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Introduction

Motivation

▶ Supervised learning is concerned with finding representations of the data
x 7→ Φ(x) over which linear functions ⟨ℓ, Φ(x)⟩ ≈ y can approximate
input-output maps x 7→ y

▶ Signatures are interesting both theoretically and empirically for modelling
functions of sequences

▶ Scalability, on the other hand, is a well-known bottleneck for structured
data types, such as sequences, trees, graphs, etc. . .

▶ The signature is no exception, where the bottleneck is either in

Φm(x) ∈
(
Rd)⊗m︸ ︷︷ ︸

O(dm) coordinates for level-m

or (⟨xk , yl⟩)L
k,l=1 ∈ RL×L︸ ︷︷ ︸

O(L2) pairwise comparisons

▶ ... this work: try to get the best of both worlds!
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Recap on signatures

Sequential data
Assume our data observations lie in some Banach space B. Computationally,
we deal with sequential data in discrete chunks,

SeqV (B) := {x1:Lx = (x1, . . . , xLx ) | xti ∈ V , Lx ∈ N, ∥x1:Lx ∥1-var ≤ V }.

But theoretically, we may prefer to think about it in continuous time,

PathsV (B) =
{

(xt)t∈[0,Tx] ∈ C([0, Tx], V ) | x0 = 0, Tx ∈ R+, ∥x∥1-var ≤ V
}

,

where the bounded variation norm of a sequence x1:Lx ∈ SeqV (B) is

∥x1:Lx ∥1-var :=
Lx−1∑
l=1

∥xl+1 − xl∥B ≤ V

and of a path (xt)t∈[0,Tx] ∈ PathsV (B) is

∥x∥1-var = sup
0=t1<···<tn=Tx

n−1∑
i=1

∥xti+1 − xti ∥B ≤ V
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Recap on signatures

Signature features and tensor algebras

For a given integer m ∈ N, the collection of level-m iterated integrals of a path
x ∈ Paths(V ) is defined as the tensor of order-m

Sm(x) =
∫

0<t1<···<tm<Tx

dxt1 ⊗ · · · ⊗ dxtm ∈ B⊗m.

The collection of iterated integrals for all levels m ∈ N is the signature of the
path living in a feature space known as the tensor algebra over B,

S(x) = (1, S1(x), S2(x), . . . , Sm(x), . . . ) ∈
∞∏

m=1

B⊗m.

The truncated signature of level-M is given by ignoring tensors of order larger
than M, and it lives in the truncated tensor algebra,

S≤M(x) = (1, S1(x), S2(x), . . . , Sm(x)) ∈
M∏

m=1

B⊗m.

.
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Recap on signatures

Signature kernels and the kernel trick
Kiraly and Oberhauser (2019) have introduced a kernel trick for the inner
product of level-m iterated integrals of paths x, y ∈ Paths(H),

⟨Sm(x), Sm(y)⟩ =
∫ ∫

0<s1<···<sm<Tx
0<t1<···<tm<Ty

⟨dxs1 , dyt1 ⟩ · · · ⟨dxsm , dytm ⟩.

This allowed them to compute truncated signature kernels by simply inner
product evaluation on H, leading to 1) circumventing the curse of
dimensionality incurred by high order tensors, 2) compute signature kernels
over by paths evolving in an infinite-dimensional RKHS,

kSM (x, y) =
M∑

m=0

⟨Sm(x), Sm(y)⟩

Recent work by Salvi, Cass, Foster, Lyons and Yang (2021) devised a
PDE-approach to approximating the full signature kernel,

kSPDE (x, y) ≈
∞∑

m=0

⟨Sm(x), Sm(y)⟩
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Recap on signatures

Discretized signature features (1/2)

▶ To go from continuous-time to discrete-time, the canonical choice is to lift
signatures to paths by e.g. linear interpolation

▶ Other possible choices introduced in e.g. Kiraly and Oberhauser (2019)
also introduced order-p discretizations of signatures:

Φ(p)
m (x) =

∑
1≤i1≤···≤im<Lx

1
#(p)(i)!∇xi1 ⊗ · · · ⊗ ∇xim ,

where ∇xik = xik +1 − xik is sequence differencing, and # is a bin count
operator such that #(i1, . . . , im) = (c1, . . . , cd) and cj counts the number
of occurrences of the jth unique element in i. Then,

#(p)(i1, . . . , im) =
{

c1! · · · cd ! if c1, . . . , cd ≤ p
∞ else

▶ For p = m, it is the level-m signature of a piecewise linear path
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Recap on signatures

Discretized signature features (2/2)

▶ Although the order-p discretized signature does not correspond to the
signature of a path for p < m, a there is a concatenation property and for
e.g.p = 1 a quasi-half shuffle product, which allows to get universality
when precomposed with a universal "static" feature map.

▶ For example, the order-p kernel k(p)(x, y) =
∑

m≥0 k(p)
m (x, y) where

k(p)
m (x1:K , y1:L) =

∑
1≤i1≤···≤im<K
1≤j1≤···≤jm<L

1
#(p)(i)!#(p)(j)!∇κ(xi1 , yj1 ) · · · ∇κ(xim , yjm )

is universal for all p ∈ N if κ : Rd × Rd → R is a universal kernel
▶ Following, we focus on the case p = 1 for simplicity of calculations:

k(1)
m (x1:K , y1:L) =

∑
1≤i1<···<im<K
1≤j1≤···≤jm<L

∇κ(xi1 , yj1 ) · · · ∇κ(xim , yjm )
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Random Fourier Features

Main ideas

▶ We are given a static kernel κ : Rd × Rd → R such that
Hκ = span{κ(x, ·) | x ∈ Rd} is infinite-dimensional

▶ It is well-known that there exist many ϕ : Rd → H into some Hilbert space
H such that

⟨ϕ(x), ϕ(y)⟩ = κ(x, y) for all x, y ∈ Rd

▶ E.g. we may take for ϕ(x) = κ(x, ·), or ϕ(x) = (
√

λi ei (x))i≥0, where ei are
the eigenfunctions from Mercer’s theorem

▶ We want a finite-dimensional (!) ϕ̃ : Rd → Rd̃ such that〈
ϕ̃(x), ϕ̃(y)

〉
≈ κ(x, y) for x, y ∈ M ⊂ Rd ,

such that we approximately capture the inner product, i.e. κ(x, y), but we
don’t care about capturing any feature map ϕ(x) itself!
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Random Fourier Features

Spectral representation of stationary kernels

▶ Question: Given an infinite-dimensional kernel κ over Rd , how do we find
an approximate feature map ϕ̃ : Rd → Rd̃

κ(x, y) =
〈
ϕ̃(x), ϕ̃(x)

〉
for x, y ∈ M ⊂ Rd

▶ Rahimi and Recht (2007) proposed an approach for approximating
stationary kernels, i.e. κ(x, y) = κ(x + z, y + z) for all x, y, z in Rd

▶ Bochner’s theorem: if κ is a continuous, bounded stationary kernel, it can
be written as the Fourier transform of a non-negative finite measure,

κ(x, y) =
∫
Rd

exp(iw⊤(x − y))dΛ,

where Λ is the spectral measure of κ (wlog assume Λ(Rd) = 1)
▶ This represents the kernel as an inner product in an L2 space of RVs

κ(x, y) = Ew∼Λ

[
e iw⊤xe iw⊤y⋆

]
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Random Fourier Features

Random Fourier Features

▶ Random Fourier features are defined for W = [wi ]d̃i=1, wi ∼ Λ

ϕ̃W (x) := 1√
d̃

(
sin(W ⊤x), cos(W ⊤x)

)
∈ R2d̃

▶ First and foremost, RFFs approximate the true kernel κ since

κ̃(x, y) =
〈
ϕ̃W (x), ϕ̃W (x)

〉
= 1

d̃

d̃∑
i=1

cos(w⊤
i (x − y)),

and hence

E
[〈

ϕ̃W (x), ϕ̃W (y)
〉]

= 1
d̃

d̃∑
i=1

E
[
cos(w⊤

i (x − y)
]

= κ(x, y)

▶ Analogously by DCT, we also have for the derivatives of RFFs

∂p,qκ̃(x, y) =
〈
∂pϕ̃(x), ∂qϕ̃(y)

〉
≈ ∂p,qκ(x, y)
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Random Fourier Features

Theoretical guarantees for RFFs

▶ Rahimi and Recht (2007) showed the following uniform bound

P
[

sup
x,y∈M

|κ̃(x, y) − κ(x, y)|
]

≤ C
(

σ2
Λ diam(M)

ϵ

)2

exp
(

−d̃ϵ2

d(ϵ + 2)

)
over a convex, compact domain M ⊂ Rd , where σ2 = Ew∼Λ ∥w∥2 is the
trace of the second moment of Λ.

▶ In particular, this bound shows that the error converges uniformly to 0 at a
rate Op

(
|M|

√
d̃−1 log d̃

)
▶ This bound was later tightened by Sriperumbudur and Szabo (2015),

where a rate of Oa.s.

(√
log |M| d̃−1

)
, and analogous results extended to

the derivatives of RFFs in Szabo and Sriperumbudur (2019), and
generalized to Orlicz Spaces in Chamakh, Gobet and Szabo (2020)
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Random Signature Fourier features

Approximating signature kernels

▶ We apply the same idea, namely that we do not approximate the signature
of a path

▶ Instead, we focus on approximately capturing the kernel itself, that is, we
find features Φ̃m : Seq(Rd) → H̃ such that〈

Φ̃m(x), Φ̃m(x)
〉

≈ ⟨Φm(x), Φm(y)⟩ for x, y ∈ Seq(Rd),

where Φm(x) ∈ H⊗m and Φ̃m(x) ∈ H̃, hence the features themselves need
not even live in the same space

▶ Naive approach: take signature features over the sequence lifted using a
given copy of the random Fourier feature mapping, i.e.

Φ̃m(x) =
∑

1≤i1<···<im<Lx

∇ϕ̃(xi1 ) ⊗ · · · ⊗ ∇ϕ̃(xim )
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Random Signature Fourier features

Tensorizing Fourier features

▶ Naively, one might think to extend RFFs to signature kernels by replacing
κ with κ̃. However, this would not work in general since

E [κ̃(x1, y1) · · · κ̃(xm, ym)] ̸= κ(x1, y1) · · · κ(xm, ym)

▶ Workaround: sample Wi = [wi,j ]d̃j=1, wi,j ∼ Λ, and denoting
κ̃i (x, y) ≡ κ̃Wi (x, y), use independent features across the product

E [κ̃1(x1, y1) · · · κ̃m(xm, ym)] = κ(x1, y1) · · · κ(xm, ym)

▶ Specifically, for the level-m order-1 signature kernel

km(x, y) =
∑

i,j

∇κ(xi1 , yj1 ) · · · ∇κ(xim , yjm )

▶ We can define the random, unbiased approximation

k̃m(x, y) =
∑

i,j

∇κ̃1(xi1 , yj1 ) · · · ∇κ̃m(xim , yjm )
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Random Signature Fourier features

Theoretical guarantees of RSFF (1/2)

▶ With the previous definition, we have for any x, y ∈ SeqV (Rd)

E
[
k̃m(x, y)

]
= km(x, y)

▶ Under the assumption that κ is C -Lipschitz for some C > 0 such that
∥κx − κy∥K ≤ C ∥x − y∥, we have the uniform control over BV sequences

sup
x,y∈SeqV (M)

∣∣k̃m(x, y) − km(x, y)
∣∣

≤ V 2m
m∑

k=1

C2(m−k) ∥W1∥2
2 · · · ∥Wk−1∥2

2

d̃k−1((k − 1)!)2
sup

x,y∈M
∥∂1,2κ̃(x, , y) − ∂1,2κ(x, y)∥2 ,

where ∂1,2κ(x, y) := [∂2κ(x, y)/∂xi ∂yj ]di,j=1 and V > 0 is the maximal
1-var.
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Random Signature Fourier features

Theoretical guarantees of RSFF (2/2)

▶ Assuming the following additional conditions
1. κ is three-times differentiable (C3)
2. Ew∼Λ[wi wj ∥w∥2] < ∞ for all i , j ∈ [d].
3. Ew∼Λ[|wi |k |wj |k ] ≤ k!σ2Rm−2

2 for i , j, ∈ [d],
▶ it holds that

P
[

sup
x,y∈SeqV (M)

∣∣km(x, y) − k̃m(x, y)
∣∣ ≥ ϵ

]

≤ M ·



(
16 |M| (D̄M + Ē)

(
βd,V ,M

ϵ

)
+ d

)
exp

− d̃
2(d+1)

(
ϵ

βd,V ,M

)2

σ2+R
(

ϵ
βd,V ,M

) for ϵ < βd,V ,M

(
16 |M| (D̄M + Ē)

(
βd,V ,M

ϵ

)1/M
+ d

)
exp

− d̃
2(d+1)

(
ϵ

βd,V ,M

)2/M

σ2+R
(

ϵ
βd,V ,M

)1/M

 for ϵ ≥ βd,V ,M

,

where βd,V ,M :=
(
2V 2 max(C , 1)2 max(σ2

Λ, d)
)M .
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Experiments

Time Series Classification

▶ 2 tested variations of the previous idea: 1) RSFFH, 2) RSFFTRP

▶ On some simple TSC experiments, we compared against other variants of
sequence/signature kernels with the random signatures

▶ We observe that the performance is close across different variations of
signatures, but the RSFFs perform competitively

Datasets/Kernels GAK Sig(n) Sig-PDE KSig RSFFH RSFFTRP

ArticularyWordRecognition 98 92.3 98.3 99.0 98.2 98.5
BasicMotions 97.5 97.5 100 100 100 100
Cricket 97.2 86.1 97.2 98.6 94.6 95.8
ERing 93.7 84.1 93.3 84.1 90.7 90.1
Libras 79 81.7 81.7 91.6 92.2 91.2
NATOPS 90.6 88.3 93.3 93.9 93.7 92.3
RacketSports 84.2 80.2 84.9 86.2 80.0 79.9
FingerMovements 61 51 58 63 59.5 59.4
Heartbeat 70.2 72.2 73.6 71.2 74.8 74.4
SelfRegulationSCP1 92.4 75.4 88.7 89.8 89.4 89.6
UWaveGestureLibrary 87.5 83.4 87 87.5 84.3 84.3
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Next steps

▶ Empirical evaluation on large-scale datasets
▶ Tighten the bounds using the optimal RFF rates from Szabo and

Sriperumbudur (2019), and Chamakh, Gobet and Szabo (2020)
▶ Generalize the technique of Rudi and Rosasco (2017) for downstream

learning performance estimates
▶ Extend the bounds to "order-p" signature features
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Thanks for your
attention!
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