The diamagnetic inequality for the Dirichlet-to-Neumann operator

Tom ter Elst

University of Auckland

Joint work with El Maati Ouhabaz

13-7-2022

The diamagnetic inequality for Laplacian

Let $\vec{a} = (a_1, \dots, a_d)$ with $a_k \in L_{2,loc}(\mathbb{R}^d)$ for all $k \in \{1, \dots, d\}$. Set $H(\vec{a}) = (\nabla - i\vec{a})^*(\nabla - i\vec{a})$.

Then

$$|e^{-tH(\vec{a})}f| \le e^{t\Delta}|f|$$

for all t > 0 and $f \in L_2(\mathbb{R}^d)$.

The same result holds in presence of a real-valued potential V, i.e., with operators $H(\vec{a}) + V$ and $-\Delta + V$.

The setting (1)

Let $\Omega \subset \mathbb{R}^d$ bounded open with Lipschitz boundary Γ . Let $c_{kl}, b_k, c_k, a_0 \in L_\infty(\Omega, \mathbb{R})$ for all $k, l \in \{1, \dots, d\}$. Ellipticity condition: there exists a $\mu > 0$ such that

Re
$$\sum_{k,l=1}^{d} c_{kl}(x) \, \xi_k \, \overline{\xi_l} \ge \mu \, |\xi|^2$$

for all $\xi \in \mathbb{C}^d$ and almost every $x \in \Omega$.

The setting (2)

Consider form $\mathfrak{a} \colon W^{1,2}(\Omega) \times W^{1,2}(\Omega) \to \mathbb{C}$

$$\mathfrak{a}(u,v) = \sum_{k,l=1}^{d} \int_{\Omega} c_{kl} \left(\partial_{l} u \right) \overline{\partial_{k} v} + \sum_{k=1}^{d} \int_{\Omega} \left(b_{k} u \overline{\partial_{k} v} \right) + c_{k} \left(\partial_{k} u \right) \overline{v} + \int_{\Omega} a_{0} u \overline{v}.$$

Define $\mathcal{A}\colon W^{1,2}(\Omega) \to W^{-1,2}(\Omega)$ by

$$\langle \mathcal{A}u, v \rangle_{W^{-1,2}(\Omega) \times W_0^{1,2}(\Omega)} = \mathfrak{a}(u, v).$$

Let $\psi \in L_2(\Gamma)$ and $u \in W^{1,2}(\Omega)$ with $Au \in L_2(\Omega)$.

Definition: u has weak conormal derivative ψ if

$$\mathfrak{a}(u,v) - (\mathcal{A}u,v)_{L_2(\Omega)} = (\psi,\operatorname{Tr} v)_{L_2(\Gamma)}$$
 for all $v \in W^{1,2}(\Omega)$.

Notation $\partial_{\nu}^{\mathfrak{a}} u = \psi$.

The Dirichlet-to-Neumann operator ${\cal N}$

Assumption: 0 is not a Dirichlet eigenvalue.

Definition: A function $u \in W^{1,2}(\Omega)$ is called \mathcal{A} -harmonic if

$$\mathfrak{a}(u,v) = 0 \quad \text{for all } v \in W_0^{1,2}(\Omega).$$

For all $\varphi \in H^{1/2}(\Gamma)$ there is a unique \mathcal{A} -harmonic $u \in W^{1,2}(\Omega)$ such that $\operatorname{Tr} u = \varphi$.

IF u has a weak conormal derivative, then we say

$$\varphi \in D(\mathcal{N}) \text{ and } \mathcal{N}\varphi = \partial_{\nu}^{\mathfrak{a}} u.$$

The operator $-\mathcal{N}$ is the generator of a C_0 -semigroup.

Two form methods

Define
$$\mathfrak{b} \colon H^{1/2}(\Gamma) \times H^{1/2}(\Gamma) \to \mathbb{C}$$
 by

$$\mathfrak{b}(\varphi,\xi) := \mathfrak{a}(u,v),$$

where $u,v\in W^{1,2}(\Omega)$ are \mathcal{A} -harmonic with $\mathrm{Tr}\, u=\varphi$ and $\mathrm{Tr}\, v=\xi$, respectively.

Then $\mathfrak b$ is a densely defined continuous elliptic form and $\mathcal N$ is the associated operator.

The operator $\mathcal N$ is the operator associated with $\mathfrak b$ in the following sense: Let $\varphi,\psi\in L_2(\Gamma)$. Then $\varphi\in D(\mathcal N)$ and $\mathcal N\varphi=\psi$ if and only if $\varphi\in D(\mathfrak b)$ and

$$\mathfrak{b}(\varphi,\xi) = (\psi,\xi)_{L_2(\Gamma)}$$
 for all $\xi \in D(\mathfrak{b})$.

Second form method

Let V and H be Hilbert spaces.

Let $\mathfrak{a} \colon V \times V \to \mathbb{C}$ be a continuous sesquilinear form.

Let $j \colon V \to H$ be a continuous operator with dense range.

Suppose $\mathfrak a$ is j-elliptic, that is, there are $\mu>0$ and $\omega\in\mathbb R$ such that

$$\operatorname{Re} \mathfrak{a}(u, u) + \omega \| \mathbf{j}(u) \|_H^2 \ge \mu \| u \|_V^2 \quad \text{for all } u \in V.$$

The operator A associated with (\mathfrak{a},j) is defined as follows: Let $x,f\in H$. Then $x\in D(A)$ and Ax=f if and only if there exists a $u\in V$ such that j(u)=x and

$$\mathfrak{a}(u,v)=(f,\mathbf{j}(v))_H$$
 for all $v\in V$.

Theorem (Arendt-tE). The operator A is well defined and -A is the generator of a holomorphic C_0 -semigroup in H.

In our case, if $\mathfrak a$ is Tr -elliptic, then the operator $\mathcal N$ is the operator associated with $(\mathfrak a,\operatorname{Tr})$.

The magnetic Dirichlet-to-Neumann operator $\mathcal{N}(\vec{a})$

Let $\vec{a} := (a_1, \dots, a_d)$ with $a_k \in L_{\infty}(\Omega, \mathbb{R})$ for all $k \in \{1, \dots, d\}$. Set

$$D_k := \partial_k - ia_k$$

Consider form $\mathfrak{a}(\vec{a}) \colon W^{1,2}(\Omega) \times W^{1,2}(\Omega) \to \mathbb{C}$

$$\mathfrak{a}(\vec{a})(u,v) = \sum_{k,l=1}^{d} \int_{\Omega} c_{kl} (D_{l}u) \, \overline{D_{k}v} + \sum_{k=1}^{d} \int_{\Omega} \left(b_{k} \, u \, \overline{D_{k}v} \right) + c_{k} (D_{k}u) \, \overline{v} + \int_{\Omega} a_{0} \, u \, \overline{v}.$$

Assumption: 0 is not a Dirichlet eigenvalue.

Define similarly that an element of $W^{1,2}(\Omega)$ is $\mathcal{A}(\vec{a})$ -harmonic and the magnetic Dirichlet-to-Neumann operator $\mathcal{N}(\vec{a})$.

Formally, if $\varphi \in D(\mathcal{N}(\vec{a}))$ and $u \in W^{1,2}(\Omega)$ is $\mathcal{A}(\vec{a})$ -harmonic with trace $\operatorname{Tr} u = \varphi$, then

$$\mathcal{N}(\vec{a})\varphi = \partial_{\nu}^{\mathfrak{a}(\vec{a})} u = \sum_{k,l=1}^{d} \nu_k \operatorname{Tr}(c_{kl} \, \partial_l u) - i \sum_{k,l=1}^{d} \nu_k \operatorname{Tr}(c_{kl} \, a_l \, u) + \sum_{k=1}^{d} \nu_k \operatorname{Tr}(b_k \, u)$$

The diamagnetic inequality

Let $T_{\vec{a}}=(T_{\vec{a}}(t))_{t>0}$ and $T=(T(t))_{t>0}$ be the semigroups generated by $-\mathcal{N}(\vec{a})$ and $-\mathcal{N}$ on $L_2(\Gamma)$, respectively.

Theorem (tE–Ouhabaz). Suppose $\mathfrak a$ is accretive and there exist $\mu, \omega > 0$ such that

$$\operatorname{Re} \mathfrak{a}(u, u) + \omega \|\operatorname{Tr} u\|_{L_2(\Gamma)}^2 \ge \mu \|u\|_{W^{1,2}(\Omega)}^2$$
 for all $u \in W^{1,2}(\Omega)$.

Then

$$|T_{\vec{a}}(t)\varphi| \le T(t)|\varphi|$$

for all t > 0 and $\varphi \in L_2(\Gamma)$.

Kernel bounds

Suppose Ω is of class $C^{1+\kappa}$ for some $\kappa > 0$.

Suppose also that $c_{kl}=c_{lk}\in C^{\kappa}(\Omega,\mathbb{R})$, $b_k=c_k=0$ and $a_k\in L_{\infty}(\Omega,\mathbb{R})$ for all $k,l\in\{1,\ldots,d\}$.

Suppose $a_0 \geq 0$ a.e. on Ω .

Then $T_{\vec{a}}$ has a kernel $K_{\vec{a}}$ and there exists a constant c > 0 such that

$$|K_{\vec{a}}(t,z,w)| \le \frac{c (t \wedge 1)^{-(d-1)} e^{-\lambda_1 t}}{\left(1 + \frac{|z-w|}{t}\right)^d}$$

for all $z,w\in\Gamma$ and t>0, where λ_1 is the first eigenvalue of the operator $\mathcal{N}(\vec{a})$.

Hölder continuous kernel bounds

Same assumptions. In addition suppose that $d \geq 3$.

Then for all $\varepsilon, \tau' \in (0,1)$, $\tau > 0$ there exist $c, \nu > 0$ such that

$$|K_{\vec{a}}(t,z,w) - K_{\vec{a}}(t,z',w')| \le c (t \wedge 1)^{-(d-1)} \left(\frac{|z-z'| + |w-w'|}{t + |z-w|} \right)^{\nu} \frac{1}{\left(1 + \frac{|z-w|}{t}\right)^{d-\varepsilon}} (1+t)^{\nu} e^{-\lambda_1 t}$$

for all $z, w, z', w' \in \Gamma$ and t > 0 with $|z - z'| + |w - w'| \le \tau \, t + \tau' \, |z - w|$.

Sketch of proof

The diamagnetic inequality is obtained by proving the invariance of the closed convex set

$$\{(\varphi, \psi) \in L_2(\Gamma) \times L_2(\Gamma) : |\varphi| \le \psi\}$$

for the semigroup

$$\left(\begin{array}{cc} T_{\vec{a}}(t) & 0 \\ 0 & T(t) \end{array}\right)_{t>0}.$$

Invariance of closed convex sets

Let V and \widetilde{H} be Hilbert spaces with V densely and continuously embedded in $\widetilde{H}.$

Let $\mathfrak{a} \colon V \times V \to \mathbb{C}$ be a continuous accretive sesquilinear form.

Suppose $\mathfrak a$ is elliptic, that is *i*-elliptic, where *i* is the inclusion map.

Let \widetilde{S} be the associated semigroup.

Let $\widetilde{C}\subset\widetilde{H}$ be a non-empty closed convex set and let $\widetilde{P}\colon\widetilde{H}\to\widetilde{C}$ be the projection.

Theorem (Ouhabaz). The following are equivalent.

- $lackbox{$\widetilde{C}$}$ is invariant under \widetilde{S} , that is $\widetilde{S}_t\widetilde{C}\subset\widetilde{C}$ for all t>0.
- $\widetilde{P}V \subset V$ and $\operatorname{Re}\mathfrak{a}(\widetilde{P}u, u \widetilde{P}u) \geq 0$ for all $u \in V$.
- $\widetilde{P}V \subset V$ and $\operatorname{Re}\mathfrak{a}(u, u \widetilde{P}u) > 0$ for all $u \in V$.

Invariance of closed convex sets

Let V and H be Hilbert spaces.

Let $\mathfrak{a} \colon V \times V \to \mathbb{C}$ be a continuous sesquilinear form.

Let $j \colon V \to H$ be a continuous operator with dense range.

Suppose \mathfrak{a} is j-elliptic and accretive.

Let S be the semigroup associated with (\mathfrak{a}, j) .

Let $C \subset H$ be a non-empty closed convex set and let $P \colon H \to C$ be the projection.

Theorem (Arendt-tE). The following are equivalent.

- lue C is invariant under S, that is $S_tC\subset C$ for all t>0.
- For all $u \in V$ there exists a $w \in V$ such that P(j(u)) = j(w) and $\operatorname{Re} \mathfrak{a}(w, u w) \geq 0$.
- For all $u \in V$ there exists a $w \in V$ such that P(j(u)) = j(w) and $\operatorname{Re} \mathfrak{a}(u, u w) \geq 0$.

Invariance of closed convex sets

Proposition. Let $C \subset H$ be a non-empty closed convex set and let $P \colon H \to C$ be the projection.

Let $\widetilde{C}\subset\widetilde{H}$ be a non-empty closed convex set and let $\widetilde{P}\colon\widetilde{H}\to\widetilde{C}$ be the projection.

Suppose \mathfrak{a} is j-elliptic and accretive.

Suppose \widetilde{C} is invariant under the semigroup \widetilde{S} and

$$P\circ j=j\circ \widetilde{P}\quad \text{on }V.$$

Then C is invariant under the semigroup S.

Our situation

```
\begin{array}{l} V=W^{1,2}(\Omega).\\ H=L_2(\Gamma).\\ \widetilde{H}=L_2(\Omega).\\ j=\mathrm{Tr}:W^{1,2}(\Omega)\to L_2(\Gamma).\\ S \text{ semigroup generated by Dirichlet-to-Neumann operator.}\\ \widetilde{S} \text{ semigroup on }L_2(\Omega) \text{ with Neumann boundary conditions.} \end{array}
```

We need in addition to prove a diamagnetic inequality for differential operators in divergence form with lower-order terms and Neumann boundary conditions on Ω .

The latter was done by Hundertmark and Simon for the Laplacian.

References

A.F.M. ter Elst and E.M. Ouhabaz

The diamagnetic inequality for the Dirichlet-to-Neumann operator.

Bull. Lond. Math. Soc. (2022).

In press.

W. Arendt and A.F.M. ter Elst

Sectorial forms and degenerate differential operators.

J. Operator Theory **67** (2012), 33–72.

D. Hundertmark and B. Simon

A diamagnetic inequality for semigroup differences.

J. Reine Angew. Math. 571 (2004), 107-130.

E.M. Ouhabaz

Invariance of closed convex sets and domination criteria for semigroups. *Potential Anal.* **5** (1996), 611–625.