2σκ2

( 1
c−β)(1+κ2)

, α2 = − σ
1+κ2 , and fundamental period given

by 2T = 4K(κ)
√

1+κ2√
−σ .
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We take the perturbation in the form

u(t, x) = eiωtei c
2 (x−ct)(ϕ(x− ct) + U(t, x− ct)) (7)

v(t, x) = ψ(x− ct) + V(t, x− ct)

where U(t, x) is complex valued, V(t, x) is real valued. Plugging in the
system, using (4), and ignoring all quadratic and higher order terms
yields a linear equation for (U,V). Next, split the real and imaginary
parts of complex valued function U as U = P + iQ, which recasts the
linearized problem as the following system

−Qt = −Pxx +
(

w− c2

4

)
P + 3βϕ2P + ϕV + ψP

Pt = −Qxx +
(

w− c2

4

)
Q + ψQ + βϕ2Q

Vt − cVx = 2∂x(ϕP).

(8)
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Let us denote

J :=

 0 0 1
0 2∂x 0
−1 0 0

 , H :=

L1 ϕ 0
ϕ c

2 0
0 0 L2

 ,

where
L1 = −∂2

x + σ +
(
3β − 1

c

)
ϕ2

L2 = −∂2
x + σ +

(
β − 1

c

)
ϕ2.

Then the system (8) can be written of the form

~Zt = JH~Z, ~Z =

 P
V
Q

 . (9)
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The standard mapping to a time independent problem ~Z → eλt~z
transforms the linear differential equation (9) into the eigenvalue
problem

JH~z = λ~z. (10)

By general properties of Hamiltonian systems, and the operators
J ,H in particular, if λ is an eigenvalue of (10), then so are, λ̄,−λ,−λ̄.

Definition

We say that the wave ϕ is spectrally unstable, if the eigenvalue
problem (10) has a non-trivial solution (~u, λ), so that
~z 6= 0,~z ∈ H2[−T,T]× H1[−T,T]× H2[−T,T] and λ : <λ > 0.
In the opposite case, that is (10) has no non-trivial solutions, with
<λ > 0, we say that the wave is spectrally stable.
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Remark:

The definition of linear stability is closely related to the one for
spectral stability. More precisely, ϕ is a linearly stable wave, if the flow
of the differential equation (or equivalently the semigroup generated
by JH) has Lyapunov exponent less or equal to zero. Equivalently,

lim sup
t→∞

ln ‖~U(t)‖
t

≤ 0, (11)

for each initial data ~U(0) ∈ H2[−T,T]× H1[−T,T]× H2[−T,T]. It is a
standard fact that these two notions coincide in the case of periodic
domains, due to the fact that the spectrum of JH consists of
eigenvalues only. A general justification of (11), which applies to our
case, is provided in Theorem 2.2 of Lin, Zeng.
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Theorem
(Stability of the dnoidal waves)
Let ω ∈ R1 and c 6= 0, β < 1

c , σ > 0. Then, the Benney system has a
family of dnoidal solutions (eiωtei c

2 (x−ct)ϕ(x− ct), ψ(x− ct)) =

(eiωtei c
2 (x−ct)ϕ(x− ct),− 1

cϕ
2(x− ct) + σ + c2

4 − ω), which are spatially
periodic, provided

c
K(κ)

√
2− κ2
√
σ

∈ 2πZ. (12)

Under these assumptions, the periodic dnoidal waves are spectrally
stable for all values of the parameters, ω ∈ R1, σ > 0, β < 1

c , κ ∈ (0, 1),
subject to (12).
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Remark:

In the original paper by Angulo, Concho, Hakkaev, the authors proved
that dnoidal solutions are orbitally stable for β ≤ 0 and for β > 0 and
8βσ − 3c(1− βc)2 ≤ 0. This is achieved by evaluating the number of
negative eigenvalues of the operator of linearization around the
periodic waves and number of positive eigenvalues of the Hessian of
d(ω, c) = E(u, v)− c

4 P(u, v)− ω
2 M(u, v). We extend this result herein to

the whole domain of the parameters.

Our next result concerns the instability of the snoidal waves.
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Remark:

In the original paper by Angulo, Concho, Hakkaev, the authors proved
that dnoidal solutions are orbitally stable for β ≤ 0 and for β > 0 and
8βσ − 3c(1− βc)2 ≤ 0. This is achieved by evaluating the number of
negative eigenvalues of the operator of linearization around the
periodic waves and number of positive eigenvalues of the Hessian of
d(ω, c) = E(u, v)− c

4 P(u, v)− ω
2 M(u, v). We extend this result herein to

the whole domain of the parameters.
Our next result concerns the instability of the snoidal waves.
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Theorem
(Instability of the snoidal solutions)
Let ω ∈ R1 and c 6= 0, β > 1

c , σ < 0. Then, the Benney system has a
family of snoidal solutions

(eiωtei c
2 (x−ct)ϕ(x− ct),−1

c
ϕ2(x− ct) + σ +

c2

4
− ω)

These waves are periodic exactly when

cK(κ)

√
1 + κ2
√
−σ

∈ πZ. (13)

The snoidal periodic waves are spectrally unstable (with at least one
real and positive eigenvalue) for all values of the parameters
ω ∈ R1, σ < 0, β > 1

c , κ ∈ (0, 1), subject to (13).

Milena Stanislavova, Sevdzhan Hakkaev, Atanas Stefanov Periodic waves of the Benney and Zakharov systems



Introduction
Instability Index Count

Periodic Traveling Waves of the Benney System
Stability analysis of the waves of the Benney System

Zakharov System

Spectral information about JH
Generalized Kernel of JH
Morse index of H

Index theory implies that we need a determination of a basis of
gker(JH). We introduce another Schrödinger operator
L = −∂2

x + σ + 3
(
β − 1

c

)
ϕ2.

Proposition

We have the following:

In both the dnoidal and snoidal cases, the Hill operator L,
equipped with periodic boundary conditions on [−T,T], has
Morse index n(L) = 1 and Ker[L] = span[ϕ′].

In the dnoidal case, the operator L2 has Morse index n(L2) = 0,
Ker[L2] = span[ϕ].

In the snoidal case, the operator L2 has Morse index n(L2) = 2,
Ker[L2] = span[ϕ].
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Proposition

The kernel of H is two dimensional, namely

Ker[H] = span[

 ϕ′

− 2
cϕϕ

′

0

 ,

 0
0
ϕ

]. (14)

In addition, under the assumption 〈L−1ϕ,ϕ〉 6= 0, we can identify all
the generalized eigenvectors.

gKer(JH)	 Ker(H) = span




1
2c(cβ−1)ϕ

− β
c(cβ−1)ϕ

2

L−1
2 ϕ′.

 ,

−L−1ϕ
2
cϕL−1ϕ

0

 ,

0
1
0


 .
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Proposition

We have the following formula for the Morse index n(H),

If ϕ is the dnoidal wave, then n(H) = 1.

For the snoidal case, we have n(H) = 3.

For the dnoidal waves, since n(H) = 1, the stability analysis reduces
to establishing that n(D) = 1. Indeed, in such a case, the right-hand
side of (2) is zero, which would rule out all potential instabilities on the
left-hand side.
We proceed to evaluating the elements of the matrix D. In fact, we
only need to compute D22 = 〈L−1ϕ,ϕ〉, which we show is negative.
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For the snoidal waves, to get D we compute 〈L−1
2 ϕ′, ϕ′〉, 〈L−1ϕ,ϕ〉

and
∫
ϕ2,
∫
ϕ4. Consider det(D), in the regime β = 1

c + ε, 0 < ε << 1.

Proposition

Fix c 6= 0, σ < 0. Then, there exists ε0 = ε0(c, σ) > 0, so that for all
0 < ε < ε0 and β = 1

c + ε, we have that det(D) > 0.

To show that the snoidal waves are spectrally unstable, we argue as
follows - for very small ε, we have that det(D) > 0, whence the
symmetric matrix D has either two negative eigenvalues and a
positive one (n(D) = 2), or 3 positive eigenvalues, n(D) = 0.
We have either kHam = 3− 2 = 1 or kHam = n(L)− n(D) = 3− 0 = 3.
This implies that there is at least one real instability.
In fact, for systems with kHam = 1, this is obvious.
If kHam = 3, the possibilities are: 3 real instabilities, one real instability
and 2 complex/oscillatory instabilities and one real instability and a
pair of purely imaginary eigenvalues of negative Krein signature.
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We consider the following Zakharov system of nonlinear PDEs vtt − vxx = 1
2 (|u|2)xx

iut + uxx − uv = 0,
(15)

Here again, v is a real-valued function and u is complex-valued. The
problem (15) was introduced by Zakharov to describe Langmuir
turbulence in a plasma.

We consider the spectral stability of periodic travelling wave solutions
of the form 

v(t, x) = ψ(x− ct)

u(t, x) = e−iωtei c
2 (x−ct)φ(x− ct),

(16)

where ψ, φ : R1 → R1 are smooth,periodic functions with fixed period
2T, and ω, c ∈ R1. To ensure that the traveling wave u above is 2T
periodic, we require that there is an integer l, so that cT = 2π.
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(15)

Here again, v is a real-valued function and u is complex-valued. The
problem (15) was introduced by Zakharov to describe Langmuir
turbulence in a plasma.
We consider the spectral stability of periodic travelling wave solutions
of the form 

v(t, x) = ψ(x− ct)

u(t, x) = e−iωtei c
2 (x−ct)φ(x− ct),

(16)

where ψ, φ : R1 → R1 are smooth,periodic functions with fixed period
2T, and ω, c ∈ R1. To ensure that the traveling wave u above is 2T
periodic, we require that there is an integer l, so that cT = 2π.
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Proposition

(Existence of dnoidal solutions)
Let 1− c2 > 0, σ > 0. Assume that the quadratic equation
r2 − 4σ(1− c2)r − a1 = 0 has two positive roots, denoted by φ2

0 > φ2
1.

Then, the periodic traveling wave solution is given by

φ(x) = φ0dn(αx, κ), (17)

where

κ2 =
φ2

0 − φ2
1

φ2
0

=
2φ2

0 − 4σ(1− c2)

φ2
0

, α2 =
1

4(1− c2)
φ2

0 =
σ

2− κ2 . (18)

In addition, the fundamental period of φ is 2T = 2K(k)
α .
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For ~U = (p2, p1, q, h), the above system can be written in the form
~Ut = JH~U, (19)

where

J =


0 −1 0 0
1 0 0 0
0 0 0 −∂x

0 0 −∂x 0

 , H =


L− 0 0 0
0 L− φ 0
0 φ 1 −c
0 0 −c 1

(20)

L− = −∂2
x + σ + ψ = −∂2

x + σ − φ2

2(1− c2)
. (21)

Clearly J ∗ = −J , whereas H∗ = H, where we associate to the
operators J ,H the following domains on the periodic functions

D(J ) = (L2[−T,T])2 ⊕ (H1[−T,T])2

D(H) = (H2[−T,T])2 ⊕ L2[−T,T]⊕ L2
0[−T,T].

Note that L2
0[−T,T] = {f ∈ L2[−T,T] :

∫ T
−T f (x)dx = 0}.
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Theorem

Periodic traveling waves of dnoidal type of (15) are spectrally stable
for all natural values of the parameters.

Note: Orbital stability of periodic waves of dnoidal type was proved by
Angulo and Brango. They proved that for all ε > 0, there is δ > 0 s.t.
for initial data (v0,V0, u0) ∈ L2[−T,T]× L2

0[−T,T]×H1[−T,T] satisfying

‖v0 − ψ‖L2[−T,T] < δ, ‖V0 − ϕ‖L2[−T,T] < δ, ‖u0 − φ‖H1[−T,T] < δ (22)

then{
infy∈R ||v(·+ y, t)− ψ||L2[−T,T] < ε, infy∈R ||V(·+ y, t)− ψ||L2[−T,T] < ε,

inf(θ,y)∈[0,2π)×R ||eiθu(·+ y, t)− φ||H1[−T,T] < ε

(23)
if ∫ T

0
v0(x)dx ≤

∫ T

0
ψ(x)dx. (24)
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Thank you!
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