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The operator (P, B)

Let P be a second-order, linear, elliptic operator in divergence form with
real and locally regular coefficients defined on a domain Q2 C R”

Pu = —div [A(X)Vu + uB(x)} +b(x)-Vu+c(x)u xeQ

Let OQRo1, be a relatively open Cl-portion of 9Q, and consider the oblique
boundary operator

Bu := (A(x)Vu + uf)(x)) - A(x) + y(x)u x € O0Rob,

where (x) is the outward unit normal vector to 9Q at x € 9QRep, and v
is a real measurable function defined on 0Qrep. Let OQpi, := 9N \ OQReb
be the Dirichlet part of 0.

If further b = b in Q, we say that (P, B) is symmetric in Q.
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Weak solutions

Definition
We say that u € HL_(Q\ 8Qpi;) is a weak solution (resp., supersolution)
of the boundary value problem

Pu=0 inQ
u in Q, (P.B)
Bu=0 on 0Qreb-
if for any (resp., nonnegative) ¢ € C5°(Q\ OQpi,) we have
" ~ _. 0
a’Dju+ub")D;¢+(b' Dju+cu)p dx—l—/ 'yu¢>da:{ ’
1 0ju+ db) D+ o 0

In this case we write (P, B)u=0 (resp., (P, B)u>0).
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Hardy-weight of (P, B)

Definition

o We say that (P, B) is nonnegative in Q (in short (P, B) > 0 in Q) if
there exists a positive weak solution to the boundary value problem

Pu = in Q
{uO/n, (P,B)

Bu=0 on 9dQgrob.

o We say that W 2 0 is a Hardy-weight for (P, B) in Q if
(P—W,B)>0inQ.

e A nonnegative operator (P, B) in Q is said to be subcritical (resp.,
critical) in Q if (P, B) admits (resp., does not admit) a Hardy-weight
for (P, B) in Q.
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Agmon-Allegretto-Piepenbrink (AAP) theorem

Theorem

Suppose that (P, B) is a symmetric operator (i.e., b=b in Q).
Then (P, B) > 0 in S iff the corresponding quadratic form is nonnegative
on C§°(2\ 0Qpir).

Hence, in the symmetric case, the inequality (P — W,B) > 0in Q is
equivalent to the validity of the following Hardy-type inequality

/ (IV63 + (c — div B)|6[2)dx + / APdo > / W]g[2dx
Q Q

QRob
for all ¢ € C§°(Q\ OQpir).

Previous results for the case dQgrop # 0 are by Kovafik-Laptev (2012),
Kovatik-Mugnolo (2018), and references therein.
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Criticality theory

e (P, B) is subcritical in Q iff (P, B) admits a minimal positive Green
function G2 g(x, ).

e (P, B) is critical in Q iff the equation (P, B)u = 0 in Q admits (up to
a multiplicative constant) a unique positive supersolution ¢.

@ In fact, ¢ is a minimal positive solution of (P, B)u =0 in Q, called
the (Agmon) ground state.

e (P, B) is critical in Q if and only if (P*, B*) is critical in Q, where
(P*, B*) is the formal adjoint of (P, B) in L?().

’Aim: Find as large as possible Hardy-weight for subcritical (P, B). ‘
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Optimal Hardy weights

Definition

A Hardy-weight W of (P, B) in Q is said to be optimal if (P — W, B) is
critical in  and fQ Pd* W dx = oo, where ¢ and ¢* are the ground states
of (P — W,B) and (P* — W,B*) in Q, respectively. In this case, we say
that (P — W, B) is null-critical in Q with respect to the weight W .

Definition

We say that a Hardy-weight W is optimal at infinity in Q if for any
K € Q, 0K NoQpir = 0, and OK N OQRep € ONRop, With respect to the
relative topology on dQgep (in short, K €r ), we have

sup{AER | (P—AW,B)>0in Q\ K} =1.

Remark: Any optimal Hardy-weight in Q is also optimal at infinity in .
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Definition (Exhaustion of Q \ 9Qp;,)

A sequence {Q}ken C Q is called an exhaustion of Q \ dQpy, if it is an
increasing sequence of Lipschitz subdomains s.t. Qg €r Qk+1 €Er 2, and

U =0\ 0p::.

Definition
Let K€ Qand f € C((Q\ K)\ 0Qpir). We say that

lim f(x)=0

X—00Dir

if for any € > 0 and any exhaustion {Q}xen of Q \ Qpy;, there exists ko
such that [f(x)| < e in Q\ Q,.
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Green potential

Definition

Let (P, B) be a subcritical operator in Q, and let G(x,y) := G2 g(x, )
the corresponding minimal positive Green function. Fix 0 S ¢ € C5°(RQ).
The Green potential with a density ¢ is the function

Golx) = /Q G0 y)ely) dy.
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Theorem

Let (P, B) be a subcritical operator in Q and let G, be the Green

potential with a density 0 < ¢ € C§°(2). Assume that a positive solution

u > 0 satisfies (P, B)u = O and Ancona condition:
lim <P( ) —
X—>00Dir U(X)

Then
P(y/G.
W .= g > 0 is a Hardy-weight.
\/ Gpu
Moreover, (P — W, B) is critical in Q with a ground state \/G,u, and

V(Ge/u)la .
W = W in Q2 \ supp(¢y).
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Theorem (Continue)

Furthermore, assume that one of the following regularity conditions are
satisfied.

O (P, B) is symmetric, A € COH(Q\ 9Qpi, R™),

v ~ o loc s

b=be lgc(Q \ 8QDir,Rn), cc Li)ooc(Q \ 8QDir), and 0QRop € Ch,
Q 00Rob, ONpir are both relatively open and closed sets, IQRo1 is

bounded and admits a finite number of connected components, and

the coefficients of P are smooth enough functions in 2.
Then W is an optimal Hardy-weight for (P, B) in Q.
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Family of optimal Hardy-weights

Theorem

Assume that the operator (P, B), and the functions G,, u satisfy the
assumptions of the above theorem.
Let w be an optimal (Dirichlet) Hardy-weight of Ly := —y" in R, and let

1w (t) be the corresponding ground state. Suppose further that 1), > 0 on
{t = Gy(x)/u(x) | x € Q}, and set

W = P (uthw (Gp/u))
uhy (Gy/u)
Then, the following assertions are satisfied:
Q@ W>0inQ and W = \V(G‘p/u)]f‘ w(Gy/u) in Q\ supp(y).
@ (P — W,B) is critical in Q with ground state ui,,(G,/u).

© Under one of further assumptions of the above theorem, W is an
optimal Hardy-weight for (P, B) in Q.

v
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Optimal Hardy-weights for the Dirichlet Laplacian on R,

Proposition

Let 0S w e LL (Ry). Then w is an optimal Hardy-weight for the
Dirichlet Laplacian on R, with a corresponding ground state 1, if and
only if the following three conditions are satisfied.

(1) ww > 0 satisfies —w” —wiy,, =0in Ry,
Q / dt =
0 ¢2 ¥2

9/1/15,,Wdt=/ Y2 wdt = oo
0 1
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Example

Under the assumptions on u and G, let

0<a< W w(t) = (2t — at2)2,  u(t) = V2t — at2.

(w and ,, are related to Ermakov-Pinney equation —y” = %)
Then

P (i (G,/1))
Y i (Go/u)

is an optimal Hardy weight which is larger at infinity than the “Classical’

. G, 2
Hardy-weight W = %.

( at oo W = |V(G,/u)f3 W(G(p/u)) .
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Example (half ball or half space)
Let n > 3, and either

Q=B;(0), 9Qrob={x € B1(0) | x,=0}; or Q=R 0Qrop={x €R"|x,=0}.

Pu:=—Au inQ, Bu=Vu-ion IQgrob-
Taking u =1 and the explicit Green functions GFQ’B given by Schwarz
reflection principle, we get an optimal Hardy-weight W = P(Gl/z)/Gl/z.

For Q = B{"(0), W(x) ~ (2 - dist(x, 0Qpji;)) "2 as x — £, where &, > 0
and [£| = 1.

For Q =R., W(x) ~ (n— 2) |x|=2 as x — oo such that x/|x| — (&', &)
with &, > 0.
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Example (exterior of the unit ball)

Let n >3, and Q = {x € R" | |x| > 1} with 0QRep = 0. Assume that
Pu= —Au and Bu= Vu- a4+ vy(x)u on 9Qgen, where v € L>®(0QRop)
satisfies v > (1 — n)/2, and take € > 0 such that ¢(n+2y—1) > 1 on
8QR0b. Then,

vi= \/(]x| — 1+ ¢)|x|1~n satisfies

(n—1)(n—3)v v .
—~Av — = = Q
Y 4)x]2 Hx—1tep 0 "M%
- —1+e(n+2y—-1)
. = > QRob-
Vv-id+ v NG >0 on QR

Hence, the AAP theorem implies the Hardy-type inequality in H*(Q)

2 2 (n—1)(n—3) 1 2
I A e e )
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Example (Continued)

Let's compare our result with [Kovafik-Laptev (2012)], where v > 0 is
constant and & = (2y)~1. Instead, let , := (n — 1+ 2y)~!, we obtain an

improvement of the Hardy inequality in [Kova¥ik-Laptev (2012)]. In

particular, the function v, := \/(|x| — 14 &,)[x|1~" is a positive solution

of the equation

_Av_v(n—l)(n—3)_ v ~0 g
4[x|? Ax| =1 4&4)?
Vv-n+~yv =0 on JQRob-
It follows that v, is a ground state and
(n—1)(n—3) 1

W .=

+
4|x|? A|x| = 1+e4)?

is an optimal Hardy-weight of (P, B) in Q.
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Thank you for your attention!

Optimal Hardy-weights



