Optimal Hardy-weights for elliptic operators with mixed boundary conditions

Yehuda Pinchover
Department of Mathematics, Technion, Haifa, ISRAEL

Mathematical aspects of the physics with non-self-adjoint operators

$$
\begin{aligned}
& \text { Banff, 10-15 July } 2022 \\
& \text { Joint work with Idan Versano }
\end{aligned}
$$

The operator (P, B)

Let P be a second-order, linear, elliptic operator in divergence form with real and locally regular coefficients defined on a domain $\Omega \subset \mathbb{R}^{n}$

$$
P u:=-\operatorname{div}[A(x) \nabla u+u \tilde{\mathbf{b}}(x)]+\overline{\mathbf{b}}(x) \cdot \nabla u+c(x) u \quad x \in \Omega .
$$

Let $\partial \Omega_{\text {Rob }}$ be a relatively open C^{1}-portion of $\partial \Omega$, and consider the oblique boundary operator

$$
B u:=(A(x) \nabla u+u \tilde{\mathbf{b}}(x)) \cdot \vec{n}(x)+\gamma(x) u \quad x \in \partial \Omega_{\mathrm{Rob}},
$$

where $\vec{n}(x)$ is the outward unit normal vector to $\partial \Omega$ at $x \in \partial \Omega_{\text {Rob }}$, and γ is a real measurable function defined on $\partial \Omega_{\text {Rob }}$. Let $\partial \Omega_{\text {Dir }}:=\partial \Omega \backslash \partial \Omega_{\text {Rob }}$ be the Dirichlet part of $\partial \Omega$.
If further $\overline{\mathbf{b}}=\tilde{\mathbf{b}}$ in Ω, we say that (P, B) is symmetric in Ω.

Weak solutions

Definition

We say that $u \in H_{\mathrm{loc}}^{1}\left(\bar{\Omega} \backslash \partial \Omega_{\mathrm{Dir}}\right)$ is a weak solution (resp., supersolution) of the boundary value problem

$$
\begin{cases}P u=0 & \text { in } \Omega \\ B u=0 & \text { on } \partial \Omega_{\mathrm{Rob}}\end{cases}
$$

(P,B)
if for any (resp., nonnegative) $\phi \in C_{0}^{\infty}\left(\bar{\Omega} \backslash \partial \Omega_{\text {Dir }}\right)$ we have

$$
\int_{\Omega}\left[\left(a^{i j} D_{j} u+u \tilde{\mathbf{b}}^{i}\right) D_{i} \phi+\left(\overline{\mathbf{b}}^{i} D_{i} u+c u\right) \phi\right] \mathrm{d} x+\int_{\partial \Omega_{\mathrm{Rob}}} \gamma u \phi \mathrm{~d} \sigma=\left\{\begin{array}{c}
0, \\
\geq 0, \text { resp. }
\end{array}\right.
$$

In this case we write $(P, B) u=0$ (resp., $(P, B) u \geq 0)$.

Hardy-weight of (P, B)

Definition

- We say that (P, B) is nonnegative in Ω (in short $(P, B) \geq 0$ in Ω) if there exists a positive weak solution to the boundary value problem

$$
\begin{cases}P u=0 & \text { in } \Omega \\ B u=0 & \text { on } \partial \Omega_{\mathrm{Rob}}\end{cases}
$$

(P,B)

- We say that $W \supsetneqq 0$ is a Hardy-weight for (P, B) in Ω if $(P-W, B) \geq 0$ in Ω.
- A nonnegative operator (P, B) in Ω is said to be subcritical (resp., critical) in Ω if (P, B) admits (resp., does not admit) a Hardy-weight for (P, B) in Ω.

Agmon-Allegretto-Piepenbrink (AAP) theorem

Theorem

Suppose that (P, B) is a symmetric operator (i.e., $\overline{\mathbf{b}}=\tilde{\mathbf{b}}$ in Ω).
Then $(P, B) \geq 0$ in Ω iff the corresponding quadratic form is nonnegative on $C_{0}^{\infty}\left(\bar{\Omega} \backslash \partial \Omega_{\text {Dir }}\right)$.

Hence, in the symmetric case, the inequality $(P-W, B) \geq 0$ in Ω is equivalent to the validity of the following Hardy-type inequality

$$
\int_{\Omega}\left(|\nabla \phi|_{A}^{2}+(c-\operatorname{div} \bar{b})|\phi|^{2}\right) \mathrm{d} x+\int_{\partial \Omega_{\text {Rob }}} \gamma|\phi|^{2} \mathrm{~d} \sigma \geq \int_{\Omega} W|\phi|^{2} \mathrm{~d} x
$$

for all $\phi \in C_{0}^{\infty}\left(\bar{\Omega} \backslash \partial \Omega_{\text {Dir }}\right)$.
Previous results for the case $\partial \Omega_{\text {Rob }} \neq \emptyset$ are by Kovařík-Laptev (2012), Kovařík-Mugnolo (2018), and references therein.

Criticality theory

- (P, B) is subcritical in Ω iff (P, B) admits a minimal positive Green function $G_{P, B}^{\Omega}(x, y)$.
- (P, B) is critical in Ω iff the equation $(P, B) u=0$ in Ω admits (up to a multiplicative constant) a unique positive supersolution ϕ.
- In fact, ϕ is a minimal positive solution of $(P, B) u=0$ in Ω, called the (Agmon) ground state.
- (P, B) is critical in Ω if and only if $\left(P^{*}, B^{*}\right)$ is critical in Ω, where $\left(P^{*}, B^{*}\right)$ is the formal adjoint of (P, B) in $L^{2}(\Omega)$.

Aim: Find as large as possible Hardy-weight for subcritical (P, B).

Optimal Hardy weights

Definition

A Hardy-weight W of (P, B) in Ω is said to be optimal if $(P-W, B)$ is critical in Ω and $\int_{\Omega} \phi \phi^{*} W \mathrm{~d} x=\infty$, where ϕ and ϕ^{*} are the ground states of $(P-W, B)$ and $\left(P^{*}-W, B^{*}\right)$ in Ω, respectively. In this case, we say that $(P-W, B)$ is null-critical in Ω with respect to the weight W.

Definition

We say that a Hardy-weight W is optimal at infinity in Ω if for any $K \Subset \bar{\Omega}, \partial K \cap \partial \Omega_{\text {Dir }}=\emptyset$, and $\partial K \cap \partial \Omega_{\text {Rob }} \Subset \partial \Omega_{\text {Rob }}$ with respect to the relative topology on $\partial \Omega_{\mathrm{Rob}}$ (in short, $K \Subset_{R} \Omega$), we have

$$
\sup \{\lambda \in \mathbb{R} \mid(P-\lambda W, B) \geq 0 \text { in } \Omega \backslash K\}=1
$$

Remark: Any optimal Hardy-weight in Ω is also optimal at infinity in Ω.

Green potential

Definition

Let (P, B) be a subcritical operator in Ω, and let $G(x, y):=G_{P, B}^{\Omega}(x, y)$ the corresponding minimal positive Green function. Fix $0 \supsetneqq \varphi \in C_{0}^{\infty}(\Omega)$. The Green potential with a density φ is the function

$$
G_{\varphi}(x):=\int_{\Omega} G(x, y) \varphi(y) \mathrm{d} y .
$$

Definition (Exhaustion of $\bar{\Omega} \backslash \partial \Omega_{\text {Dir }}$)

A sequence $\left\{\Omega_{k}\right\}_{k \in \mathbb{N}} \subset \Omega$ is called an exhaustion of $\bar{\Omega} \backslash \partial \Omega_{\text {Dir }}$ if it is an increasing sequence of Lipschitz subdomains s.t. $\Omega_{k} \Subset_{R} \Omega_{k+1} \Subset_{R} \Omega$, and

$$
\bigcup_{k \in \mathbb{N}} \overline{\Omega_{k}}=\bar{\Omega} \backslash \partial \Omega_{\text {Dir }}
$$

Definition

Let $K \Subset \Omega$ and $f \in C\left((\overline{\Omega \backslash K}) \backslash \partial \Omega_{\text {Dir }}\right)$. We say that

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

if for any $\varepsilon>0$ and any exhaustion $\left\{\Omega_{k}\right\}_{k \in \mathbb{N}}$ of $\bar{\Omega} \backslash \partial \Omega_{\text {Dir }}$, there exists k_{0} such that $|f(x)|<\varepsilon$ in $\Omega \backslash \Omega_{k_{0}}$.

Green potential

Definition

Let (P, B) be a subcritical operator in Ω, and let $G(x, y):=G_{P, B}^{\Omega}(x, y)$ the corresponding minimal positive Green function. Fix $0 \supsetneqq \varphi \in C_{0}^{\infty}(\Omega)$. The Green potential with a density φ is the function

$$
G_{\varphi}(x):=\int_{\Omega} G(x, y) \varphi(y) \mathrm{d} y .
$$

Theorem

Let (P, B) be a subcritical operator in Ω and let G_{φ} be the Green potential with a density $0 \supsetneqq \varphi \in C_{0}^{\infty}(\Omega)$. Assume that a positive solution $u>0$ satisfies $(P, B) u=0$ and Ancona condition:

$$
\lim _{x \rightarrow \infty_{\mathrm{Dir}}} \frac{G_{\varphi}(x)}{u(x)}=0
$$

Then

$$
W:=\frac{P\left(\sqrt{G_{\varphi} u}\right)}{\sqrt{G_{\varphi} u}} \geq 0 \text { is a Hardy-weight. }
$$

Moreover, $(P-W, B)$ is critical in Ω with a ground state $\sqrt{G_{\varphi} u}$, and

$$
W=\frac{\left|\nabla\left(G_{\varphi} / u\right)\right|_{A}^{2}}{4\left(G_{\varphi} / u\right)^{2}} \quad \text { in } \Omega \backslash \operatorname{supp}(\varphi)
$$

Theorem (Continue)

Furthermore, assume that one of the following regularity conditions are satisfied.
(1) (P, B) is symmetric, $A \in C_{\mathrm{loc}}^{0,1}\left(\bar{\Omega} \backslash \partial \Omega_{\mathrm{Dir}}, \mathbb{R}^{n^{2}}\right)$, $\overline{\mathbf{b}}=\tilde{\mathbf{b}} \in C_{\mathrm{loc}}^{\alpha}\left(\bar{\Omega} \backslash \partial \Omega_{\mathrm{Dir}}, \mathbb{R}^{n}\right), c \in L_{\mathrm{loc}}^{\infty}\left(\bar{\Omega} \backslash \partial \Omega_{\mathrm{Dir}}\right)$, and $\partial \Omega_{\mathrm{Rob}} \in C^{1, \alpha}$.
(2) $\partial \Omega_{\mathrm{Rob}}, \partial \Omega_{\mathrm{Dir}}$ are both relatively open and closed sets, $\partial \Omega_{\mathrm{Rob}}$ is bounded and admits a finite number of connected components, and the coefficients of P are smooth enough functions in Ω.
Then W is an optimal Hardy-weight for (P, B) in Ω.

Family of optimal Hardy-weights

Theorem

Assume that the operator (P, B), and the functions G_{φ}, u satisfy the assumptions of the above theorem.
Let w be an optimal (Dirichlet) Hardy-weight of $L y:=-y^{\prime \prime}$ in \mathbb{R}_{+}, and let $\psi_{w}(t)$ be the corresponding ground state. Suppose further that $\psi_{w}^{\prime} \geq 0$ on $\left\{t=G_{\varphi}(x) / u(x) \mid x \in \Omega\right\}$, and set

$$
W:=\frac{P\left(u \psi_{w}\left(G_{\varphi} / u\right)\right)}{u \psi_{w}\left(G_{\varphi} / u\right)} .
$$

Then, the following assertions are satisfied:
(1) $W \geq 0$ in Ω and $W:=\left|\nabla\left(G_{\varphi} / u\right)\right|_{A}^{2} w\left(G_{\varphi} / u\right)$ in $\Omega \backslash \operatorname{supp}(\varphi)$.
(2) $(P-W, B)$ is critical in Ω with ground state $u \psi_{w}\left(G_{\varphi} / u\right)$.
(3) Under one of further assumptions of the above theorem, W is an optimal Hardy-weight for (P, B) in Ω.

Optimal Hardy-weights for the Dirichlet Laplacian on \mathbb{R}_{+}

Proposition

Let $0 \supsetneqq w \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$. Then w is an optimal Hardy-weight for the Dirichlet Laplacian on \mathbb{R}_{+}with a corresponding ground state ψ_{w} if and only if the following three conditions are satisfied.
(1) $\psi_{w}>0$ satisfies $-\psi_{w}^{\prime \prime}-w \psi_{w}=0$ in \mathbb{R}_{+},
(2) $\int_{0}^{1} \frac{1}{\psi_{w}^{2}} \mathrm{~d} t=\int_{1}^{\infty} \frac{1}{\psi_{w}^{2}} \mathrm{~d} t=\infty$,
(3) $\int_{0}^{1} \psi_{w}^{2} w \mathrm{~d} t=\int_{1}^{\infty} \psi_{w}^{2} w \mathrm{~d} t=\infty$.

Example

Under the assumptions on u and G_{φ}, let

$$
0 \leq a \leq \frac{1}{\sup _{\Omega}\left(G_{\varphi} / u\right)}, \quad w(t):=\left(2 t-a t^{2}\right)^{-2}, \quad \psi_{w}(t):=\sqrt{2 t-a t^{2}}
$$

(w and ψ_{w} are related to Ermakov-Pinney equation $-y^{\prime \prime}=\frac{1}{y^{3}}$.) Then

$$
W:=\frac{P\left(u \psi_{w}\left(G_{\varphi} / u\right)\right)}{u \psi_{w}\left(G_{\varphi} / u\right)} \quad\left(\text { at } \infty W=\left|\nabla\left(G_{\varphi} / u\right)\right|_{A}^{2} w\left(G_{\varphi} / u\right)\right) .
$$

is an optimal Hardy weight which is larger at infinity than the "Classical" Hardy-weight $W=\frac{\left|\nabla\left(G_{\varphi} / u\right)\right|_{A}^{2}}{4\left(G_{\varphi} / u\right)^{2}}$.

Example (half ball or half space)

Let $n \geq 3$, and either
$\Omega=B_{1}^{+}(0), \partial \Omega_{\mathrm{Rob}}=\left\{x \in B_{1}(0) \mid x_{n}=0\right\} ;$ or $\Omega=\mathbb{R}_{+}^{n}, \partial \Omega_{\mathrm{Rob}}=\left\{x \in \mathbb{R}^{n} \mid x_{n}=0\right\}$.

$$
P u:=-\Delta u \text { in } \Omega, \quad B u=\nabla u \cdot \vec{n} \text { on } \partial \Omega_{\mathrm{Rob}} .
$$

Taking $u=1$ and the explicit Green functions $G_{P, B}^{\Omega}$ given by Schwarz reflection principle, we get an optimal Hardy-weight $W=P\left(G_{\varphi}^{1 / 2}\right) / G_{\varphi}^{1 / 2}$. For $\Omega=B_{1}^{+}(0), W(x) \sim\left(2 \cdot \operatorname{dist}\left(x, \partial \Omega_{\operatorname{Dir}}\right)\right)^{-2}$ as $x \rightarrow \xi$, where $\xi_{n}>0$ and $|\xi|=1$.

For $\Omega=\mathbb{R}_{+}^{n}, W(x) \sim \frac{(n-2)^{2}}{4}|x|^{-2}$ as $x \rightarrow \infty$ such that $x /|x| \rightarrow\left(\xi^{\prime}, \xi_{n}\right)$ with $\xi_{n}>0$.

Example (exterior of the unit ball)

Let $n \geq 3$, and $\Omega=\left\{x \in \mathbb{R}^{n}| | x \mid>1\right\}$ with $\partial \Omega_{\mathrm{Rob}}=\partial \Omega$. Assume that $P u=-\Delta u$ and $B u=\nabla u \cdot \vec{n}+\gamma(x) u$ on $\partial \Omega_{\text {Rob }}$, where $\gamma \in L^{\infty}\left(\partial \Omega_{\text {Rob }}\right)$ satisfies $\gamma>(1-n) / 2$, and take $\varepsilon>0$ such that $\varepsilon(n+2 \gamma-1) \geq 1$ on $\partial \Omega_{\text {Rob. }}$. Then,

$$
\begin{gathered}
v:=\sqrt{(|x|-1+\varepsilon)|x|^{1-n}} \text { satisfies } \\
\begin{cases}-\Delta v-\frac{(n-1)(n-3) v}{4|x|^{2}}-\frac{v}{4(|x|-1+\varepsilon)^{2}}=0 & \text { in } \Omega, \\
\nabla v \cdot \vec{n}+\gamma v=\frac{-1+\varepsilon(n+2 \gamma-1)}{2 \sqrt{\varepsilon}} \geq 0 & \text { on } \partial \Omega_{\mathrm{Rob}} .\end{cases}
\end{gathered}
$$

Hence, the AAP theorem implies the Hardy-type inequality in $H^{1}(\Omega)$

$$
\int_{\Omega}|\nabla \phi|^{2} \mathrm{~d} x+\int_{\partial \Omega_{\mathrm{Rob}}} \gamma \phi^{2} \mathrm{~d} \sigma \geq \int_{\Omega}\left[\frac{(n-1)(n-3)}{4|x|^{2}}+\frac{1}{4(|x|-1+\varepsilon)^{2}}\right] \phi^{2} \mathrm{~d} x .
$$

Example (Continued)

Let's compare our result with [Kovařík-Laptev (2012)], where $\gamma \geq 0$ is constant and $\varepsilon=(2 \gamma)^{-1}$. Instead, let $\varepsilon_{\gamma}:=(n-1+2 \gamma)^{-1}$, we obtain an improvement of the Hardy inequality in [Kovařík-Laptev (2012)]. In particular, the function $v_{\gamma}:=\sqrt{\left(|x|-1+\varepsilon_{\gamma}\right)|x|^{1-n}}$ is a positive solution of the equation

$$
\begin{cases}-\Delta v-\frac{v(n-1)(n-3)}{4|x|^{2}}-\frac{v}{4\left(|x|-1+\varepsilon_{\gamma}\right)^{2}}=0 & \text { in } \Omega \\ \nabla v \cdot \vec{n}+\gamma v=0 & \text { on } \partial \Omega_{\mathrm{Rob}}\end{cases}
$$

It follows that v_{γ} is a ground state and

$$
W:=\frac{(n-1)(n-3)}{4|x|^{2}}+\frac{1}{4\left(|x|-1+\varepsilon_{\gamma}\right)^{2}}
$$

is an optimal Hardy-weight of (P, B) in Ω.

Thank you for your attention!

