Optimal Hardy-weights for elliptic operators with mixed boundary conditions

Yehuda Pinchover

Department of Mathematics, Technion, Haifa, ISRAEL

Mathematical aspects of the physics with non-self-adjoint operators

Banff, 10 - 15 July 2022

Joint work with Idan Versano

The operator (P, B)

Let P be a second-order, linear, elliptic operator in divergence form with real and locally regular coefficients defined on a domain $\Omega \subset \mathbb{R}^n$

$$Pu := -\mathrm{div} \, \left[A(x) \nabla u + u \tilde{\mathbf{b}}(x) \right] + \overline{\mathbf{b}}(x) \cdot \nabla u + c(x) u \qquad x \in \Omega.$$

Let $\partial\Omega_{\mathrm{Rob}}$ be a relatively open C^{1} -portion of $\partial\Omega$, and consider the oblique boundary operator

$$Bu := (A(x)\nabla u + u\tilde{\mathbf{b}}(x)) \cdot \vec{n}(x) + \gamma(x)u \qquad x \in \partial\Omega_{\mathrm{Rob}},$$

where $\vec{n}(x)$ is the outward unit normal vector to $\partial\Omega$ at $x\in\partial\Omega_{\mathrm{Rob}}$, and γ is a real measurable function defined on $\partial\Omega_{\mathrm{Rob}}$. Let $\partial\Omega_{\mathrm{Dir}}:=\partial\Omega\setminus\partial\Omega_{\mathrm{Rob}}$ be the Dirichlet part of $\partial\Omega$.

If further $\bar{\mathbf{b}} = \tilde{\mathbf{b}}$ in Ω , we say that (P, B) is symmetric in Ω .

Weak solutions

Definition

We say that $u \in H^1_{loc}(\overline{\Omega} \setminus \partial \Omega_{Dir})$ is a weak solution (resp., supersolution) of the boundary value problem

$$\begin{cases} Pu = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial \Omega_{\text{Rob}}. \end{cases}$$
 (P,B)

if for any (resp., nonnegative) $\phi \in C_0^\infty(\bar{\Omega} \setminus \partial\Omega_{\mathrm{Dir}})$ we have

$$\int_{\Omega} [(a^{ij}D_{j}u + u\tilde{\mathbf{b}}^{i})D_{i}\phi + (\bar{\mathbf{b}}^{i}D_{i}u + cu)\phi] dx + \int_{\partial\Omega_{\text{Rob}}} \gamma u\phi d\sigma = \begin{cases} 0, \\ \geq 0, \text{ resp.} \end{cases}$$

In this case we write (P, B)u=0 (resp., $(P, B)u\geq 0$).

Hardy-weight of (P, B)

Definition

• We say that (P, B) is nonnegative in Ω (in short $(P, B) \ge 0$ in Ω) if there exists a positive weak solution to the boundary value problem

$$\begin{cases} Pu = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega_{\text{Rob}}. \end{cases} \tag{P,B}$$

- We say that $W \ngeq 0$ is a Hardy-weight for (P, B) in Ω if $(P W, B) \ge 0$ in Ω .
- A nonnegative operator (P, B) in Ω is said to be subcritical (resp., critical) in Ω if (P, B) admits (resp., does not admit) a Hardy-weight for (P, B) in Ω .

Agmon-Allegretto-Piepenbrink (AAP) theorem

Theorem

Suppose that (P,B) is a symmetric operator (i.e., $\bar{\mathbf{b}} = \tilde{\mathbf{b}}$ in Ω). Then $(P,B) \geq 0$ in Ω iff the corresponding quadratic form is nonnegative on $C_0^\infty(\bar{\Omega} \setminus \partial\Omega_{\mathrm{Dir}})$.

Hence, in the symmetric case, the inequality $(P-W,B)\geq 0$ in Ω is equivalent to the validity of the following Hardy-type inequality

$$\int_{\Omega} (|\nabla \phi|_A^2 + (c - \operatorname{div} \bar{b})|\phi|^2) dx + \int_{\partial \Omega_{\text{Rob}}} \gamma |\phi|^2 d\sigma \ge \int_{\Omega} W |\phi|^2 dx$$

for all $\phi \in C_0^{\infty}(\bar{\Omega} \setminus \partial \Omega_{\mathrm{Dir}})$.

Previous results for the case $\partial\Omega_{\mathrm{Rob}}\neq\emptyset$ are by Kovařík-Laptev (2012), Kovařík-Mugnolo (2018), and references therein.

Criticality theory

- (P,B) is subcritical in Ω iff (P,B) admits a minimal positive Green function $G_{P,B}^{\Omega}(x,y)$.
- (P,B) is critical in Ω iff the equation (P,B)u=0 in Ω admits (up to a multiplicative constant) a unique positive supersolution ϕ .
- In fact, ϕ is a minimal positive solution of (P, B)u = 0 in Ω , called the (Agmon) ground state.
- (P, B) is critical in Ω if and only if (P^*, B^*) is critical in Ω , where (P^*, B^*) is the formal adjoint of (P, B) in $L^2(\Omega)$.

Aim: Find as large as possible Hardy-weight for subcritical (P, B).

Optimal Hardy weights

Definition

A Hardy-weight W of (P,B) in Ω is said to be optimal if (P-W,B) is critical in Ω and $\int_{\Omega} \phi \phi^* W \, \mathrm{d}x = \infty$, where ϕ and ϕ^* are the ground states of (P-W,B) and (P^*-W,B^*) in Ω , respectively. In this case, we say that (P-W,B) is null-critical in Ω with respect to the weight W.

Definition

We say that a Hardy-weight W is optimal at infinity in Ω if for any $K \subseteq \overline{\Omega}$, $\partial K \cap \partial \Omega_{\mathrm{Dir}} = \emptyset$, and $\partial K \cap \partial \Omega_{\mathrm{Rob}} \subseteq \partial \Omega_{\mathrm{Rob}}$ with respect to the relative topology on $\partial \Omega_{\mathrm{Rob}}$ (in short, $K \subseteq_R \Omega$), we have

$$\sup\{\lambda\in\mathbb{R}\mid (P-\lambda W,B)\geq 0 \text{ in } \Omega\setminus K\}=1.$$

Remark: Any optimal Hardy-weight in Ω is also optimal at infinity in Ω .

Green potential

Definition

Let (P,B) be a subcritical operator in Ω , and let $G(x,y) := G_{P,B}^{\Omega}(x,y)$ the corresponding minimal positive Green function. Fix $0 \nleq \varphi \in C_0^{\infty}(\Omega)$. The Green potential with a density φ is the function

$$G_{\varphi}(x) := \int_{\Omega} G(x, y) \varphi(y) \, \mathrm{d}y.$$

Definition (Exhaustion of $\overline{\Omega} \setminus \partial \Omega_{\mathrm{Dir}}$)

A sequence $\{\Omega_k\}_{k\in\mathbb{N}}\subset\Omega$ is called an exhaustion of $\overline{\Omega}\setminus\partial\Omega_{\mathrm{Dir}}$ if it is an increasing sequence of Lipschitz subdomains s.t. $\Omega_k\Subset_R\Omega_{k+1}\Subset_R\Omega$, and

$$\bigcup_{k\in\mathbb{N}}\overline{\Omega_k}=\overline{\Omega}\setminus\partial\Omega_{\mathrm{Dir}}.$$

Definition

Let $K \subseteq \Omega$ and $f \in C((\overline{\Omega \setminus K}) \setminus \partial \Omega_{Dir})$. We say that

$$\lim_{x\to\infty_{\mathrm{Dir}}}f(x)=0$$

if for any $\varepsilon > 0$ and any exhaustion $\{\Omega_k\}_{k \in \mathbb{N}}$ of $\overline{\Omega} \setminus \partial \Omega_{\mathrm{Dir}}$, there exists k_0 such that $|f(x)| < \varepsilon$ in $\Omega \setminus \Omega_{k_0}$.

Green potential

Definition

Let (P,B) be a subcritical operator in Ω , and let $G(x,y) := G_{P,B}^{\Omega}(x,y)$ the corresponding minimal positive Green function. Fix $0 \nleq \varphi \in C_0^{\infty}(\Omega)$. The Green potential with a density φ is the function

$$G_{\varphi}(x) := \int_{\Omega} G(x, y) \varphi(y) \, \mathrm{d}y.$$

Theorem

Let (P,B) be a subcritical operator in Ω and let G_{φ} be the Green potential with a density $0 \leq \varphi \in C_0^{\infty}(\Omega)$. Assume that a positive solution u > 0 satisfies (P,B)u = 0 and Ancona condition:

$$\lim_{x\to\infty_{\mathrm{Dir}}}\frac{G_{\varphi}(x)}{u(x)}=0.$$

Then

$$W:=rac{P(\sqrt{G_{arphi}u})}{\sqrt{G_{arphi}u}}\geq 0$$
 is a Hardy-weight.

Moreover, (P-W,B) is critical in Ω with a ground state $\sqrt{G_{\varphi}u}$, and

$$W = rac{|
abla (G_{arphi}/u)|_A^2}{4(G_{arphi}/u)^2} \quad \text{in } \Omega \setminus \operatorname{supp}(arphi).$$

Theorem (Continue)

Furthermore, assume that one of the following regularity conditions are satisfied.

- ① (P,B) is symmetric, $A \in C^{0,1}_{loc}(\overline{\Omega} \setminus \partial \Omega_{Dir}, \mathbb{R}^{n^2})$, $\overline{\mathbf{b}} = \widetilde{\mathbf{b}} \in C^{\alpha}_{loc}(\overline{\Omega} \setminus \partial \Omega_{Dir}, \mathbb{R}^n)$, $c \in L^{\infty}_{loc}(\overline{\Omega} \setminus \partial \Omega_{Dir})$, and $\partial \Omega_{Rob} \in C^{1,\alpha}$.
- ② $\partial\Omega_{\mathrm{Rob}}$, $\partial\Omega_{\mathrm{Dir}}$ are both relatively open and closed sets, $\partial\Omega_{\mathrm{Rob}}$ is bounded and admits a finite number of connected components, and the coefficients of P are smooth enough functions in Ω .

Then W is an optimal Hardy-weight for (P, B) in Ω .

Family of optimal Hardy-weights

Theorem

Assume that the operator (P, B), and the functions G_{φ} , u satisfy the assumptions of the above theorem.

Let w be an optimal (Dirichlet) Hardy-weight of Ly := -y'' in \mathbb{R}_+ , and let $\psi_w(t)$ be the corresponding ground state. Suppose further that $\psi_w' \geq 0$ on $\{t = G_\varphi(x)/u(x) \mid x \in \Omega\}$, and set

$$W:=\frac{P\left(u\psi_{w}\left(G_{\varphi}/u\right)\right)}{u\psi_{w}\left(G_{\varphi}/u\right)}.$$

Then, the following assertions are satisfied:

- **2** (P-W,B) is critical in Ω with ground state $u\psi_w(G_{\varphi}/u)$.
- **1** Under one of further assumptions of the above theorem, W is an optimal Hardy-weight for (P,B) in Ω .

Optimal Hardy-weights for the Dirichlet Laplacian on \mathbb{R}_+

Proposition

Let $0 \leq w \in L^1_{loc}(\mathbb{R}_+)$. Then w is an optimal Hardy-weight for the Dirichlet Laplacian on \mathbb{R}_+ with a corresponding ground state ψ_w if and only if the following three conditions are satisfied.

Example

Under the assumptions on u and G_{φ} , let

$$0 \le a \le \frac{1}{\sup\limits_{\Omega} (G_{\varphi}/u)}, \quad w(t) := (2t - at^2)^{-2}, \quad \psi_w(t) := \sqrt{2t - at^2}.$$

(w and ψ_w are related to Ermakov-Pinney equation $-y''=\frac{1}{y^3}$.) Then

$$W:=rac{P\left(u\psi_{W}\left(G_{arphi}/u
ight)
ight)}{u\psi_{W}\left(G_{arphi}/u
ight)}\quad\left(ext{ at }\infty\;W=\left|
abla(G_{arphi}/u)
ight|_{A}^{2}w(G_{arphi}/u)
ight).$$

is an optimal Hardy weight which is larger at infinity than the "Classical" Hardy-weight $W = \frac{|\nabla (G_{\varphi}/u)|_A^2}{4(G_{\omega}/u)^2}$.

Example (half ball or half space)

Let $n \geq 3$, and either

$$\Omega = B_1^+(0), \partial\Omega_{\text{Rob}} = \{x \in B_1(0) \, | \, x_n = 0\}; \text{ or } \Omega = \mathbb{R}_+^n, \partial\Omega_{\text{Rob}} = \{x \in \mathbb{R}^n \, | \, x_n = 0\}$$

$$Pu := -\Delta u \text{ in } \Omega, \quad Bu = \nabla u \cdot \vec{n} \text{ on } \partial \Omega_{\text{Rob}}.$$

Taking u=1 and the explicit Green functions $G_{P,B}^{\Omega}$ given by Schwarz reflection principle, we get an optimal Hardy-weight $W=P(G_{\varphi}^{1/2})/G_{\varphi}^{1/2}$.

For $\Omega = B_1^+(0)$, $W(x) \sim (2 \cdot \operatorname{dist}(x, \partial \Omega_{\mathrm{Dir}}))^{-2}$ as $x \to \xi$, where $\xi_n > 0$ and $|\xi| = 1$.

For $\Omega = \mathbb{R}^n_+$, $W(x) \sim \frac{(n-2)^2}{4} |x|^{-2}$ as $x \to \infty$ such that $x/|x| \to (\xi', \xi_n)$ with $\xi_n > 0$.

Example (exterior of the unit ball)

Let $n\geq 3$, and $\Omega=\{x\in\mathbb{R}^n\mid |x|>1\}$ with $\partial\Omega_{\mathrm{Rob}}=\partial\Omega$. Assume that $Pu=-\Delta u$ and $Bu=\nabla u\cdot \vec{n}+\gamma(x)u$ on $\partial\Omega_{\mathrm{Rob}}$, where $\gamma\in L^\infty(\partial\Omega_{\mathrm{Rob}})$ satisfies $\gamma>(1-n)/2$, and take $\varepsilon>0$ such that $\varepsilon(n+2\gamma-1)\geq 1$ on $\partial\Omega_{\mathrm{Rob}}$. Then,

Hence, the AAP theorem implies the Hardy-type inequality in $H^1(\Omega)$

$$\int_{\Omega} |\nabla \phi|^2 \mathrm{d}x + \int_{\partial \Omega_{\mathrm{Rob}}} \gamma \phi^2 \mathrm{d}\sigma \ge \int_{\Omega} \left[\frac{(n-1)(n-3)}{4|x|^2} + \frac{1}{4(|x|-1+\varepsilon)^2} \right] \phi^2 \mathrm{d}x.$$

Example (Continued)

Let's compare our result with [Kovařík-Laptev (2012)], where $\gamma \geq 0$ is constant and $\varepsilon = (2\gamma)^{-1}$. Instead, let $\varepsilon_{\gamma} := (n-1+2\gamma)^{-1}$, we obtain an improvement of the Hardy inequality in [Kovařík-Laptev (2012)]. In particular, the function $v_{\gamma} := \sqrt{(|x|-1+\varepsilon_{\gamma})|x|^{1-n}}$ is a positive solution of the equation

$$\begin{cases} -\Delta v - \frac{v(n-1)(n-3)}{4|x|^2} - \frac{v}{4(|x|-1+\varepsilon_\gamma)^2} = 0 & \text{in } \Omega, \\ \nabla v \cdot \vec{n} + \gamma v = 0 & \text{on } \partial \Omega_{\text{Rob}}. \end{cases}$$

It follows that v_{γ} is a ground state and

$$W := \frac{(n-1)(n-3)}{4|x|^2} + \frac{1}{4(|x|-1+\varepsilon_{\gamma})^2}$$

is an optimal Hardy-weight of (P, B) in Ω .

Thank you for your attention!