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The operator (P ,B)

Let P be a second-order, linear, elliptic operator in divergence form with
real and locally regular coefficients defined on a domain Ω ⊂ Rn

Pu := −div
[
A(x)∇u + ub̃(x)

]
+ b̄(x) · ∇u + c(x)u x ∈ Ω.

Let ∂ΩRob be a relatively open C 1-portion of ∂Ω, and consider the oblique
boundary operator

Bu :=
(
A(x)∇u + ub̃(x)

)
· ~n(x) + γ(x)u x ∈ ∂ΩRob,

where ~n(x) is the outward unit normal vector to ∂Ω at x ∈ ∂ΩRob, and γ
is a real measurable function defined on ∂ΩRob. Let ∂ΩDir := ∂Ω \ ∂ΩRob

be the Dirichlet part of ∂Ω.
If further b̄ = b̃ in Ω, we say that (P,B) is symmetric in Ω.
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Weak solutions

Definition

We say that u ∈ H1
loc(Ω \ ∂ΩDir) is a weak solution (resp., supersolution)

of the boundary value problem{
Pu = 0 in Ω,

Bu = 0 on ∂ΩRob.
(P,B)

if for any (resp., nonnegative) φ ∈ C∞0 (Ω̄ \ ∂ΩDir) we have∫
Ω

[
(aijDju+ub̃i )Diφ+(b̄iDiu+cu)φ

]
dx+

∫
∂ΩRob

γuφdσ=

{
0,

≥ 0, resp.

In this case we write (P,B)u=0 (resp., (P,B)u≥0).
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Hardy-weight of (P ,B)

Definition

We say that (P,B) is nonnegative in Ω (in short (P,B) ≥ 0 in Ω) if
there exists a positive weak solution to the boundary value problem{

Pu = 0 in Ω,

Bu = 0 on ∂ΩRob.
(P,B)

We say that W 	 0 is a Hardy-weight for (P,B) in Ω if
(P −W ,B) ≥ 0 in Ω.

A nonnegative operator (P,B) in Ω is said to be subcritical (resp.,
critical) in Ω if (P,B) admits (resp., does not admit) a Hardy-weight
for (P,B) in Ω.
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Agmon-Allegretto-Piepenbrink (AAP) theorem

Theorem

Suppose that (P,B) is a symmetric operator (i.e., b̄ = b̃ in Ω).
Then (P,B) ≥ 0 in Ω iff the corresponding quadratic form is nonnegative
on C∞0 (Ω̄ \ ∂ΩDir).

Hence, in the symmetric case, the inequality (P −W ,B) ≥ 0 in Ω is
equivalent to the validity of the following Hardy-type inequality∫

Ω

(
|∇φ|2A + (c − div b̄)|φ|2

)
dx +

∫
∂ΩRob

γ|φ|2dσ ≥
∫

Ω
W |φ|2dx

for all φ ∈ C∞0 (Ω̄ \ ∂ΩDir).

Previous results for the case ∂ΩRob 6= ∅ are by Kovǎŕık-Laptev (2012),
Kovǎŕık-Mugnolo (2018), and references therein.
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Criticality theory

(P,B) is subcritical in Ω iff (P,B) admits a minimal positive Green
function GΩ

P,B(x , y).

(P,B) is critical in Ω iff the equation (P,B)u = 0 in Ω admits (up to
a multiplicative constant) a unique positive supersolution φ.

In fact, φ is a minimal positive solution of (P,B)u = 0 in Ω, called
the (Agmon) ground state.

(P,B) is critical in Ω if and only if (P∗,B∗) is critical in Ω, where
(P∗,B∗) is the formal adjoint of (P,B) in L2(Ω).

Aim: Find as large as possible Hardy-weight for subcritical (P,B).
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Optimal Hardy weights

Definition

A Hardy-weight W of (P,B) in Ω is said to be optimal if (P −W ,B) is
critical in Ω and

∫
Ω φφ

∗W dx =∞, where φ and φ∗ are the ground states
of (P −W ,B) and (P∗ −W ,B∗) in Ω, respectively. In this case, we say
that (P −W ,B) is null-critical in Ω with respect to the weight W .

Definition

We say that a Hardy-weight W is optimal at infinity in Ω if for any
K b Ω, ∂K ∩ ∂ΩDir = ∅, and ∂K ∩ ∂ΩRob b ∂ΩRob with respect to the
relative topology on ∂ΩRob (in short, K bR Ω), we have

sup{λ ∈ R | (P − λW ,B) ≥ 0 in Ω \ K} = 1.

Remark: Any optimal Hardy-weight in Ω is also optimal at infinity in Ω.
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Definition (Exhaustion of Ω \ ∂ΩDir)

A sequence {Ωk}k∈N ⊂ Ω is called an exhaustion of Ω \ ∂ΩDir if it is an
increasing sequence of Lipschitz subdomains s.t. Ωk bR Ωk+1 bR Ω, and⋃

k∈N
Ωk = Ω \ ∂ΩDir.

Definition

Let K b Ω and f ∈ C ((Ω \ K ) \ ∂ΩDir). We say that

lim
x→∞Dir

f (x) = 0

if for any ε > 0 and any exhaustion {Ωk}k∈N of Ω \ ∂ΩDir, there exists k0

such that |f (x)| < ε in Ω \ Ωk0 .
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Green potential

Definition

Let (P,B) be a subcritical operator in Ω, and let G (x , y) := GΩ
P,B(x , y)

the corresponding minimal positive Green function. Fix 0 � ϕ ∈ C∞0 (Ω).
The Green potential with a density ϕ is the function

Gϕ(x) :=

∫
Ω
G (x , y)ϕ(y)dy .
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Theorem

Let (P,B) be a subcritical operator in Ω and let Gϕ be the Green
potential with a density 0 � ϕ ∈ C∞0 (Ω). Assume that a positive solution
u > 0 satisfies (P,B)u = 0 and Ancona condition:

lim
x→∞Dir

Gϕ(x)

u(x)
= 0.

Then

W :=
P(
√
Gϕu)√
Gϕu

≥ 0 is a Hardy-weight.

Moreover, (P −W ,B) is critical in Ω with a ground state
√

Gϕu, and

W =
|∇(Gϕ/u)|2A

4(Gϕ/u)2
in Ω \ supp(ϕ).
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Theorem (Continue)

Furthermore, assume that one of the following regularity conditions are
satisfied.

1 (P,B) is symmetric, A ∈ C 0,1
loc (Ω \ ∂ΩDir,Rn2

),

b̄ = b̃ ∈ Cαloc(Ω \ ∂ΩDir,Rn), c ∈ L∞loc(Ω \ ∂ΩDir), and ∂ΩRob ∈ C 1,α.

2 ∂ΩRob, ∂ΩDir are both relatively open and closed sets, ∂ΩRob is
bounded and admits a finite number of connected components, and
the coefficients of P are smooth enough functions in Ω.

Then W is an optimal Hardy-weight for (P,B) in Ω.
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Family of optimal Hardy-weights

Theorem

Assume that the operator (P,B), and the functions Gϕ, u satisfy the
assumptions of the above theorem.
Let w be an optimal (Dirichlet) Hardy-weight of Ly := −y ′′ in R+, and let
ψw (t) be the corresponding ground state. Suppose further that ψ′w ≥ 0 on
{t = Gϕ(x)/u(x) | x ∈ Ω}, and set

W :=
P (uψw (Gϕ/u))

uψw (Gϕ/u)
.

Then, the following assertions are satisfied:

1 W ≥ 0 in Ω and W := |∇(Gϕ/u)|2A w(Gϕ/u) in Ω \ supp(ϕ).

2 (P −W ,B) is critical in Ω with ground state uψw (Gϕ/u).

3 Under one of further assumptions of the above theorem, W is an
optimal Hardy-weight for (P,B) in Ω.
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Optimal Hardy-weights for the Dirichlet Laplacian on R+

Proposition

Let 0 � w ∈ L1
loc(R+). Then w is an optimal Hardy-weight for the

Dirichlet Laplacian on R+ with a corresponding ground state ψw if and
only if the following three conditions are satisfied.

1 ψw > 0 satisfies −ψ′′w − wψw = 0 in R+,

2

∫ 1

0

1

ψ2
w

dt =

∫ ∞
1

1

ψ2
w

dt =∞,

3

∫ 1

0
ψ2
w w dt =

∫ ∞
1

ψ2
w w dt =∞.
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Example

Under the assumptions on u and Gϕ, let

0 ≤ a ≤ 1

sup
Ω

(Gϕ/u)
, w(t) := (2t − at2)−2, ψw (t) :=

√
2t − at2.

(w and ψw are related to Ermakov-Pinney equation −y ′′ = 1
y3 .)

Then

W :=
P (uψw (Gϕ/u))

uψw (Gϕ/u)

(
at ∞ W = |∇(Gϕ/u)|2A w(Gϕ/u)

)
.

is an optimal Hardy weight which is larger at infinity than the “Classical”

Hardy-weight W =
|∇(Gϕ/u)|2A

4(Gϕ/u)2 .
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Example (half ball or half space)

Let n ≥ 3, and either

Ω=B+
1 (0), ∂ΩRob={x ∈B1(0) |xn =0}; or Ω=Rn

+, ∂ΩRob={x ∈Rn |xn =0}.

Pu := −∆u in Ω, Bu = ∇u · ~n on ∂ΩRob.

Taking u = 1 and the explicit Green functions GΩ
P,B given by Schwarz

reflection principle, we get an optimal Hardy-weight W = P(G
1/2
ϕ )/G

1/2
ϕ .

For Ω = B+
1 (0), W (x) ∼ (2 · dist(x , ∂ΩDir))−2 as x → ξ, where ξn > 0

and |ξ| = 1.

For Ω = Rn
+, W (x) ∼ (n−2)2

4 |x |−2 as x →∞ such that x/|x | → (ξ′, ξn)
with ξn > 0.
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Example (exterior of the unit ball)

Let n ≥ 3, and Ω = {x ∈ Rn | |x | > 1} with ∂ΩRob = ∂Ω. Assume that
Pu = −∆u and Bu = ∇u · ~n + γ(x)u on ∂ΩRob, where γ ∈ L∞(∂ΩRob)
satisfies γ > (1− n)/2, and take ε > 0 such that ε(n + 2γ − 1) ≥ 1 on
∂ΩRob. Then,

v :=
√

(|x | − 1 + ε)|x |1−n satisfies
−∆v − (n − 1)(n − 3)v

4|x |2
− v

4(|x | − 1 + ε)2
= 0 in Ω,

∇v · ~n + γv =
−1 + ε(n + 2γ − 1)

2
√
ε

≥ 0 on ∂ΩRob.

Hence, the AAP theorem implies the Hardy-type inequality in H1(Ω)∫
Ω
|∇φ|2dx +

∫
∂ΩRob

γφ2dσ≥
∫

Ω

[
(n − 1)(n − 3)

4|x |2
+

1

4(|x | − 1 + ε)2

]
φ2dx .
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Example (Continued)

Let’s compare our result with [Kovǎŕık-Laptev (2012)], where γ ≥ 0 is
constant and ε = (2γ)−1. Instead, let εγ := (n − 1 + 2γ)−1, we obtain an
improvement of the Hardy inequality in [Kovǎŕık-Laptev (2012)]. In
particular, the function vγ :=

√
(|x | − 1 + εγ)|x |1−n is a positive solution

of the equation−∆v − v(n − 1)(n − 3)

4|x |2
− v

4(|x | − 1 + εγ)2
= 0 in Ω,

∇v · ~n + γv = 0 on ∂ΩRob.

It follows that vγ is a ground state and

W :=
(n − 1)(n − 3)

4|x |2
+

1

4(|x | − 1 + εγ)2

is an optimal Hardy-weight of (P,B) in Ω.
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Thank you for your attention!
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