Mathematical analysis of non-self-adjoint eigenvalue problem for the bent waveguides

Rakesh Kumar and Prof. Kirankumar R. Hiremath
Department of Mathematics
Indian Institute of Technology Jodhpur, Rajasthan, India
kumar.117@iitj.ac.in

BIRS workshop on Mathematical aspects of the physics with non-self-adjoint operators Banff, Canada

10-15 July 2022

What is a Waveguide?

What is a Waveguide?

Water pipe

What is a Waveguide?

Water pipe

What is a Waveguide?

Water pipe

Straight mode profile

What is a Waveguide?

Water pipe

Optical fiber

Straight mode profile

Bent mode profile

Mathematical setting for Straight Waveguides

Mathematical setting for Straight Waveguides

Straight Waveguide

Mathematical setting for Straight Waveguides

Refractive index profile

Mathematical setting for Straight Waveguides

Refractive index profile

- Field, material properties are not varying in y-direction.

Mathematical setting for Straight Waveguides

Straight Waveguide

Refractive index profile

- Field, material properties are not varying in y-direction.
- Field ansatz

$$
\begin{aligned}
& E=\left(E_{x}(x), E_{y}(x), E_{z}(x)\right) e^{\imath\left(\omega t-\beta_{S} z\right)} \\
& H=\left(H_{x}(x), H_{y}(x), H_{z}(x)\right) e^{\imath\left(\omega t-\beta_{S} z\right)}
\end{aligned}
$$

Mathematical setting for Straight Waveguides

Straight Waveguide

Refractive index profile

- Field, material properties are not varying in y-direction.
- Field ansatz

$$
\begin{aligned}
& E=\left(E_{x}(x), E_{y}(x), E_{z}(x)\right) e^{\imath\left(\omega t-\beta_{S} z\right)} \\
& H=\left(H_{x}(x), H_{y}(x), H_{z}(x)\right) e^{\imath\left(\omega t-\beta_{S} z\right)}
\end{aligned}
$$

- Frequency domain Maxwell equations

Mathematical setting for Straight Waveguides

Straight Waveguide

Refractive index profile

- Field, material properties are not varying in y-direction.
- Field ansatz

$$
\begin{aligned}
& E=\left(E_{x}(x), E_{y}(x), E_{z}(x)\right) e^{\imath\left(\omega t-\beta_{S} z\right)} \\
& H=\left(H_{x}(x), H_{y}(x), H_{z}(x)\right) e^{\imath\left(\omega t-\beta_{S} z\right)}
\end{aligned}
$$

- Frequency domain Maxwell equations
- For TE mode, governing equation is

$$
\begin{aligned}
L_{S}\left(E_{y}\right) & =\frac{1}{k^{2}} \frac{d^{2} E_{y}}{d x^{2}}+n^{2}(x) E_{y}=\frac{\beta_{s}^{2}}{k^{2}} E_{y} \\
\left|E_{y}\right| & \rightarrow 0 \text { as } x \rightarrow \pm \infty, E_{y} \text { is outgoing waves. }
\end{aligned}
$$

Mathematical setting for Straight Waveguides

Straight Waveguide

Refractive index profile

- Field, material properties are not varying in y-direction.
- Field ansatz

$$
\begin{aligned}
& E=\left(E_{x}(x), E_{y}(x), E_{z}(x)\right) e^{\imath\left(\omega t-\beta_{s} z\right)} \\
& H=\left(H_{x}(x), H_{y}(x), H_{z}(x)\right) e^{\imath\left(\omega t-\beta_{S} z\right)},
\end{aligned}
$$

- Frequency domain Maxwell equations
- For TE mode, governing equation is

$$
\begin{aligned}
L_{s}\left(E_{y}\right) & =\frac{1}{k^{2}} \frac{d^{2} E_{y}}{d x^{2}}+n^{2}(x) E_{y}=\frac{\beta_{S}^{2}}{k^{2}} E_{y} \\
\left|E_{y}\right| & \rightarrow 0 \text { as } x \rightarrow \pm \infty, E_{y} \text { is outgoing waves. }
\end{aligned}
$$

- β_{S} is propagation constant (unknown).

Ref: P. Joly and C. Poirier, Mathematical analysis of electromagnetic open waveguides,

Mathematical setting for Bent Waveguides

Mathematical setting for Bent Waveguides

Bent Waveguide

Mathematical setting for Bent Waveguides

Bent Waveguide

- Field ansatz

$$
\begin{aligned}
& E=\left(E_{r}(r), E_{y}(r), E_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)} \\
& H=\left(H_{r}(r), H_{y}(r), H_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)},
\end{aligned}
$$

Mathematical setting for Bent Waveguides

- Field ansatz

$$
\begin{aligned}
E & =\left(E_{r}(r), E_{y}(r), E_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)} \\
H & =\left(H_{r}(r), H_{y}(r), H_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)}
\end{aligned}
$$

- $\omega=\frac{2 \pi c}{\lambda} \in \mathbb{R}, \lambda$ vacuum wavelength (given)

Bent Waveguide

Mathematical setting for Bent Waveguides

Bent Waveguide

- Field ansatz

$$
\begin{aligned}
& E=\left(E_{r}(r), E_{y}(r), E_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)} \\
& H=\left(H_{r}(r), H_{y}(r), H_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)},
\end{aligned}
$$

- $\omega=\frac{2 \pi c}{\lambda} \in \mathbb{R}, \lambda$ vacuum wavelength (given)
- Propagation constant $\gamma=\beta-\imath \alpha \in \mathbb{C}$

Mathematical setting for Bent Waveguides

Bent Waveguide

- Field ansatz

$$
\begin{aligned}
& E=\left(E_{r}(r), E_{y}(r), E_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)} \\
& H=\left(H_{r}(r), H_{y}(r), H_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)},
\end{aligned}
$$

- $\omega=\frac{2 \pi c}{\lambda} \in \mathbb{R}, \lambda$ vacuum wavelength (given)
- Propagation constant $\gamma=\beta-\imath \alpha \in \mathbb{C}$
- Plug bent mode field expression in Maxwell's curl equations.

Mathematical setting for Bent Waveguides

Bent Waveguide

- Field ansatz

$$
\begin{aligned}
& E=\left(E_{r}(r), E_{y}(r), E_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)} \\
& H=\left(H_{r}(r), H_{y}(r), H_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)},
\end{aligned}
$$

- $\omega=\frac{2 \pi c}{\lambda} \in \mathbb{R}, \lambda$ vacuum wavelength (given)
- Propagation constant $\gamma=\beta-\imath \alpha \in \mathbb{C}$
- Plug bent mode field expression in Maxwell's curl equations.
- For TE modes: only $\left(E_{y}, H_{r}, H_{\theta}\right) \neq 0$ and for TM modes: only $\left(H_{y}, E_{r}, E_{\theta}\right) \neq 0$.

Mathematical setting for Bent Waveguides

Bent Waveguide

- Field ansatz

$$
\begin{aligned}
& E=\left(E_{r}(r), E_{y}(r), E_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)}, \\
& H=\left(H_{r}(r), H_{y}(r), H_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)},
\end{aligned}
$$

- $\omega=\frac{2 \pi c}{\lambda} \in \mathbb{R}, \lambda$ vacuum wavelength (given)
- Propagation constant $\gamma=\beta-\imath \alpha \in \mathbb{C}$
- Plug bent mode field expression in Maxwell's curl equations.
- For TE modes: only $\left(E_{y}, H_{r}, H_{\theta}\right) \neq 0$ and for TM modes: only $\left(H_{y}, E_{r}, E_{\theta}\right) \neq 0$.
- Principal electric and magnetic components \rightarrow Bessel equation of complex order γR

Mathematical setting for Bent Waveguides

Bent Waveguide

- Field ansatz

$$
\begin{aligned}
& E=\left(E_{r}(r), E_{y}(r), E_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)}, \\
& H=\left(H_{r}(r), H_{y}(r), H_{\theta}(r)\right) e^{\imath(\omega t-\gamma R \theta)},
\end{aligned}
$$

- $\omega=\frac{2 \pi c}{\lambda} \in \mathbb{R}, \lambda$ vacuum wavelength (given)
- Propagation constant $\gamma=\beta-\imath \alpha \in \mathbb{C}$
- Plug bent mode field expression in Maxwell's curl equations.
- For TE modes: only $\left(E_{y}, H_{r}, H_{\theta}\right) \neq 0$ and for TM modes: only $\left(H_{y}, E_{r}, E_{\theta}\right) \neq 0$.
- Principal electric and magnetic components \rightarrow Bessel equation of complex order γR

$$
r^{2} \frac{d^{2} \psi}{d r^{2}}+r \frac{d \psi}{d r}+\left(n^{2}(r) k^{2} r^{2}-\gamma^{2} R^{2}\right) \psi=0
$$

for $\psi=E_{y}$ or $\psi=H_{y}$.
Ref: K.R. Hiremath, M.Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, Analytic approach to dielectric optical bent slab waveguides.
Optical and quantum electronics, 37(1),2005, pp.37-61.

Eigenvalue problem for Bent Waveguides

Eigenvalue problem for Bent Waveguides

Define an operator L_{R} as

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty . \tag{1}
\end{equation*}
$$

Eigenvalue problem for Bent Waveguides

Define an operator L_{R} as

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty . \tag{1}
\end{equation*}
$$

Associated boundary conditions for the guided modes are given by

$$
\begin{aligned}
& |\psi(r)| \rightarrow 0 \quad \text { as } \quad r \rightarrow 0 \\
& |\psi(r)| \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty \text { and } \psi \text { is an outgoing wave, }
\end{aligned}
$$

Eigenvalue problem for Bent Waveguides

Define an operator L_{R} as

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty . \tag{1}
\end{equation*}
$$

Associated boundary conditions for the guided modes are given by

$$
\begin{aligned}
& |\psi(r)| \rightarrow 0 \quad \text { as } \quad r \rightarrow 0 \\
& |\psi(r)| \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty \text { and } \psi \text { is an outgoing wave, }
\end{aligned}
$$

where refractive index profile

$$
n(r)= \begin{cases}n_{s}, & 0<r<R-d \\ n_{f}, & R-d \leq r \leq R \\ n_{c}, & R<r<\infty\end{cases}
$$

Eigenvalue problem for Bent Waveguides

Define an operator L_{R} as

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty . \tag{1}
\end{equation*}
$$

Associated boundary conditions for the guided modes are given by

$$
\begin{aligned}
& |\psi(r)| \rightarrow 0 \quad \text { as } \quad r \rightarrow 0 \\
& |\psi(r)| \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty \text { and } \psi \text { is an outgoing wave, }
\end{aligned}
$$

where refractive index profile

$$
n(r)= \begin{cases}n_{s}, & 0<r<R-d \\ n_{f}, & R-d \leq r \leq R \\ n_{c}, & R<r<\infty\end{cases}
$$

and d core width, $k=\frac{2 \pi}{\lambda}$ vacuum wavenumber, $\gamma=\beta-\imath \alpha$ unknown propagation constant, and R bent radius parameter.

Eigenvalue problem for Bent Waveguides

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

An 1-D eigenvalue problem with weight function $\frac{R}{r}$, eigenvalues $\frac{\gamma^{2}}{k^{2}}$, and defined on

$$
\mathbb{V}_{R}=\left\{\psi \mid \psi, \psi_{r} \in \mathcal{L}^{2}[0, \infty)\right\}
$$

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

An 1-D eigenvalue problem with weight function $\frac{R}{r}$, eigenvalues $\frac{\gamma^{2}}{k^{2}}$, and defined on

$$
\mathbb{V}_{R}=\left\{\psi \mid \psi, \psi_{r} \in \mathcal{L}^{2}[0, \infty)\right\}
$$

where $\mathcal{L}^{2}[0, \infty)$ space of square-integrable functions and

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r, \quad\|\psi\|_{r}^{2}=\int_{0}^{\infty} \psi(r) \psi^{*}(r) \frac{R}{r} d r
$$

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

An 1-D eigenvalue problem with weight function $\frac{R}{r}$, eigenvalues $\frac{\gamma^{2}}{k^{2}}$, and defined on

$$
\mathbb{V}_{R}=\left\{\psi \mid \psi, \psi_{r} \in \mathcal{L}^{2}[0, \infty)\right\}
$$

where $\mathcal{L}^{2}[0, \infty)$ space of square-integrable functions and

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r, \quad\|\psi\|_{r}^{2}=\int_{0}^{\infty} \psi(r) \psi^{*}(r) \frac{R}{r} d r
$$

where $*$ represents the complex conjugate.

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

An 1-D eigenvalue problem with weight function $\frac{R}{r}$, eigenvalues $\frac{\gamma^{2}}{k^{2}}$, and defined on

$$
\mathbb{V}_{R}=\left\{\psi \mid \psi, \psi_{r} \in \mathcal{L}^{2}[0, \infty)\right\}
$$

where $\mathcal{L}^{2}[0, \infty)$ space of square-integrable functions and

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r, \quad\|\psi\|_{r}^{2}=\int_{0}^{\infty} \psi(r) \psi^{*}(r) \frac{R}{r} d r
$$

where $*$ represents the complex conjugate.

- Variable coefficient

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

An 1-D eigenvalue problem with weight function $\frac{R}{r}$, eigenvalues $\frac{\gamma^{2}}{k^{2}}$, and defined on

$$
\mathbb{V}_{R}=\left\{\psi \mid \psi, \psi_{r} \in \mathcal{L}^{2}[0, \infty)\right\}
$$

where $\mathcal{L}^{2}[0, \infty)$ space of square-integrable functions and

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r, \quad\|\psi\|_{r}^{2}=\int_{0}^{\infty} \psi(r) \psi^{*}(r) \frac{R}{r} d r
$$

where $*$ represents the complex conjugate.

- Variable coefficient
- Parameter

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

An 1-D eigenvalue problem with weight function $\frac{R}{r}$, eigenvalues $\frac{\gamma^{2}}{k^{2}}$, and defined on

$$
\mathbb{V}_{R}=\left\{\psi \mid \psi, \psi_{r} \in \mathcal{L}^{2}[0, \infty)\right\}
$$

where $\mathcal{L}^{2}[0, \infty)$ space of square-integrable functions and

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r, \quad\|\psi\|_{r}^{2}=\int_{0}^{\infty} \psi(r) \psi^{*}(r) \frac{R}{r} d r
$$

where $*$ represents the complex conjugate.

- Variable coefficient
- Weighted problem
- Parameter

Eigenvalue problem for Bent Waveguides

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

An 1-D eigenvalue problem with weight function $\frac{R}{r}$, eigenvalues $\frac{\gamma^{2}}{k^{2}}$, and defined on

$$
\mathbb{V}_{R}=\left\{\psi \mid \psi, \psi_{r} \in \mathcal{L}^{2}[0, \infty)\right\}
$$

where $\mathcal{L}^{2}[0, \infty)$ space of square-integrable functions and

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r, \quad\|\psi\|_{r}^{2}=\int_{0}^{\infty} \psi(r) \psi^{*}(r) \frac{R}{r} d r
$$

where $*$ represents the complex conjugate.

- Variable coefficient
- Parameter
- Weighted problem
- Irregular problem

Eigenvalue problem for Bent Waveguides

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty . \tag{2}
\end{equation*}
$$

Eigenvalue problem for Bent Waveguides

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty . \tag{2}
\end{equation*}
$$

Using

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r .
$$

Eigenvalue problem for Bent Waveguides

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty . \tag{2}
\end{equation*}
$$

Using

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r .
$$

The adjoint operator is

$$
\begin{equation*}
L_{R}^{*} \psi=\left(\frac{r}{R k^{2}} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi+\underbrace{\left(\frac{\psi}{r R k^{2}}-\frac{2}{R k^{2}} \psi_{r}\right)}_{\text {Cause of Non-self-adjointness }}=\frac{\gamma^{* 2}}{k^{2}} \frac{R}{r} \psi \tag{3}
\end{equation*}
$$

Eigenvalue problem for Bent Waveguides

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty \tag{2}
\end{equation*}
$$

Using

$$
<\psi, \phi>_{r}=\int_{0}^{\infty} \psi(r) \phi^{*}(r) \frac{R}{r} d r .
$$

The adjoint operator is

$$
\begin{equation*}
L_{R}^{*} \psi=\left(\frac{r}{R k^{2}} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi+\underbrace{\left(\frac{\psi}{r R k^{2}}-\frac{2}{R k^{2}} \psi_{r}\right)}_{\text {Cause of Non-self-adjointness }}=\frac{\gamma^{* 2}}{k^{2}} \frac{R}{r} \psi \tag{3}
\end{equation*}
$$

and $\gamma=\beta-\imath \alpha$ is complex proved by $\alpha \neq 0$.

Waveguides eigenvalue problems

Waveguides eigenvalue problems

Bent Waveguide

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Straight Waveguide

- $L_{S} \phi:=\frac{\beta_{s}^{2}}{k^{2}} \phi, \quad-\infty<x<\infty$.

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Straight Waveguide

- $L_{S} \phi:=\frac{\beta_{s}^{2}}{k^{2}} \phi, \quad-\infty<x<\infty$.
- Self-adjoint operator $L_{\infty}=L_{S}$

$$
\begin{aligned}
& r=R e^{\frac{\chi}{R}} \\
& \overrightarrow{R \rightarrow \infty}
\end{aligned}
$$

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Straight Waveguide

- $L_{S} \phi:=\frac{\beta_{s}^{2}}{k^{2}} \phi, \quad-\infty<x<\infty$.
- Self-adjoint operator $L_{\infty}=L_{S}$
- Real eigenvalues $\frac{\gamma_{\infty}^{2}}{k^{2}}=\frac{\beta_{s}^{2}}{k^{2}}$

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Straight Waveguide

- $L_{S} \phi:=\frac{\beta_{s}^{2}}{k^{2}} \phi, \quad-\infty<x<\infty$.
- Self-adjoint operator $L_{\infty}=L_{S}$
- Real eigenvalues $\frac{\gamma_{\infty}^{2}}{k^{2}}=\frac{\beta_{s}^{2}}{k^{2}}$

Waveguides eigenvalue problems

Bent Waveguide

- $L_{R} \psi:=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty$.
- Non-self-adjoint operator L_{R}
- Complex eigenvalues $\frac{\gamma^{2}}{k^{2}}$

Straight Waveguide

- $L_{S} \phi:=\frac{\beta_{S}^{2}}{k^{2}} \phi, \quad-\infty<x<\infty$.
- Self-adjoint operator $L_{\infty}=L_{S}$
- Real eigenvalues $\frac{\gamma_{\infty}^{2}}{k^{2}}=\frac{\beta_{s}^{2}}{k^{2}}$

Non-self-adjoint problem \xrightarrow{R} Self-adjoint problem
Ref: R. Kumar, and K.R. Hiremath, Non-self-adjointness of bent optical waveguide eigenvalue problem,
Journal of Mathematical Analysis and Applications, 512(1), 2022 p. 126024.

Waveguides eigenvalue problems

Waveguides eigenvalue problems

Straight Waveguide $\left(L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

Waveguides eigenvalue problems

Straight Waveguide ($\left.L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.

Waveguides eigenvalue problems

Straight Waveguide $\left(L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?

Waveguides eigenvalue problems

Straight Waveguide ($\left.L_{S}, \frac{\beta_{s}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.

Waveguides eigenvalue problems

Straight Waveguide $\left(L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.
- For the operator L_{S}, distinct eigenvalues are countable (finite?).

Waveguides eigenvalue problems

Straight Waveguide ($\left.L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$
Bent Waveguide $\left(L_{R}, \frac{\gamma^{2}}{k^{2}}, \psi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.
- For the operator L_{S}, distinct eigenvalues are countable (finite?).

Waveguides eigenvalue problems

Straight Waveguide ($\left.L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.
- For the operator L_{S}, distinct eigenvalues are countable (finite?).

Bent Waveguide $\left(L_{R}, \frac{\gamma^{2}}{k^{2}}, \psi\right)$

- Relationship between real and imaginary part of complex eigenvalues?

Waveguides eigenvalue problems

Straight Waveguide $\left(L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.
- For the operator L_{S}, distinct eigenvalues are countable (finite?).

Bent Waveguide ($\left.L_{R}, \frac{\gamma^{2}}{k^{2}}, \psi\right)$

- Relationship between real and imaginary part of complex eigenvalues?
- Operator L_{R} is compact or not?

Waveguides eigenvalue problems

Straight Waveguide ($\left.L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.
- For the operator L_{S}, distinct eigenvalues are countable (finite?).

Bent Waveguide ($\left.L_{R}, \frac{\gamma^{2}}{k^{2}}, \psi\right)$

- Relationship between real and imaginary part of complex eigenvalues?
- Operator L_{R} is compact or not?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal or not?

Waveguides eigenvalue problems

Straight Waveguide $\left(L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.
- For the operator L_{S}, distinct eigenvalues are countable (finite?).

Bent Waveguide ($\left.L_{R}, \frac{\gamma^{2}}{k^{2}}, \psi\right)$

- Relationship between real and imaginary part of complex eigenvalues?
- Operator L_{R} is compact or not?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal or not?
- For the operator L_{R}, distinct eigenvalues are countable or uncountable?

Waveguides eigenvalue problems

Straight Waveguide ($\left.L_{S}, \frac{\beta_{S}^{2}}{k^{2}}, \phi\right)$

- Eigenvalues are real.
- Operator L_{S} is compact?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal.
- For the operator L_{S}, distinct eigenvalues are countable (finite?).

Bent Waveguide ($\left.L_{R}, \frac{\gamma^{2}}{k^{2}}, \psi\right)$

- Relationship between real and imaginary part of complex eigenvalues?
- Operator L_{R} is compact or not?
- Corresponding to distinct eigenvalues, eigenfunctions are orthogonal or not?
- For the operator L_{R}, distinct eigenvalues are countable or uncountable?

Answers? How?

Relationship between real and imaginary part of eigenvalues

Relationship between real and imaginary part of eigenvalues

Consider

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

Relationship between real and imaginary part of eigenvalues

Consider

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

Multiplying with ψ^{*} both sides to above equation and integrating both sides we get

Relationship between real and imaginary part of eigenvalues

Consider

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

Multiplying with ψ^{*} both sides to above equation and integrating both sides we get

$$
\begin{equation*}
\underbrace{\lim _{r \rightarrow \infty} \frac{1}{R k^{2}} r \psi_{r} \psi^{*}}_{?}-\underbrace{\int_{0}^{\infty} \frac{1}{R k^{2}} r\left|\psi_{r}\right|^{2} d r}_{\text {Real }}+\underbrace{\int_{0}^{\infty} n^{2}(r) \frac{r}{R}|\psi|^{2} d r}_{\text {Real }}=\underbrace{\frac{\beta^{2}-\alpha^{2}-2 \imath \alpha \beta}{k^{2}}}_{\text {Complex }} \underbrace{\int_{0}^{\infty} \frac{R}{r}|\psi|^{2} d r}_{\text {Real }} \tag{4}
\end{equation*}
$$

Relationship between real and imaginary part of eigenvalues

Consider

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty
$$

Multiplying with ψ^{*} both sides to above equation and integrating both sides we get
$\underbrace{\lim _{r \rightarrow \infty} \frac{1}{R k^{2}} r \psi_{r} \psi^{*}}_{?}-\underbrace{\int_{0}^{\infty} \frac{1}{R k^{2}} r\left|\psi_{r}\right|^{2} d r}_{\text {Real }}+\underbrace{\int_{0}^{\infty} n^{2}(r) \frac{r}{R}|\psi|^{2} d r}_{\text {Real }}=\underbrace{\frac{\beta^{2}-\alpha^{2}-2 \imath \alpha \beta}{k^{2}}}_{\text {Complex }} \underbrace{\int_{0}^{\infty} \frac{R}{r}|\psi|^{2} d r}_{\text {Real }}$.
Asymptotic expansion of the ψ for $r \rightarrow \infty$

$$
\begin{equation*}
\psi \sim A_{c} \sqrt{\frac{2}{\pi n_{c} k r}} \exp -\imath\left(n_{c} k r-\gamma R \frac{\pi}{2}-\frac{\pi}{4}\right) \tag{5}
\end{equation*}
$$

Ref: K.R. Hiremath, M.Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, Analytic approach to dielectric optical bent slab waveguides. Optical and quantum electronics, 37(1),2005, pp.37-61.

Relationship between real and imaginary part of eigenvalues

Relationship between real and imaginary part of eigenvalues

Using asymptotic expansion in Eq. (4), one gets

$$
\begin{equation*}
\beta=\left|A_{c}\right|^{2} \frac{1}{\alpha R \pi} \exp (\alpha R \pi) \tag{6}
\end{equation*}
$$

where $\left|A_{c}\right|$ is arbitrary constant.

Relationship between real and imaginary part of eigenvalues

Using asymptotic expansion in Eq. (4), one gets

$$
\begin{equation*}
\beta=\left|A_{c}\right|^{2} \frac{1}{\alpha R \pi} \exp (\alpha R \pi) \tag{6}
\end{equation*}
$$

where $\left|A_{c}\right|$ is arbitrary constant.

Shows the relationship between phase propagation constant β and attenuation constant α. At $\alpha_{c}=\frac{1}{R \pi}, \beta$ changes its behavior. For finite $R, \beta \nrightarrow 0$.

General result on finite number of eigenvalues for a operator

General result on finite number of eigenvalues for a operator

Theorem (Compactness criterion)
Let $T: \mathbb{X} \rightarrow \mathbb{Y}$ be a linear operator where both \mathbb{X} and \mathbb{Y} are normed space.

General result on finite number of eigenvalues for a operator

Theorem (Compactness criterion)

Let $T: \mathbb{X} \rightarrow \mathbb{Y}$ be a linear operator where both \mathbb{X} and \mathbb{Y} are normed space. Then T is compact iff it maps every bounded sequence $\left\{\psi_{n}\right\}$ in \mathbb{X} onto a sequence $\left\{T \psi_{n}\right\}$ in \mathbb{Y} which has a convergent subsequence.

General result on finite number of eigenvalues for a operator

Theorem (Compactness criterion)

Let $T: \mathbb{X} \rightarrow \mathbb{Y}$ be a linear operator where both \mathbb{X} and \mathbb{Y} are normed space. Then T is compact iff it maps every bounded sequence $\left\{\psi_{n}\right\}$ in \mathbb{X} onto a sequence $\left\{T \psi_{n}\right\}$ in \mathbb{Y} which has a convergent subsequence.

Theorem (Accumulation point of eigenvalues set)

Let $T: \mathbb{X} \rightarrow \mathbb{X}$ be any compact linear operator where \mathbb{X} is a normed space.

General result on finite number of eigenvalues for a operator

Theorem (Compactness criterion)

Let $T: \mathbb{X} \rightarrow \mathbb{Y}$ be a linear operator where both \mathbb{X} and \mathbb{Y} are normed space. Then T is compact iff it maps every bounded sequence $\left\{\psi_{n}\right\}$ in \mathbb{X} onto a sequence $\left\{T \psi_{n}\right\}$ in \mathbb{Y} which has a convergent subsequence.

Theorem (Accumulation point of eigenvalues set)

Let $T: \mathbb{X} \rightarrow \mathbb{X}$ be any compact linear operator where \mathbb{X} is a normed space. Then set of the eigenvalues of the operator T is countable and the only possible accumulation point is zero.

Ref. E. Kreyszig, Introductory functional analysis with applications. Vol. 17. John Wiley and Sons, 1991.

General result on finite number of eigenvalues for a operator

General result on finite number of eigenvalues for a operator

Theorem (Finiteness of number of eigenvalues)
Let $T: \mathcal{D}(T) \subseteq \mathbb{X} \rightarrow \mathbb{X}$ be a bounded linear operator where domain $\mathcal{D}(T)$ of operator T is a compact normed space, and \mathbb{X} is a Banach space.

General result on finite number of eigenvalues for a operator

Theorem (Finiteness of number of eigenvalues)

Let $T: \mathcal{D}(T) \subseteq \mathbb{X} \rightarrow \mathbb{X}$ be a bounded linear operator where domain $\mathcal{D}(T)$ of operator T is a compact normed space, and \mathbb{X} is a Banach space. Suppose zero is not an accumulation point of the eigenvalues for operator T.

General result on finite number of eigenvalues for a operator

Theorem (Finiteness of number of eigenvalues)

Let $T: \mathcal{D}(T) \subseteq \mathbb{X} \rightarrow \mathbb{X}$ be a bounded linear operator where domain $\mathcal{D}(T)$ of operator T is a compact normed space, and \mathbb{X} is a Banach space. Suppose zero is not an accumulation point of the eigenvalues for operator T. Then, the distinct eigenvalues of operator T are

General result on finite number of eigenvalues for a operator

Theorem (Finiteness of number of eigenvalues)

Let $T: \mathcal{D}(T) \subseteq \mathbb{X} \rightarrow \mathbb{X}$ be a bounded linear operator where domain $\mathcal{D}(T)$ of operator T is a compact normed space, and \mathbb{X} is a Banach space. Suppose zero is not an accumulation point of the eigenvalues for operator T. Then, the distinct eigenvalues of operator T are finite in counting.

General result on finite number of eigenvalues for a operator

Theorem (Finiteness of number of eigenvalues)

Let $T: \mathcal{D}(T) \subseteq \mathbb{X} \rightarrow \mathbb{X}$ be a bounded linear operator where domain $\mathcal{D}(T)$ of operator T is a compact normed space, and \mathbb{X} is a Banach space. Suppose zero is not an accumulation point of the eigenvalues for operator T. Then, the distinct eigenvalues of operator T are finite in counting.

Outline of proof.

First, we prove the bounded operator T is compact by contradiction to the result of the compactness criterion.

General result on finite number of eigenvalues for a operator

Theorem (Finiteness of number of eigenvalues)

Let $T: \mathcal{D}(T) \subseteq \mathbb{X} \rightarrow \mathbb{X}$ be a bounded linear operator where domain $\mathcal{D}(T)$ of operator T is a compact normed space, and \mathbb{X} is a Banach space. Suppose zero is not an accumulation point of the eigenvalues for operator T. Then, the distinct eigenvalues of operator T are finite in counting.

Outline of proof.

First, we prove the bounded operator T is compact by contradiction to the result of the compactness criterion. Then, we use the result 'accumulation point of eigenvalues set' to conclude the eigenvalue set is finite.

General result on finite number of eigenvalues for a operator

Theorem (Finiteness of number of eigenvalues)

Let $T: \mathcal{D}(T) \subseteq \mathbb{X} \rightarrow \mathbb{X}$ be a bounded linear operator where domain $\mathcal{D}(T)$ of operator T is a compact normed space, and \mathbb{X} is a Banach space. Suppose zero is not an accumulation point of the eigenvalues for operator T. Then, the distinct eigenvalues of operator T are finite in counting.

Outline of proof.

First, we prove the bounded operator T is compact by contradiction to the result of the compactness criterion. Then, we use the result 'accumulation point of eigenvalues set' to conclude the eigenvalue set is finite. The eigenvalues set is therefore bounded, discrete, and closed.

Finite number of eigenvalues for operator L_{R}

Finite number of eigenvalues for operator L_{R}

The operator $L_{R}: \mathbb{V}_{R} \subseteq \mathcal{L}^{2}[0, \infty) \rightarrow \mathcal{L}^{2}[0, \infty)$ defined on the Banach space. According to this previous theorem, if domain \mathbb{V}_{R} is compact set and L_{R} is bounded then operator L_{R} will be compact operator.

Finite number of eigenvalues for operator L_{R}

The operator $L_{R}: \mathbb{V}_{R} \subseteq \mathcal{L}^{2}[0, \infty) \rightarrow \mathcal{L}^{2}[0, \infty)$ defined on the Banach space. According to this previous theorem, if domain \mathbb{V}_{R} is compact set and L_{R} is bounded then operator L_{R} will be compact operator.

Theorem (Kolmogorov-Riesz theorem)

A subset J of $\left(\mathcal{L}^{p}\left(\mathbb{R}^{n}\right),\|\cdot\|_{p}\right), 1 \leq p<\infty$ is totally bounded in $\mathcal{L}^{p}\left(\mathbb{R}^{n}\right)$ iff the following conditions hold

1. J is bounded i.e. there exist an $M>0$ such that $\|f\|_{p} \leq M$ for every $f \in J$.
2. For each $\epsilon>0$, there is a $\eta>0$ such that $|t|<\eta$ and $f \in J$ implies $\int_{\mathbb{R}^{n}}|f(t+x)-f(x)|^{p} d x \leq \epsilon^{p}$.
3. $\lim _{n \rightarrow \infty} \int_{|x|>n}|f(x)|^{p} d x=0$ for every $f \in J$.

Finite number of eigenvalues for operator L_{R}

The operator $L_{R}: \mathbb{V}_{R} \subseteq \mathcal{L}^{2}[0, \infty) \rightarrow \mathcal{L}^{2}[0, \infty)$ defined on the Banach space. According to this previous theorem, if domain \mathbb{V}_{R} is compact set and L_{R} is bounded then operator L_{R} will be compact operator.

Theorem (Kolmogorov-Riesz theorem)

A subset J of $\left(\mathcal{L}^{p}\left(\mathbb{R}^{n}\right),\|\cdot\|_{p}\right), 1 \leq p<\infty$ is totally bounded in $\mathcal{L}^{p}\left(\mathbb{R}^{n}\right)$ iff the following conditions hold

1. J is bounded i.e. there exist an $M>0$ such that $\|f\|_{p} \leq M$ for every $f \in J$.
2. For each $\epsilon>0$, there is a $\eta>0$ such that $|t|<\eta$ and $f \in J$ implies $\int_{\mathbb{R}^{n}}|f(t+x)-f(x)|^{p} d x \leq \epsilon^{p}$.
3. $\lim _{n \rightarrow \infty} \int_{|x|>n}|f(x)|^{p} d x=0$ for every $f \in J$.

Totally bounded $\left(\mathbb{V}_{R}\right)$ and Completeness $\left(\mathcal{L}^{2}[0, \infty)\right) \Longrightarrow$ Relatively compact $\left(\mathbb{V}_{R}\right)$.

Finite number of eigenvalues for operator L_{R}

The operator $L_{R}: \mathbb{V}_{R} \subseteq \mathcal{L}^{2}[0, \infty) \rightarrow \mathcal{L}^{2}[0, \infty)$ defined on the Banach space. According to this previous theorem, if domain \mathbb{V}_{R} is compact set and L_{R} is bounded then operator L_{R} will be compact operator.

Theorem (Kolmogorov-Riesz theorem)

A subset J of $\left(\mathcal{L}^{p}\left(\mathbb{R}^{n}\right),\|\cdot\|_{p}\right), 1 \leq p<\infty$ is totally bounded in $\mathcal{L}^{p}\left(\mathbb{R}^{n}\right)$ iff the following conditions hold

1. J is bounded i.e. there exist an $M>0$ such that $\|f\|_{p} \leq M$ for every $f \in J$.
2. For each $\epsilon>0$, there is a $\eta>0$ such that $|t|<\eta$ and $f \in J$ implies $\int_{\mathbb{R}^{n}}|f(t+x)-f(x)|^{p} d x \leq \epsilon^{p}$.
3. $\lim _{n \rightarrow \infty} \int_{|x|>n}|f(x)|^{p} d x=0$ for every $f \in J$.

Totally bounded $\left(\mathbb{V}_{R}\right)$ and Completeness $\left(\mathcal{L}^{2}[0, \infty)\right) \Longrightarrow$ Relatively compact $\left(\mathbb{V}_{R}\right)$. L_{R}, Non-self-adjoint operator having finite number of distinct eigenvalues.

Orthogonality of eigenfunctions

Orthogonality of eigenfunctions

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi . \tag{7}
\end{equation*}
$$

Orthogonality of eigenfunctions

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi . \tag{7}
\end{equation*}
$$

For another eigenfunction ϕ and eigenvalue $\delta \neq \gamma$

$$
\begin{equation*}
L_{R}^{*} \phi=\left(\frac{r}{R k^{2}} \phi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \phi+\left(\frac{\phi}{r R k^{2}}-\frac{2}{R k^{2}} \phi_{r}\right)=\frac{\delta^{* 2}}{k^{2}} \frac{R}{r} \phi . \tag{8}
\end{equation*}
$$

Orthogonality of eigenfunctions

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi . \tag{7}
\end{equation*}
$$

For another eigenfunction ϕ and eigenvalue $\delta \neq \gamma$

$$
\begin{equation*}
L_{R}^{*} \phi=\left(\frac{r}{R k^{2}} \phi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \phi+\left(\frac{\phi}{r R k^{2}}-\frac{2}{R k^{2}} \phi_{r}\right)=\frac{\delta^{* 2}}{k^{2}} \frac{R}{r} \phi \tag{8}
\end{equation*}
$$

On multiply ϕ^{*} to the Eq. (7) and ψ^{*} to the Eq. (8) both side and on integrating both sides from 0 to ∞, one gets

Orthogonality of eigenfunctions

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi . \tag{7}
\end{equation*}
$$

For another eigenfunction ϕ and eigenvalue $\delta \neq \gamma$

$$
\begin{equation*}
L_{R}^{*} \phi=\left(\frac{r}{R k^{2}} \phi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \phi+\left(\frac{\phi}{r R k^{2}}-\frac{2}{R k^{2}} \phi_{r}\right)=\frac{\delta^{* 2}}{k^{2}} \frac{R}{r} \phi \tag{8}
\end{equation*}
$$

On multiply ϕ^{*} to the Eq. (7) and ψ^{*} to the Eq. (8) both side and on integrating both sides from 0 to ∞, one gets

$$
\underbrace{\left(\bar{\delta}^{2}-\gamma^{2}\right)}_{\neq 0}<\psi, \phi>_{r}=0 .
$$

Orthogonality of eigenfunctions

Consider

$$
\begin{equation*}
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi . \tag{7}
\end{equation*}
$$

For another eigenfunction ϕ and eigenvalue $\delta \neq \gamma$

$$
\begin{equation*}
L_{R}^{*} \phi=\left(\frac{r}{R k^{2}} \phi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \phi+\left(\frac{\phi}{r R k^{2}}-\frac{2}{R k^{2}} \phi_{r}\right)=\frac{\delta^{* 2}}{k^{2}} \frac{R}{r} \phi \tag{8}
\end{equation*}
$$

On multiply ϕ^{*} to the Eq. (7) and ψ^{*} to the Eq. (8) both side and on integrating both sides from 0 to ∞, one gets

$$
\underbrace{\left(\bar{\delta}^{2}-\gamma^{2}\right)}_{\neq 0}<\psi, \phi>_{r}=0 .
$$

We get,

$$
<\psi, \phi>_{r}=0
$$

L_{R}, Non-self-adjoint operator with orthogonal eigenfunctions

Summary

Summary

- Operator L_{R} corresponds to bent waveguide EVP is a non-self-adjoint operator.

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

Summary

- Operator L_{R} corresponds to bent waveguide EVP is a non-self-adjoint operator.

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

- Non-self-adjoint problem $L_{R} \rightarrow$ Self-adjoint problem $L_{\infty}=L_{S}$.

Summary

- Operator L_{R} corresponds to bent waveguide EVP is a non-self-adjoint operator.

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

- Non-self-adjoint problem $L_{R} \rightarrow$ Self-adjoint problem $L_{\infty}=L_{S}$.
- Operator L_{R} is a compact non-self-adjoint operator with finite number of eigenvalues.

Summary

- Operator L_{R} corresponds to bent waveguide EVP is a non-self-adjoint operator.

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

- Non-self-adjoint problem $L_{R} \rightarrow$ Self-adjoint problem $L_{\infty}=L_{S}$.
- Operator L_{R} is a compact non-self-adjoint operator with finite number of eigenvalues.
- Eigenfunctions of operator L_{R} corresponding to distinct eigenvalues are orthogonal.

Summary

- Operator L_{R} corresponds to bent waveguide EVP is a non-self-adjoint operator.

$$
L_{R} \psi:=\left(\frac{1}{k^{2}} \frac{r}{R} \psi_{r}\right)_{r}+n^{2}(r) \frac{r}{R} \psi=\frac{\gamma^{2}}{k^{2}} \frac{R}{r} \psi, \quad 0<r<\infty .
$$

- Non-self-adjoint problem $L_{R} \rightarrow$ Self-adjoint problem $L_{\infty}=L_{S}$.
- Operator L_{R} is a compact non-self-adjoint operator with finite number of eigenvalues.
- Eigenfunctions of operator L_{R} corresponding to distinct eigenvalues are orthogonal.
- Finiteness of the eigenvalues set.

DST, India

Namaste, Thank You
CSIR
kumar.117@iitj.ac.in

Asymptotic expansion of eigenfunctions

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

- For the asymptotic analysis, $n(r)=n_{c}$

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

- For the asymptotic analysis, $n(r)=n_{c}$

$$
\begin{equation*}
r^{2} \psi_{r r}+r \psi_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right) \psi=0 \tag{9}
\end{equation*}
$$

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

- For the asymptotic analysis, $n(r)=n_{c}$

$$
\begin{equation*}
r^{2} \psi_{r r}+r \psi_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right) \psi=0 \tag{9}
\end{equation*}
$$

- Leading behavior of the solution $\psi(r)=e^{S(r)}$, one gets

$$
\begin{equation*}
r^{2}\left(S_{r r}+S_{r}^{2}\right)+r S_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right)=0 \tag{10}
\end{equation*}
$$

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

- For the asymptotic analysis, $n(r)=n_{c}$

$$
\begin{equation*}
r^{2} \psi_{r r}+r \psi_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right) \psi=0 \tag{9}
\end{equation*}
$$

- Leading behavior of the solution $\psi(r)=e^{S(r)}$, one gets

$$
\begin{equation*}
r^{2}\left(S_{r r}+S_{r}^{2}\right)+r S_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right)=0 \tag{10}
\end{equation*}
$$

- Assume that $\left|S_{r r}\right| \ll\left|S_{r}^{2}\right|$ as $r \rightarrow \infty$, we get $S \sim \pm \imath n_{c} k r=S_{0}$

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

- For the asymptotic analysis, $n(r)=n_{c}$

$$
\begin{equation*}
r^{2} \psi_{r r}+r \psi_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right) \psi=0 \tag{9}
\end{equation*}
$$

- Leading behavior of the solution $\psi(r)=e^{S(r)}$, one gets

$$
\begin{equation*}
r^{2}\left(S_{r r}+S_{r}^{2}\right)+r S_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right)=0 \tag{10}
\end{equation*}
$$

- Assume that $\left|S_{r r}\right| \ll\left|S_{r}^{2}\right|$ as $r \rightarrow \infty$, we get $S \sim \pm \imath n_{c} k r=S_{0}$
- Let $S(r)= \pm \imath n_{c} k r+S_{1}(r)$, and $\left|S_{1}(r)\right| \ll\left|\imath n_{c} k r\right|$. From Eq. (10)

$$
S(r) \sim S_{0}(r)+S_{1}(r) \sim \pm \imath n_{c} k r-\frac{1}{2} \ln r+S_{2}(r)
$$

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

- For the asymptotic analysis, $n(r)=n_{c}$

$$
\begin{equation*}
r^{2} \psi_{r r}+r \psi_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right) \psi=0 \tag{9}
\end{equation*}
$$

- Leading behavior of the solution $\psi(r)=e^{S(r)}$, one gets

$$
\begin{equation*}
r^{2}\left(S_{r r}+S_{r}^{2}\right)+r S_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right)=0 \tag{10}
\end{equation*}
$$

- Assume that $\left|S_{r r}\right| \ll\left|S_{r}^{2}\right|$ as $r \rightarrow \infty$, we get $S \sim \pm \imath n_{c} k r=S_{0}$
- Let $S(r)= \pm \imath n_{c} k r+S_{1}(r)$, and $\left|S_{1}(r)\right| \ll\left|\imath n_{c} k r\right|$. From Eq. (10)

$$
S(r) \sim S_{0}(r)+S_{1}(r) \sim \pm \imath n_{c} k r-\frac{1}{2} \ln r+S_{2}(r)
$$

- On putting $S(r)$ back in $\psi(r)=e^{S(r)}$, one gets $\psi(r)=\frac{1}{\sqrt{r}} e^{ \pm} \imath n_{c} k r+S_{2}(r)$.

Asymptotic expansion of eigenfunctions

Bent mode profile for large R

- For the asymptotic analysis, $n(r)=n_{c}$

$$
\begin{equation*}
r^{2} \psi_{r r}+r \psi_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right) \psi=0 \tag{9}
\end{equation*}
$$

- Leading behavior of the solution $\psi(r)=e^{S(r)}$, one gets

$$
\begin{equation*}
r^{2}\left(S_{r r}+S_{r}^{2}\right)+r S_{r}+\left(n_{c}^{2} k^{2} r^{2}-\gamma^{2} R^{2}\right)=0 \tag{10}
\end{equation*}
$$

- Assume that $\left|S_{r r}\right| \ll\left|S_{r}^{2}\right|$ as $r \rightarrow \infty$, we get $S \sim \pm \imath n_{c} k r=S_{0}$
- Let $S(r)= \pm \imath n_{c} k r+S_{1}(r)$, and $\left|S_{1}(r)\right| \ll\left|\imath n_{c} k r\right|$. From Eq. (10)

$$
S(r) \sim S_{0}(r)+S_{1}(r) \sim \pm \imath n_{c} k r-\frac{1}{2} \ln r+S_{2}(r)
$$

- On putting $S(r)$ back in $\psi(r)=e^{S(r)}$, one gets $\psi(r)=\frac{1}{\sqrt{r}} e^{ \pm} n_{c} k r+S_{2}(r)$.
- Asymptotic behavior of mode ψ will be proportional to $\frac{1}{\sqrt{r}}$.

