Rough Invariant Imbedding

Antoine Lejay (IECL & Inria, Nancy, France)

with Renaud Marty (IECL)

New interfaces of Stochastic Analysis and Rough Paths Banff International Research Station September 7, 2022

From "Invariant imbedding and rough differential equations with affine boundary conditions" (preprint, 2022, hal-03626402)

DOI 10.13140/RG.2.2.29798.91209

2-point affine boundary condition (BC)

Constraint: $H_0 y(0) + H_1 y(T) = v$

2-point affine boundary condition (BC)

We consider extending to the "rough context" for H_0 , H_1 bounded, linear operators the problem

$$\begin{cases} y(v, t, T) = y(v, 0, T) + \int_0^t f(y(v, s, T)) \, ds, \ t \in [0, T], \\ H_0 y(v, 0, T) + H_1 y(v, T, T) = v. \end{cases}$$

Origin: transport problem, radiative transfer, biology, waves in disordered media, ...

Our approach relies on the invariant imbedding¹, which is "considered as a concept and not as a technique".

Reference: R. Bellman & G.M. Wing (1975, reprint 1987)

¹V.A. Ambarzumyan, S. Chandrasekhar, R. Bellman *et al.*, ...

Step 1: Differentiate the flow

With
$$y(v, t, T) = y(v, 0, T) + \int_0^t f(y(v, s, T)) ds$$
,
 $\partial_v y(v, t, T) = \partial_v y(v, 0, T) + \int_0^t \nabla f(y(v, s, T)) \partial_v y(v, s, T) ds$,
 $\partial_T y(v, t, T) = \partial_T y(v, 0, T) + \int_0^t \nabla f(y(v, s, T)) \partial_T y(v, s, T) ds$.

Let Z be the unique solution to the linear eq.

$$Z(t) = \mathrm{Id} + \int_0^t \nabla f(y(v, s, T)) Z(s) \, \mathrm{d}s.$$

Thus,

$$\partial_{v} y(v, t, T) = Z(t) \partial_{v} y(v, 0, T),$$

$$\partial_{T} y(v, t, T) = Z(t) \partial_{T} y(v, 0, T).$$

Step 2: Differentiate the boundary condition

$$H_0 y(v, 0, T) + H_1 y(v, T, T) = v,$$

$$\partial_v \Longrightarrow (H_0 + H_1 Z(T)) \partial_v y(v, 0, T) = \mathrm{Id}, \qquad (\clubsuit)$$

$$(H_0 + H_1 Z(T)) \partial_T y(v, 0, T) + H_1 \nabla f(y(v, T, T)) = 0. \quad (\clubsuit)$$

As long as $H_0 + H_1Z(T)$ is invertible,

 $\partial_{v} y(v, 0, T) H_{1} \nabla f(y(v, T, T)) + \partial_{T} y(v, 0, T) = 0. \quad (\heartsuit)$

With the method of characteristics²

$$y(v(T), 0, T) = y(v, 0, 0)$$

with $v(t) = v + \int_0^t H_1 \nabla f(y(v, s, s)) ds$

²Just differentiate $t \mapsto y(v(t), 0, t)$ and use (\heartsuit)

Rough Invariant Imbedding/ A. Lejay / 2022

 $\label{eq:step 3: Use the boundary condition with $\mathcal{T}=0$$ Since

$$H_0 y(v, 0, T) + H_1 y(v, T, T) = v,$$

setting T = 0,

$$H_0y(v,0,0) + H_1y(v,0,0) = v.$$

Provided that $H_0 + H_1$ is invertible,

$$y(v, 0, 0) = (H_0 + H_1)^{-1}v.$$

Conclusion:

$$y(v(T), 0, T) = (H_0 + H_1)^{-1}v$$

We have the initial condition, but not for the right value of v.

Rough Invariant Imbedding/ A. Lejay / 2022

Step 4: Use the flow, Luke

$$y(v, 0, T) = (H_0 + H_1)^{-1} \left(v - H_1 \int_0^T f(y(v, s, s)) \, \mathrm{d}s \right).$$

But $y(v, s, s) = \mathcal{I}[y(v, 0, s)](s)$ where

$$\mathcal{I}[a](t) = a + \int_0^t f(\mathcal{I}[a](s)) \,\mathrm{d}s, \ t \geqslant 0$$

is the flow of the ODE y' = f(y). Provided that $f \in C^1$, \mathcal{I} is well defined and is C^1 in space and time.

Thus, the starting point is solution to the fixed point problem

$$y(v, 0, T) = (H_0 + H_1)^{-1} \left(v - H_1 \int_0^T f(\mathcal{I}[y(v, 0, T)](s)) ds \right)$$

= $(H_0 + H_1)^{-1} \left(v - H_1(\mathcal{I}[y(v, 0, T)](T) - y(v, 0, T)) \right).$

Invariant imbedding: To summarize

If there is a solution to the problem

$$y'(t) = f(y(t))$$
 with $H_0y(0) + H_1y(T) = v$

then a := y(0) solves the non-linear problem

$$a = (H_0 + H_1)^{-1}(v - H_1(\mathcal{I}[a](T) - a))$$
 (4)

provided that

- $H_0 + H_1$ is invertible (excludes periodic BC)
- y' = f(y) has a \mathcal{C}^1 flow $(a, t) \mapsto \mathcal{I}[a](t)$
- $H_0 + H_1 \partial_a \mathcal{I}[a](T)$ is invertible for any starting point *a*.

The converse is (obviously) true: if a solves (\blacklozenge), then $t \mapsto \mathcal{I}[a](t)$ solves (\clubsuit)

Invariant imbedding: extension to RDE

Let x be a Young/rough path. Consider the RDE with 2-point affine BC:

$$\begin{cases} y(t) = y(0) + \int_0^t f(y(s)) \, dx(s), \\ H_0 y(0) + H_1 y(T) = v \end{cases}$$

Why?

- arises (driven by BM or fBM) as limits of ODE with highly-oscillating coefficients
- convenient for a wide range of stochastic drivers
- extend what is known about SDE³
- avoid considerations on anticipative stochastic calculus
- for the fun

³Occone & Pardoux (1989), Donati-Martin (1991), Nualart & Pardoux (1991), Fouque & Merzbach (1994), Garnier (1995), ...

Flow property of RDE (1/2)

The Young/Rough Differential Equation

$$y(t) = a + \int_0^t f(y(s)) \, \mathrm{d}x(s) \tag{(\bigstar)}$$

enjoys "similar" properties to ODE provided that f is regular enough⁴:

- Classical (x(t) = t): If $f \in C^k$, $k \ge 1$, then the solution to (\bigstar) is unique and is locally C^k (sup-norm).
- Young ($x \in C^{\alpha}$, $\alpha > 1/2$): if $f \in C^{k+\gamma}$, $\alpha(1+\gamma) > 1$, then the solution to (\bigstar) is unique and is locally $C^{k+\gamma-\epsilon}$ with respect to (a, x, f) (Hölder norm)

• Rough ($x \in C^{\alpha}$, $\frac{1}{3} < \alpha \leq \frac{1}{2}$): if $f \in C^{k+1+\gamma}$, $\alpha(2+\gamma) > 1$, then the solution to (\bigstar) is unique and is locally $C^{k+\gamma-\epsilon}$ with respect to (a, x, f) (Hölder norm).

⁴Long history, started from Lyons & Qian, Bailleul, Lyons & Li, Friz & Victoir, Y. Inahama & H. Kawabi, and Coutin & L.

Flow property of RDE (2/2)

In all cases, provided that f is regular enough, the solution to

$$y(t,a) = a + \int_0^t f(y(s,a)) \,\mathrm{d}x(s) \tag{(\bigstar)}$$

is well defined and $a \mapsto y(t, a)$ defines a C^1 -diffeomorphism for any $t \ge 0$. If f is bounded, $a \mapsto y(t, a)$ is globally Lipschitz.

We denote by $\mathcal I$ the Itô map

$$\mathcal{I}[a, x, f] = t \mapsto y(t, a)$$
 where y solves (\bigstar).

In particular, $D_a \mathcal{I}[a, x, f]$ solves the linear RDE

$$\mathsf{D}_{a}\mathcal{I}[a, x, f](t) = \mathsf{Id} + \int_{0}^{t} \nabla f(y(s)) \cdot \mathsf{D}_{a}\mathcal{I}[a, x, f](s) \, \mathsf{d}x(s).$$

Invariant imbedding for RDE

Set $H = H_0 + H_1$ and assume H invertible. We consider the 2-points affine BC

$$\begin{cases} y(t) = \mathcal{I}[y(0), x, f](t), \\ H_0 y(0) + H_1 y(T) = v \end{cases}$$

as well as the non-linear fixed-point problem

$$H^{-1}v - H^{-1}H_1(\mathcal{I}[a, x, f](T) - a) = a.$$
 (**4**)

Existence in short time (Marty & L)

If $|(x, f)| \leq M$ for a given constant, f is bounded and $T^{\alpha}M|H^{-1}| < 1$ then there exists a unique solution a to (\clubsuit) (Banach fixed-point) and to (\clubsuit) (by setting $y_t(a) = \mathcal{I}[a, x, f](t)$).

Continuity of the solution

Of course, the solution inherits from the regularity of the Itô map thanks to the Implicit Function Theorem.

Continuity (Marty & L)

Under the conditions of existence and uniqueness, the map giving the solution to the 2-point affine BC is Lipschitz continuous when x remains in a ball (the time horizon and the radius of the ball are linked).

Applications: random noise

$$\begin{cases} \frac{dY^n(t)}{dt} = \sqrt{n} \sum_{j=1}^d \xi_{j,\lfloor nt \rfloor} f_j(Y^n(t)), \\ H_0 Y^n(0) + H_1 Y^n(T) = v \end{cases}$$

where $\{\xi_{k,j}\}$, iid, mean 0, variance 1, finite moments. Define

$$W_j^n =$$
 linear interpolation of $rac{1}{\sqrt{n}}\sum \xi_{j,\cdot}$

and \mathbf{W}^n its enhanced version. By Donsker, \mathbf{W}^n converges to \mathbf{W} (enhanced Brownian motion).

The process Y^n converges, restricted to the event $\{|\mathbf{W}^n| \leq M\}$, to

$$dY(t) = f(Y(t)) \circ d\mathbf{W}(t)$$
 and $H_0Y(0) + H_1Y(T) = v$

Similar results hold for other kinds of noise, with fBM in the limit. Rough Invariant Imbedding/ A. Lejay / 2022

Global existence

We have proved existence and uniqueness for small time.

What about global existence?

If f is not bounded, no global solution may exists.

We used the Banach fixed point theorem, which holds thanks to controls on the Lipschitz norm of

$$a \mapsto H^{-1}v - H^{-1}H_1(\mathcal{I}[a, x, f](T) - a).$$

This control holds for "short time", as $\mathcal{I}[a, x, f](T)$ is close to *a*.

Brouwer's degree

Consider

- O open subset
- $\Phi:\overline{O}\to\mathbb{R}^d$ continuous
- $y \in \mathbb{R}^d$, $y \notin \Phi(\partial O)$

The Brouwer's degree is

$$\deg(\Phi, O, y) = \sum_{x \in \Phi^{-1}(\{y\})} \operatorname{sgn} \det \operatorname{Jac}[\Phi](x)$$

whenever y is a regular value, that is $Jac[\Phi](x) \neq 0$ for all $x \in \Phi^{-1}(\{y\})$.

The degree has a lot of nice properties, including

- If deg(Φ , O, y) \neq 0, then there exists a least one solution to $\Phi(x) = y$ for $y \notin \partial O$.
- It is stable by homotopy (continuous deformation) \leadsto practical computation

Existence for large time

Existence for large time (R. Marty & L)

In a finite-dimensional state space, if $H_0 + H_1$ is invertible, there exists a solution to the 2-points affine BC. Besides, for almost every v, the number of solutions is finite.

We use the degree theory for $a \mapsto a + H^{-1}H_1(\mathcal{I}[a, x, f](T) - a)$ (continuous deformation from $a \mapsto a$ in T).

The finiteness of the number of solutions is a consequence of the Sard theorem.