Optimal Hardy-weights for elliptic operators with mixed boundary conditions

Yehuda Pinchover

Department of Mathematics, Technion, Haifa, ISRAEL

Mathematical aspects of the physics with non-self-adjoint operators Banff, 10 - 15 July 2022 Joint work with Idan Versano

The operator (P, B)

Let P be a second-order, linear, elliptic operator in divergence form with real and locally regular coefficients defined on a domain $\Omega \subset \mathbb{R}^n$

$$\mathcal{P}u := -\mathrm{div} \, \left[\mathcal{A}(x)
abla u + u \widetilde{\mathbf{b}}(x)
ight] + \overline{\mathbf{b}}(x) \cdot
abla u + c(x) u \qquad x \in \Omega.$$

Let $\partial\Omega_{\rm Rob}$ be a relatively open C^1 -portion of $\partial\Omega$, and consider the oblique boundary operator

 $Bu := (A(x)\nabla u + u\mathbf{\tilde{b}}(x)) \cdot \vec{n}(x) + \gamma(x)u \qquad x \in \partial\Omega_{\mathrm{Rob}},$

where $\vec{n}(x)$ is the outward unit normal vector to $\partial\Omega$ at $x \in \partial\Omega_{\text{Rob}}$, and γ is a real measurable function defined on $\partial\Omega_{\text{Rob}}$. Let $\partial\Omega_{\text{Dir}} := \partial\Omega \setminus \partial\Omega_{\text{Rob}}$ be the Dirichlet part of $\partial\Omega$. If further $\mathbf{\bar{b}} = \mathbf{\tilde{b}}$ in Ω , we say that (P, B) is symmetric in Ω .

Weak solutions

Definition

We say that $u \in H^1_{loc}(\overline{\Omega} \setminus \partial \Omega_{Dir})$ is a weak solution (resp., supersolution) of the boundary value problem

$$\begin{cases} Pu = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega_{\text{Rob}}. \end{cases}$$
(P,B)

if for any (resp., nonnegative) $\phi \in C_0^\infty(\bar{\Omega} \setminus \partial \Omega_{\mathrm{Dir}})$ we have

$$\int_{\Omega} [(a^{ij}D_ju + u\tilde{\mathbf{b}}^i)D_i\phi + (\bar{\mathbf{b}}^iD_iu + cu)\phi] dx + \int_{\partial\Omega_{\rm Rob}} \gamma u\phi d\sigma = \begin{cases} 0, \\ \geq 0, \text{ resp.} \end{cases}$$

In this case we write (P, B)u = 0 (resp., $(P, B)u \ge 0$).

通 ト イヨ ト イヨト

Hardy-weight of (P, B)

Definition

 We say that (P, B) is nonnegative in Ω (in short (P, B) ≥ 0 in Ω) if there exists a positive weak solution to the boundary value problem

 $\begin{cases} Pu = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial \Omega_{\text{Rob}}. \end{cases}$

- We say that $W \geqq 0$ is a Hardy-weight for (P, B) in Ω if $(P W, B) \ge 0$ in Ω .
- A nonnegative operator (P, B) in Ω is said to be subcritical (resp., critical) in Ω if (P, B) admits (resp., does not admit) a Hardy-weight for (P, B) in Ω.

- 3

(P,B)

Agmon-Allegretto-Piepenbrink (AAP) theorem

Theorem

Suppose that (P, B) is a symmetric operator (i.e., $\mathbf{\bar{b}} = \mathbf{\tilde{b}}$ in Ω). Then $(P, B) \ge 0$ in Ω iff the corresponding quadratic form is nonnegative on $C_0^{\infty}(\overline{\Omega} \setminus \partial \Omega_{\text{Dir}})$.

Hence, in the symmetric case, the inequality $(P - W, B) \ge 0$ in Ω is equivalent to the validity of the following Hardy-type inequality

$$\int_{\Omega} (|\nabla \phi|_A^2 + (c - \operatorname{div} \bar{b})|\phi|^2) \mathrm{d}x + \int_{\partial \Omega_{\mathrm{Rob}}} \gamma |\phi|^2 \mathrm{d}\sigma \geq \int_{\Omega} W |\phi|^2 \mathrm{d}x$$

for all $\phi \in C_0^{\infty}(\overline{\Omega} \setminus \partial \Omega_{\mathrm{Dir}}).$

Previous results for the case $\partial \Omega_{\rm Rob} \neq \emptyset$ are by Kovařík-Laptev (2012), Kovařík-Mugnolo (2018), and references therein.

Criticality theory

- (P, B) is subcritical in Ω iff (P, B) admits a minimal positive Green function G^Ω_{P,B}(x, y).
- (P, B) is critical in Ω iff the equation (P, B)u = 0 in Ω admits (up to a multiplicative constant) a unique positive supersolution φ.
- In fact, φ is a minimal positive solution of (P, B)u = 0 in Ω, called the (Agmon) ground state.
- (P, B) is critical in Ω if and only if (P*, B*) is critical in Ω, where (P*, B*) is the formal adjoint of (P, B) in L²(Ω).

Aim: Find as large as possible Hardy-weight for subcritical (P, B).

Optimal Hardy weights

Definition

A Hardy-weight W of (P, B) in Ω is said to be optimal if (P - W, B) is critical in Ω and $\int_{\Omega} \phi \phi^* W \, dx = \infty$, where ϕ and ϕ^* are the ground states of (P - W, B) and $(P^* - W, B^*)$ in Ω , respectively. In this case, we say that (P - W, B) is null-critical in Ω with respect to the weight W.

Definition

We say that a Hardy-weight W is optimal at infinity in Ω if for any $\mathcal{K} \subseteq \overline{\Omega}$, $\partial \mathcal{K} \cap \partial \Omega_{\text{Dir}} = \emptyset$, and $\partial \mathcal{K} \cap \partial \Omega_{\text{Rob}} \subseteq \partial \Omega_{\text{Rob}}$ with respect to the relative topology on $\partial \Omega_{\text{Rob}}$ (in short, $\mathcal{K} \subseteq_{\mathcal{R}} \Omega$), we have

$$\sup\{\lambda\in\mathbb{R}\mid (P-\lambda W,B)\geq 0 \text{ in } \Omega\setminus K\}=1.$$

Remark: Any optimal Hardy-weight in Ω is also optimal at infinity in Ω .

Definition (Exhaustion of $\overline{\Omega} \setminus \partial \Omega_{\mathrm{Dir}}$)

A sequence $\{\Omega_k\}_{k\in\mathbb{N}} \subset \Omega$ is called an exhaustion of $\overline{\Omega} \setminus \partial\Omega_{\text{Dir}}$ if it is an increasing sequence of Lipschitz subdomains s.t. $\Omega_k \Subset_R \Omega_{k+1} \Subset_R \Omega$, and

 $\bigcup_{k\in\mathbb{N}}\overline{\Omega_k}=\overline{\Omega}\setminus\partial\Omega_{\mathrm{Dir}}.$

Definition

Let $K \Subset \Omega$ and $f \in C((\overline{\Omega \setminus K}) \setminus \partial \Omega_{\text{Dir}})$. We say that

 $\lim_{x\to\infty_{\rm Dir}}f(x)=0$

if for any $\varepsilon > 0$ and any exhaustion $\{\Omega_k\}_{k \in \mathbb{N}}$ of $\overline{\Omega} \setminus \partial \Omega_{\text{Dir}}$, there exists k_0 such that $|f(x)| < \varepsilon$ in $\Omega \setminus \Omega_{k_0}$.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Green potential

Definition

Let (P, B) be a subcritical operator in Ω , and let $G(x, y) := G_{P,B}^{\Omega}(x, y)$ the corresponding minimal positive Green function. Fix $0 \leq \varphi \in C_0^{\infty}(\Omega)$. The Green potential with a density φ is the function

$$G_{\varphi}(x) := \int_{\Omega} G(x, y) \varphi(y) \, \mathrm{d} y.$$

A D A D A D A

Theorem

Let (P, B) be a subcritical operator in Ω and let G_{φ} be the Green potential with a density $0 \leq \varphi \in C_0^{\infty}(\Omega)$. Assume that a positive solution u > 0 satisfies (P, B)u = 0 and Ancona condition:

$$\lim_{x\to\infty_{\rm Dir}}\frac{G_{\varphi}(x)}{u(x)}=0.$$

Then

$$W := rac{P(\sqrt{G_{arphi} u})}{\sqrt{G_{arphi} u}} \geq 0$$
 is a Hardy-weight.

Moreover, (P - W, B) is critical in Ω with a ground state $\sqrt{G_{\varphi}u}$, and

$$W = rac{|
abla(G_{arphi}/u)|_A^2}{4(G_{arphi}/u)^2} \qquad \text{in } \Omega \setminus \mathrm{supp}(arphi)$$

Theorem (Continue)

Furthermore, assume that one of the following regularity conditions are satisfied.

- ② ∂Ω_{Rob}, ∂Ω_{Dir} are both relatively open and closed sets, ∂Ω_{Rob} is bounded and admits a finite number of connected components, and the coefficients of P are smooth enough functions in Ω.

Then W is an optimal Hardy-weight for (P, B) in Ω .

Family of optimal Hardy-weights

Theorem

Assume that the operator (P, B), and the functions G_{φ} , u satisfy the assumptions of the above theorem.

Let w be an optimal (Dirichlet) Hardy-weight of Ly := -y'' in \mathbb{R}_+ , and let $\psi_w(t)$ be the corresponding ground state. Suppose further that $\psi'_w \ge 0$ on $\{t = G_{\varphi}(x)/u(x) \mid x \in \Omega\}$, and set

$$\mathcal{W} := rac{P\left(u \psi_{m{w}}\left(G_{arphi} / u
ight)
ight)}{u \psi_{m{w}}\left(G_{arphi} / u
ight)} \, .$$

Then, the following assertions are satisfied:

- $W \ge 0$ in Ω and $W := |\nabla(G_{\varphi}/u)|^2_A w(G_{\varphi}/u)$ in $\Omega \setminus \operatorname{supp}(\varphi)$.
- **2** (P W, B) is critical in Ω with ground state $u\psi_w(G_{\varphi}/u)$.
- Output one of further assumptions of the above theorem, W is an optimal Hardy-weight for (P, B) in Ω.

3

Optimal Hardy-weights for the Dirichlet Laplacian on \mathbb{R}_+

Proposition

Let $0 \leq w \in L^1_{loc}(\mathbb{R}_+)$. Then w is an optimal Hardy-weight for the Dirichlet Laplacian on \mathbb{R}_+ with a corresponding ground state ψ_w if and only if the following three conditions are satisfied.

+,

•
$$\psi_w > 0$$
 satisfies $-\psi_w'' - w\psi_w = 0$ in \mathbb{R}
• $\int_0^1 \frac{1}{\psi_w^2} dt = \int_1^\infty \frac{1}{\psi_w^2} dt = \infty$,
• $\int_0^1 \psi_w^2 w dt = \int_1^\infty \psi_w^2 w dt = \infty$.

A .

Example

Under the assumptions on u and G_{φ} , let

$$0 \leq a \leq rac{1}{\displaystyle \sup_{\Omega}\left(G_{arphi}/u
ight)}, \quad w(t):=(2t-at^2)^{-2}, \quad \psi_w(t):=\sqrt{2t-at^2}.$$

(w and ψ_w are related to Ermakov-Pinney equation $-y'' = \frac{1}{y^3}$.) Then

$$\mathcal{W} := rac{P\left(u\psi_w\left(G_arphi/u
ight)
ight)}{u\psi_w\left(G_arphi/u
ight)} \quad \left(ext{ at }\infty \,\, \mathcal{W} = \left|
abla(G_arphi/u)
ight|_A^2 \, w(G_arphi/u)
ight).$$

is an optimal Hardy weight which is larger at infinity than the "Classical" Hardy-weight $W = \frac{|\nabla(G_{\varphi}/u)|_A^2}{4(G_{\varphi}/u)^2}$.

Yehuda Pinchover (Technion)

Example (half ball or half space)

Let $n \geq 3$, and either

 $\Omega = B_1^+(0), \, \partial\Omega_{\rm Rob} = \{x \in B_1(0) \, | \, x_n = 0\}; \text{ or } \Omega = \mathbb{R}_+^n, \, \partial\Omega_{\rm Rob} = \{x \in \mathbb{R}^n \, | \, x_n = 0\}.$

 $Pu := -\Delta u$ in Ω , $Bu = \nabla u \cdot \vec{n}$ on $\partial \Omega_{\text{Rob}}$.

Taking u = 1 and the explicit Green functions $G_{P,B}^{\Omega}$ given by Schwarz reflection principle, we get an optimal Hardy-weight $W = P(G_{\varphi}^{1/2})/G_{\varphi}^{1/2}$. For $\Omega = B_1^+(0)$, $W(x) \sim (2 \cdot \operatorname{dist}(x, \partial \Omega_{\operatorname{Dir}}))^{-2}$ as $x \to \xi$, where $\xi_n > 0$ and $|\xi| = 1$.

For $\Omega = \mathbb{R}^n_+$, $W(x) \sim \frac{(n-2)^2}{4} |x|^{-2}$ as $x \to \infty$ such that $x/|x| \to (\xi', \xi_n)$ with $\xi_n > 0$.

- 小田 ト イヨト 一日

Example (exterior of the unit ball)

Let $n \geq 3$, and $\Omega = \{x \in \mathbb{R}^n \mid |x| > 1\}$ with $\partial \Omega_{\text{Rob}} = \partial \Omega$. Assume that $Pu = -\Delta u$ and $Bu = \nabla u \cdot \vec{n} + \gamma(x)u$ on $\partial \Omega_{\text{Rob}}$, where $\gamma \in L^{\infty}(\partial \Omega_{\text{Rob}})$ satisfies $\gamma > (1 - n)/2$, and take $\varepsilon > 0$ such that $\varepsilon(n + 2\gamma - 1) \geq 1$ on $\partial \Omega_{\text{Rob}}$. Then,

$$\begin{split} \mathbf{v} &:= \sqrt{(|x| - 1 + \varepsilon)|x|^{1 - n} \text{ satisfies}} \\ (-\Delta \mathbf{v} - \frac{(n - 1)(n - 3)\mathbf{v}}{4|x|^2} - \frac{\mathbf{v}}{4(|x| - 1 + \varepsilon)^2} = 0 \quad \text{in } \Omega, \\ \nabla \mathbf{v} \cdot \vec{n} + \gamma \mathbf{v} &= \frac{-1 + \varepsilon(n + 2\gamma - 1)}{2\sqrt{\varepsilon}} \ge 0 \quad \text{on } \partial\Omega_{\text{Rob}}. \end{split}$$

Hence, the AAP theorem implies the Hardy-type inequality in $H^1(\Omega)$

$$\int_{\Omega} |\nabla \phi|^2 \mathrm{d}x + \int_{\partial \Omega_{\mathrm{Rob}}} \gamma \phi^2 \mathrm{d}\sigma \ge \int_{\Omega} \left[\frac{(n-1)(n-3)}{4|x|^2} + \frac{1}{4(|x|-1+\varepsilon)^2} \right] \phi^2 \mathrm{d}x.$$

Example (Continued)

Let's compare our result with [Kovařík-Laptev (2012)], where $\gamma \ge 0$ is constant and $\varepsilon = (2\gamma)^{-1}$. Instead, let $\varepsilon_{\gamma} := (n - 1 + 2\gamma)^{-1}$, we obtain an improvement of the Hardy inequality in [Kovařík-Laptev (2012)]. In particular, the function $v_{\gamma} := \sqrt{(|x| - 1 + \varepsilon_{\gamma})|x|^{1-n}}$ is a positive solution of the equation

$$\begin{cases} -\Delta v - \frac{v(n-1)(n-3)}{4|x|^2} - \frac{v}{4(|x|-1+\varepsilon_{\gamma})^2} = 0 & \text{in } \Omega, \\ \nabla v \cdot \vec{n} + \gamma v = 0 & \text{on } \partial \Omega_{\text{Rob}}. \end{cases}$$

It follows that v_{γ} is a ground state and

$$W := rac{(n-1)(n-3)}{4|x|^2} + rac{1}{4(|x|-1+arepsilon_\gamma)^2}$$

is an optimal Hardy-weight of (P, B) in Ω .

Thank you for your attention!

3

- 4 同 6 4 日 6 4 日 6