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2-point affine boundary condition (BC)

y ′ = f (y)

y(0)

y(T )

Constraint: H0y(0) +H1y(T ) = v
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2-point affine boundary condition (BC)
We consider extending to the “rough context” for H0, H1 bounded,
linear operators the problem{
y(v , t, T ) = y(v , 0, T ) +

∫ t
0
f (y(v , s, T )) ds, t ∈ [0, T ],

H0y(v , 0, T ) +H1y(v , T, T ) = v .

Origin: transport problem, radiative transfer, biology, waves in dis-
ordered media, ...

Our approach relies on the invariant imbedding1, which is “consid-
ered as a concept and not as a technique”.

Reference: R. Bellman & G.M. Wing (1975, reprint 1987)

1V.A. Ambarzumyan, S. Chandrasekhar, R. Bellman et al., ...
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Step 1: Differentiate the flow

With y(v , t, T ) = y(v , 0, T ) +
∫ t

0

f (y(v , s, T )) ds,

∂vy(v , t, T ) = ∂vy(v , 0, T ) +

∫ t

0

∇f (y(v , s, T ))∂vy(v , s, T ) ds,

∂T y(v , t, T ) = ∂T y(v , 0, T ) +

∫ t

0

∇f (y(v , s, T ))∂T y(v , s, T ) ds.

Let Z be the unique solution to the linear eq.

Z(t) = Id+

∫ t

0

∇f (y(v , s, T ))Z(s) ds.

Thus,

∂vy(v , t, T ) = Z(t)∂vy(v , 0, T ),

∂T y(v , t, T ) = Z(t)∂T y(v , 0, T ).
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Step 2: Differentiate the boundary condition

H0y(v , 0, T ) +H1y(v , T, T ) = v ,

∂v =⇒ (H0 +H1Z(T ))∂vy(v , 0, T ) = Id, (♣)
(H0 +H1Z(T ))∂T y(v , 0, T ) +H1∇f (y(v , T, T )) = 0. (♠)

As long as H0 +H1Z(T ) is invertible,

∂vy(v , 0, T )H1∇f (y(v , T, T )) + ∂T y(v , 0, T ) = 0. (♥)

With the method of characteristics2

y(v(T ), 0, T ) = y(v , 0, 0)

with v(t) = v +
∫ t

0

H1∇f (y(v , s, s)) ds

2Just differentiate t 7→ y(v(t), 0, t) and use (♥)
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Step 3: Use the boundary condition with T = 0
Since

H0y(v , 0, T ) +H1y(v , T, T ) = v ,

setting T = 0,

H0y(v , 0, 0) +H1y(v , 0, 0) = v .

Provided that H0 +H1 is invertible,

y(v , 0, 0) = (H0 +H1)
−1v .

Conclusion:

y(v(T ), 0, T ) = (H0 +H1)
−1v

We have the initial condition, but not for the right value of v .
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Step 4: Use the flow, Luke

y(v , 0, T ) = (H0 +H1)
−1
(
v −H1

∫ T

0

f (y(v , s, s)) ds

)
.

But y(v , s, s) = I[y(v , 0, s)](s) where

I[a](t) = a +
∫ t

0

f (I[a](s)) ds, t > 0

is the flow of the ODE y ′ = f (y). Provided that f ∈ C1, I is well
defined and is C1 in space and time.
Thus, the starting point is solution to the fixed point problem

y(v , 0, T ) = (H0+H1)
−1
(
v −H1

∫ T

0

f (I[y(v , 0, T )](s)) ds
)

= (H0 +H1)
−1(v −H1(I[y(v , 0, T )](T )− y(v , 0, T ))).
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Invariant imbedding: To summarize
If there is a solution to the problem

y ′(t) = f (y(t)) with H0y(0) +H1y(T ) = v (♣)

then a := y(0) solves the non-linear problem

a = (H0 +H1)
−1(v −H1(I[a](T )− a)) (♠)

provided that
• H0 +H1 is invertible (excludes periodic BC)
• y ′ = f (y) has a C1 flow (a, t) 7→ I[a](t)
• H0 +H1∂aI[a](T ) is invertible for any starting point a.

The converse is (obviously) true: if a solves (♠), then t 7→ I[a](t)
solves (♣)
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Invariant imbedding: extenѕion to RDE
Let x be a Young/rough path. Consider the RDEwith 2-point affineBC:{

y(t) = y(0) +
∫ t
0
f (y(s)) dx(s),

H0y(0) +H1y(T ) = v

Why?
• arises (driven by BMor fBM) as limits of ODEwith highly-oscillating
coefficients

• convenient for a wide range of stochastic drivers
• extend what is known about SDE3

• avoid considerations on anticipative stochastic calculus
• for the fun

3Occone & Pardoux (1989), Donati-Martin (1991), Nualart & Pardoux (1991),
Fouque & Merzbach (1994), Garnier (1995), ...
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Flow property of RDE (1/2)
The Young/Rough Differential Equation

y(t) = a +

∫ t

0

f (y(s)) dx(s) (F)

enjoys “similar” properties toODE provided that f is regular enough4:
• Classical (x(t) = t): If f ∈ Ck , k > 1, then the solution to (F)
is unique and is locally Ck (sup-norm).
• Young (x ∈ Cα, α > 1/2): if f ∈ Ck+γ , α(1 + γ) > 1, then
the solution to (F) is unique and is locally Ck+γ−ε with respect to
(a, x, f ) (Hölder norm)
• Rough (x ∈ Cα, 1/3 < α 6 1/2): if f ∈ Ck+1+γ , α(2 + γ) > 1,
then the solution to (F) is unique and is locally Ck+γ−ε with respect
to (a, x, f ) (Hölder norm).

4Long history, started from Lyons & Qian, Bailleul, Lyons & Li, Friz & Victoir,
Y. Inahama & H. Kawabi, and Coutin & L.
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Flow property of RDE (2/2)
In all cases, provided that f is regular enough, the solution to

y(t, a) = a +

∫ t

0

f (y(s, a)) dx(s) (F)

is well defined and a 7→ y(t, a) defines a C1-diffeomorphism for
any t > 0. If f is bounded, a 7→ y(t, a) is globally Lipschitz.

We denote by I the Itô map

I[a, x, f ] = t 7→ y(t, a) where y solves (F).

In particular, DaI[a, x, f ] solves the linear RDE

DaI[a, x, f ](t) = Id+
∫ t

0

∇f (y(s)) ·DaI[a, x, f ](s) dx(s).
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Invariant imbedding for RDE
Set H = H0 +H1 and assume H invertible.
We consider the 2-points affine BC{

y(t) = I[y(0), x, f ](t),
H0y(0) +H1y(T ) = v

(♠)

as well as the non-linear fixed-point problem

H−1v −H−1H1(I[a, x, f ](T )− a) = a. (♣)

Existence in short time (Marty & L)

If |(x, f )| 6 M for a given constant, f is bounded and
T αM|H−1| < 1 then there exists a unique solution a
to (♣) (Banach fixed-point) and to (♠) (by setting yt(a) =
I[a, x, f ](t)).
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Continuity of the solution

Of course, the solution inherits from the regularity of the Itô map
thanks to the Implicit Function Theorem.

Continuity (Marty & L)

Under the conditions of existence and uniqueness, the map
giving the solution to the 2-point affine BC is Lipschitz con-
tinuous when x remains in a ball (the time horizon and the
radius of the ball are linked).
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Applications: random noise
d Y n(t)

dt
=
√
n

d∑
j=1

ξj,bntcfj(Y
n(t)),

H0Y
n(0) +H1Y

n(T ) = v

where {ξk,j}, iid, mean 0, variance 1, finite moments. Define

W nj = linear interpolation of
1√
n

∑
ξj,·

andWn its enhanced version. By Donsker,Wn converges toW (en-
hanced Brownian motion).
The process Y n converges, restrіcted to the event {|Wn| 6 M}, to

dY (t) = f (Y (t)) ◦ dW(t) and H0Y (0) +H1Y (T ) = v .

Similar results hold for other kinds of noise, with fBM in the limit.
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Global existence

We have proved existence and uniqueness for small time.

What about global existence?

If f is not bounded, no global solution may exists.

We used the Banach fixed point theorem, which holds thanks to con-
trols on the Lipschitz norm of

a 7→ H−1v −H−1H1(I[a, x, f ](T )− a).

This control holds for “short time”, as I[a, x, f ](T ) is close to a.
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Brouwer’s degree
Consider
• O open subset
• Φ : O → Rd continuous
• y ∈ Rd , y 6∈ Φ(∂O)

The Brouwer’s degree is

deg(Φ, O, y) =
∑

x∈Φ−1({y})

sgn det Jac[Φ](x)

whenever y is a regular value, that is Jac[Φ](x) 6= 0 for all x ∈
Φ−1({y}).
The degree has a lot of nice properties, including
• If deg(Φ, O, y) 6= 0, then there exists a least one solution to
Φ(x) = y for y 6∈ ∂O.

• It is stable by homotopy (continuous deformation); practical
computation
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Existence for large time

Existence for large time (R. Marty & L)

In a finite-dimensional state space, if H0 + H1 is invertible,
there exists a solution to the 2-points affine BC.
Besides, for almost every v , the number of solutions is finite.

We use the degree theory for a 7→ a+H−1H1(I[a, x, f ](T )− a)
(continuous deformation from a 7→ a in T ).

The finiteness of the number of solutions is a consequence of the
Sard theorem.
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