Feature Engineering with Regularity Structures

Ilya Chevyrev

(Joint work with Andris Gerasimovičs & Hendrik Weber) arXiv:2108.05879

The University of Edinburgh

7 September 2022

BIRS Workshop: New interfaces of Stochastic Analysis and Rough Paths

Overview

Background - signatures

2 Higher dimensions

Background - signatures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

æ

Machine learning

Simplistic picture:

data \rightarrow features \rightarrow learning algorithm \rightarrow output

Focus of talk: data \rightarrow **features** for data defined on *domains* $D \subset \mathbb{R}^d$

 $\xi\colon D\to\mathbb{R}^n$.

Considerations: descriptiveness, vectorisation, dimensional reduction, etc.

Motivating problem: from observed samples of ξ and u, 'learn' solution to $\mathcal{L}u = \mu(u) + \sigma(u)\xi$.

Naive approach

Discretize D to $\{x_i\}_{i=1}^N \subset D$ and use $\{\xi(x_i)\}_{i=1}^N$ as a feature vector.

Problems:

- Often needs N very large to be descriptive.
 - Huge computational cost.
- Can be unstable to noise.
- Don't have access to $\{\xi(x)\}_{x\in D}$, only some 'observed points'.
 - number and location of 'observed points' can vary from sample to sample
 - ▶ feature vectors {ξ(x_i)}^N_{i=1} can have different dimensions and not directly comparable.

One-dimensional case - signature

Definition

Consider a (piecewise smooth) $X = (X^1 \dots, X^n) \colon [0, T] \to \mathbb{R}^n$. The *signature* of X is the family of numbers

$$(S(X)^{i_1,...,i_k})_{k\geq 0,\ 1\leq i_1,...,i_k\leq n}$$

where

$$S(X)^{i_1,\ldots i_k} = \int_0^T \int_0^{t_k} \ldots \int_0^{t_2} \mathrm{d} X_{t_1}^{i_1} \ldots \mathrm{d} X_{t_{k-1}}^{i_{k-1}} \mathrm{d} X_{t_k}^{i_k}$$

Chen, Ree, Magnus 50's, Brockett, Sussmann, Fliess 70's+, Lyons '90's+ **Properties:**

- expansions of ODEs $dY = \sigma(Y) dX$,
- geometric description of X,
- algebraic properties: generalises polynomials (shuffle product) \Rightarrow 'universal' feature set,

• stable under natural metrics (rough paths).

The signature transform helps analyse time-ordered data:

• Text: "The quick brown fox jumped over the lazy dog."

• Time-evolving network.

Financial times-series.

Grandjean 2014 Les Cahiers du Numérique

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

However, signatures not directly applicable to spatial data:

• Image recognition.

RSSCN7 dataset [Zou et al. 2015]

• Meteorological data.

ECMWF 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Higher dimensions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Generalise signatures to higher dimensions?

- Zhang-Lin-Tindel¹ generalise signatures via spatial differentials.
 - Applied to image and texture classification.
- Giusti-Lee-Nanda-Oberhauser² generalise signatures via cubical mapping spaces.

Our approach is based on regularity structures.

• SPDEs: rough paths \rightsquigarrow regularity structures; signatures \rightsquigarrow models

¹Sheng Zhang, Guang Lin, and Samy Tindel. "2-d signature of images and texture classification". *arXiv e-prints*, arXiv:2205.11236 (May 2022).

Motivation – Picard's theorem

Given $\xi: D \to \mathbb{R}$, want to approximate the solution $u: D \to \mathbb{R}$ to

$$\mathcal{L}u = \mu(u, \nabla u) + \sigma(u, \nabla u)\xi, \qquad u\big|_{\partial D} = u_0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

• \mathcal{L} is a differential operator, μ, σ are polynomials.

Motivation – Picard's theorem

Given $\xi: D \to \mathbb{R}$, want to approximate the solution $u: D \to \mathbb{R}$ to

$$\mathcal{L}u = \mu(u, \nabla u) + \sigma(u, \nabla u)\xi, \qquad u\big|_{\partial D} = u_0.$$

- \mathcal{L} is a differential operator, μ, σ are polynomials.
- Operator: $I = \mathcal{L}^{-1}$: $\mathcal{L}I[f] = f$, $I[f]|_{\partial D} = 0$.
- **Picard's theorem:** $u = \lim_{n \to \infty} u^{(n)}$ where

$$\begin{cases} \mathcal{L}u^{(1)} = 0, \quad u^{(1)} \Big|_{\partial D} = u_0, \\ u^{(n+1)} = u^{(1)} + I[\mu(u^{(n)})] + I[\sigma(u^{(n)})\xi], \end{cases}$$

Motivation – Picard's theorem

Given $\xi: D \to \mathbb{R}$, want to approximate the solution $u: D \to \mathbb{R}$ to

$$\mathcal{L}u = \mu(u, \nabla u) + \sigma(u, \nabla u)\xi, \qquad u\big|_{\partial D} = u_0.$$

- \mathcal{L} is a differential operator, μ, σ are polynomials.
- Operator: $I = \mathcal{L}^{-1}$: $\mathcal{L}I[f] = f$, $I[f]|_{\partial D} = 0$.
- **Picard's theorem:** $u = \lim_{n \to \infty} u^{(n)}$ where

$$\begin{cases} \mathcal{L}u^{(1)} = 0, \quad u^{(1)} \Big|_{\partial D} = u_0, \\ u^{(n+1)} = u^{(1)} + I[\mu(u^{(n)})] + I[\sigma(u^{(n)})\xi], \end{cases}$$

u⁽ⁿ⁾ is multi-linear function of u⁽¹⁾ and ξ.
→ model feature vector

Models

Definition (Model feature vector) **Static objects:** set $D \subset \mathbb{R}^d$, linear operator I acting on \mathbb{R}^D . (Think: I[u] = K * u for a kernel K.) **Input:** $(\{u^{(i)}\}_{i=1}^{\ell}, \xi)$ functions $\xi, u^{(i)} : D \to \mathbb{R}$.

Models

Definition (Model feature vector)

Static objects: set $D \subset \mathbb{R}^d$, linear operator I acting on \mathbb{R}^D .

(Think:
$$I[u] = K * u$$
 for a kernel K.)

Input:
$$(\{u^{(i)}\}_{i=1}^{\ell}, \xi)$$
 functions $\xi, u^{(i)} \colon D \to \mathbb{R}$.

The model feature vector is the family of functions $\cup_{n\geq 0}\mathcal{M}^n$

$$\mathcal{M}^{0} = \{u^{(i)}\}_{i=1}^{\ell} \quad \text{(initialising set)},$$
$$\mathcal{M}^{n} = \left\{ I[\xi^{j} \prod_{i=1}^{k} \partial^{a_{i}} f_{i}] : f_{i} \in \mathcal{M}^{n-1}, a_{i} \in \mathbb{N}^{d}, j, k \in \mathbb{N} \right\} \cup \mathcal{M}^{n-1}.$$

(ξ is called forcing.)

Think: each $f \in \mathcal{M}$ is indexed by corresponding symbol (tree).

Signature

Example (Signature)

- Forcing: $\xi : [0, T] \to \mathbb{R}$.
- **Operator:** $I_t[\xi] = \int_0^t \xi_s \, \mathrm{d}s.$
- Initialising set: $\mathcal{M}^0 = \emptyset$.
- \Rightarrow functions in model feature vector \mathcal{M} evaluated at \mathcal{T} encode the signature of $X := \int_0^{\cdot} \xi_s \, \mathrm{d}s$.

• (Works also for $\xi \colon [0, T] \to \mathbb{R}^n$.)

Numerical experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Parabolic PDE with forcing

For input $\xi : [0,1] \times [0,1] \rightarrow \mathbb{R}$, consider $(\partial_t - \partial_x^2)u = 3u - u^3 + u\xi$ on $[0,1] \times [0,1]$, u(t,0) = u(t,1) (Periodic BC), u(0,x) = x(1-x).

Aim: for fixed $(t,x) \in [0,1] \times [0,1]$, learn u(t,x) from ξ by linear regression at against model at (t,x).

Parabolic PDE with forcing

For input $\xi \colon [0,1] imes [0,1] o \mathbb{R}$, consider

$$(\partial_t - \partial_x^2)u = 3u - u^3 + u\xi$$
 on $[0, 1] \times [0, 1]$,
 $u(t, 0) = u(t, 1)$ (Periodic BC),
 $u(0, x) = x(1 - x)$.

Aim: for fixed $(t, x) \in [0, 1] \times [0, 1]$, learn u(t, x) from ξ by linear regression at against model at (t, x).

Method:

- Train and test: compute models $\{f\}_{f \in \mathcal{M}}$ with $|\mathcal{M}| < 60$ functions.
- Here: $I = (\partial_t \partial_x^2)^{-1}$ and $\mathcal{M}^0 = \emptyset$ ('forget' the initial condition)
- Train: fit linear regression of u(t,x) against $\{f(t,x)\}_{f\in\mathcal{M}}$.
- Test: apply fit from training step.

(a) Prediction at (t, x) = (0.05, 0.5). Relative ℓ^2 error: 4.7%. Slope: 1.01.

(b) Prediction at (t, x) = (1, 0.5). Relative ℓ^2 error: 6.9%. Slope: 0.98.

	(t, x) = (0.05, 0.5)		(t, x) = (0.5, 0.5)		(t, x) = (1, 0.5)		(t, x) = (1, 0.95)	
Model's Height	Error	Slope	Error	Slope	Error	Slope	Error	Slope
1	8.83%	0.91	21.14%	0.85	22.81%	0.72	22.95%	0.75
2	5.60%	0.96	9.79%	0.97	13.42%	0.91	13.16%	0.91
3	5.15%	0.97	8.15%	0.98	7.90%	0.97	8.69%	0.96
4	4.88%	0.97	7.85%	0.98	6.61%	0.98	7.06%	0.98

Remark: similar for additive forcing, but prediction worsens far from boundary.

Wave equation with forcing

As before, but for wave equation

$$\begin{aligned} &(\partial_t^2 - \partial_x^2)u = \cos(\pi \, u) + u^2 + u \,\xi \quad \text{for } (t, x) \in [0, 1] \times [0, 1], \\ &u(t, 0) = u(t, 1) \quad (\text{Periodic BC}), \\ &u(0, x) = u_0(x) := \sin(2\pi \, x), \\ &\partial_t u(0, x) = v_0(x) := x(1 - x) \,, \end{aligned}$$

• Aim: for fixed $(t, x) \in [0, 1] \times [0, 1]$, learn u(t, x) from ξ by linear regression at against model at (t, x).

Wave equation with forcing

As before, but for wave equation

$$\begin{aligned} &(\partial_t^2 - \partial_x^2)u = \cos(\pi \, u) + u^2 + u \,\xi \quad \text{for } (t, x) \in [0, 1] \times [0, 1], \\ &u(t, 0) = u(t, 1) \quad (\text{Periodic BC}), \\ &u(0, x) = u_0(x) := \sin(2\pi \, x), \\ &\partial_t u(0, x) = v_0(x) := x(1 - x) \,, \end{aligned}$$

- Aim: for fixed $(t, x) \in [0, 1] \times [0, 1]$, learn u(t, x) from ξ by linear regression at against model at (t, x).
- Now I = (∂²_t − ∂²_x)⁻¹ and include **both** initial condition and speed in initialising set, M⁰ = {I_c[u₀], I_s[v₀]}:

$$\begin{cases} (\partial_t^2 - \partial_x^2) I_c[u_0] &= 0\\ I_c[u_0](0, x) &= u_0(x) ,\\ \partial_t I_c[u_0](0, x) &= 0 . \end{cases} \begin{cases} (\partial_t^2 - \partial_x^2) I_s[v_0] &= 0\\ I_s[v_0](0, x) &= 0 ,\\ \partial_t I_s[v_0](0, x) &= v_0(x) . \end{cases}$$

(a) Prediction at (t, x) = (1, 0.5) for model with $\mathcal{M}^0 = \emptyset$. Relative ℓ^2 error: 84.1%.

(b) Prediction at (t, x) = (1, 0.5) for model with $\mathcal{M}^0 = \{I_c[u_0], I_s[v_0]\}$. Relative ℓ^2 error: 1.8%.

イロト 不得 トイヨト イヨト

э

Model's Height	1	2	3	4
With initial speed	60.60%	12.86%	2.09%	1.19%
Without initial speed	60.40%	13.45%	5.39%	4.77%

Burgers' equation

Learn entire solution $\{u(t,x)\}_{(t,x)\in[0,10]\times[-8,8]}$ of

$$\begin{aligned} (\partial_t - 0.1 \partial_x^2) u &= -u \partial_x u \quad (t, x) \in [0, 10] \times [-8, 8] \\ u(t, -8) &= u(t, 8) \quad (\text{Periodic BC}) \,, \\ u_0(x) &= \sum_{k=-10}^{10} \frac{a_k}{1 + |k|^2} \sin \left(\lambda^{-1} \pi k x\right) \end{aligned}$$

• Input: initial condition u_0 with $(a_k)_{k=-10,...,10}$ i.i.d. standard normal, $\lambda = 2, 4, 8$ uniformly.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Heat-maps for four tests.

Burgers' equation

- No forcing $(\xi = 0)$.
- \Rightarrow learn dynamical system: find functions $a, b: [-8, 8] \rightarrow \mathbb{R}$ such that, for some $\delta > 0$ and all $k = 0, \dots, 10/\delta$,

$$u((k+1)\delta, \cdot) \approx a(\cdot) + \sum_{f \in \mathcal{M}} b_f(\cdot)f(\delta, \cdot),$$

where \mathcal{M} is model as in heat equation but on $[0, \delta] \times [-8, 8]$ and with $\xi \equiv 0$ and initialising set $\mathcal{M}^0 = \{I_c[u(k\delta, \cdot)]\}.$

- Divide [0, 10] into 200 intervals of length $\delta = 0.05$.
- Train: fit a linear regression for functions a(x), b_f(x) at each x ∈ [-8,8] (constant in time!)
- \Rightarrow training set size effectively increases 100 \rightsquigarrow 200 \times 100.

Remarks - Burgers' equation experiment

- Predictive power stable under noisy observations.
- The viscosity $\nu = 0.1$ in PDE can be **estimated**.
- Benchmarked against two other methods:
 - Naive Euler regression algorithm: much less predictive power
 - An adaptation of PDE-FIND algorithm³ to learn coefficients of PDE: almost as good on original data, but much worse on noisy data.

³Samuel H Rudy et al. "Data-driven discovery of partial differential equations". Science Advances 3.4 (2017), e1602614.

Further directions

- Applications beyond PDEs? Possible domains:
 - meteorological data,
 - image and remote sensing recognition,
 - fluid dynamics.
- Universality properties?
- How to choose 'hyperparameter' I? Can it be learnt?
- Combine with other learning algorithms (neural networks, random forests, etc.)? Kernelisation?
 - Recently combined with neural networks by Hu et al.⁴
 - See also Salvi–Lemercier–Gerasimovics.⁵

⁴Peiyan Hu et al. "Neural Operator with Regularity Structure for Modeling Dynamics Driven by SPDEs". *arXiv e-prints*, arXiv:2204.06255 (Apr. 2022).

⁵Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. "Neural Stochastic Partial Differential Equations: Resolution-Invariant Learning of Continuous Spatiotemporal Dynamics". *arXiv e-prints*, arXiv:2110.10249. (Oct 2021).

Thank you!

・ロト ・御ト ・モト ・モト

· 王