Feature Engineering with Regularity Structures

llya Chevyrev

(Joint work with Andris Gerasimovi¢s & Hendrik Weber)
arXiv:2108.05879

The University of Edinburgh

7 September 2022

BIRS Workshop: New interfaces of Stochastic Analysis and Rough
Paths

https://arxiv.org/abs/2108.05879

Overview

© Background - signatures

© Higher dimensions

© Numerical experiments

Background - signatures

Machine learning

Simplistic picture:

data — features — learning algorithm — output

Focus of talk: data — features for data defined on domains D c R
&:D—R".

Considerations: descriptiveness, vectorisation, dimensional reduction, etc.

Motivating problem: from observed samples of £ and u, ‘learn’ solution to
Lu = p(u) + o(u)€ .

Naive approach

Discretize D to {x;}.; C D and use {¢(x;)}Y.; as a feature vector.

Problems:
@ Often needs N very large to be descriptive.

» Huge computational cost.

@ Can be unstable to noise.

@ Don't have access to {£(x)}xep, only some ‘observed points’.
» number and location of ‘observed points' can vary from sample to
sample

> feature vectors {£(x;)}Y.; can have different dimensions and not
directly comparable.

One-dimensional case - signature
Definition

Consider a (piecewise smooth) X = (X1..., X"): [0, T] — R". The
signature of X is the family of numbers

(S(X)™ ") k>0, 1<it,....ix<n

where
o T rt t ; i]
0 0 0

Chen, Ree, Magnus 50’s, Brockett, Sussmann, Fliess 70's+, Lyons ‘90's+
Properties:

@ expansions of ODEs dY = o(Y)dX,

@ geometric description of X,

@ algebraic properties: generalises polynomials (shuffle product) = ‘universal’
feature set,

@ stable under natural metrics (rough paths).

The signature transform helps analyse time-ordered data:

FTSE 100 Index

@ Financial times-series. - M \&{f ,,
il

s

o Text: “The quick brown fox jumped over the lazy dog.”

@ Time-evolving network.

Grandjean 2014 Les Cahiers du Numérique

However, signatures not directly applicable to spatial data:

|

@ Image recognition.

@ Meteorological data.

ECMWEF 2011

Higher dimensions

Generalise signatures to higher dimensions?

o Zhang-Lin-Tindel® generalise signatures via spatial differentials.

» Applied to image and texture classification.

o Giusti-Lee-Nanda—Oberhauser? generalise signatures via cubical
mapping spaces.

Our approach is based on regularity structures.

@ SPDEs: rough paths ~~ regularity structures; signatures ~~ models

!Sheng Zhang, Guang Lin, and Samy Tindel. “2-d signature of images and texture
classification”. arXiv e-prints, arXiv:2205.11236 (May 2022).

2Chad Giusti et al. “A Topological Approach to Mapping Space Signatures”. arXiv
e-prints, arXiv:2202.00491 (Feb. 2022).

Motivation — Picard’s theorem

Given £: D — R, want to approximate the solution u: D — R to

Lu = p(u,Vu)+o(u, Vu)¢, uyp = Uo -

e L is a differential operator, i, o are polynomials.

Motivation — Picard’s theorem

Given £: D — R, want to approximate the solution u: D — R to

Lu = p(u,Vu)+o(u, Vu)¢, uyp = Uo -

e L is a differential operator, i, o are polynomials.
e Operator: | = L' LI[f]=f, [[f]],,=0.

@ Picard’s theorem: v = lim,_ u(" where

Lu® =0, u(l)’ao = u,
u) =y 4 ()] + o (uM)e]

Motivation — Picard’s theorem

Given £: D — R, want to approximate the solution u: D — R to

Lu = p(u,Vu)+o(u, Vu)¢, up -

”}aD =

L is a differential operator, i, o are polynomials.
Operator: | =L~ LI[f]=f, [[f]|,,=0.

Picard’s theorem: v = lim,_ u(" where

Lu® =0, u(l)’ao = u,
u) =y 4 ()] + 1o (uM)e]

u(" is multi-linear function of u(*) and &.
~~ model feature vector

Models

Definition (Model feature vector)

Static objects: set D C RY, linear operator / acting on RP.
(Think: /[u] = K * u for a kernel K.)

Input: ({u®” ¢_1,€) functions &, u): D - R.

Models

Definition (Model feature vector)

Static objects: set D C RY, linear operator / acting on RP.
(Think: /[u] = K * u for a kernel K.)

Input: ({u®” ¢_1,€) functions &u: DR

The model feature vector is the family of functions U,>qM"
MO = {uD}e, (initialising set),

k
M" = {/[gfi_l‘[laafﬁ-] e Mt 8 e N j ke NfUM™T,

(€ is called forcing.)
Think: each f € M is indexed by corresponding symbol (tree).

Signature

Example (Signature)
e Forcing: £: [0, T] — R.

o Operator: /1[¢] = [& ds.
e Initialising set: M = 0.

@ = functions in model feature vector M evaluated at T encode the
signature of X := [, {sds.

> (Works also for ¢: [0, T] — R".)

Numerical experiments

Parabolic PDE with forcing

For input £: [0,1] x [0,1] — R, consider

(0r —02)u=3u—u>+ué on]0,1] x [0,1],
u(t,0) = u(t,1) (Periodic BC),
u(0,x) = x(1 —x).

Aim: for fixed (t,x) € [0,1] x [0,1], learn u(t,x) from & by linear
regression at against model at (t, x).

Parabolic PDE with forcing

For input £: [0,1] x [0,1] — R, consider

(0r —02)u=3u—u>+ué on]0,1] x [0,1],
u(t,0) = u(t,1) (Periodic BC),
u(0,x) = x(1 —x).

Aim: for fixed (t,x) € [0,1] x [0,1], learn u(t,x) from & by linear
regression at against model at (t, x).
Method:
@ Train and test: compute models {f}reaq with [M| < 60 functions.
o Here: | = (0y —02)7! and M® = () (‘forget’ the initial condition)
e Train: fit linear regression of u(t,x) against {f(t,x)}rem.
@ Test: apply fit from training step.

—— Regression line between predicted and u(t,x)

— y=xline

Predicted Values

30| — y=xline

Predicted Values

—— Regression line between predicted and u(t,x)

]
Values of u(t,x)

T

(a) Prediction at (t,x) = (0.05,0.5).
Relative 2 error: 4.7%. Slope: 1.01.

i %
Values of u(t,x)

(b) Prediction at (t,x) = (1,0.5).
Relative ¢2 error: 6.9%. Slope: 0.98.

(t,x) = (0.05, 0.5) (t,x) = (0.5, 0.5) (t,x) = (1,0.5) (t,x) = (1, 0.95)
Model's Height Error Slope Error Slope Error Slope Error Slope
1 8.83% 0.91 21.14% 0.85 22.81% 0.72 22.95% 0.75
2 5.60% 0.96 9.79% 0.97 13.42% 0.91 13.16% 0.91
3 5.15% 0.97 8.15% 0.98 7.90% 0.97 8.69% 0.96
4 £4.88% 0.97 7.85% 0.98 6.61% 0.98 7.06% 0.98
Remark: similar for additive forcing, but prediction worsens_far from boundary.

Wave equation with forcing

As before, but for wave equation

(02 — 9?)u = cos(mu) + u? +ué for (t,x) €[0,1] x [0,1],
u(t,0) = u(t,1) (Periodic BC),
u(0, x) = up(x) :=sin(27 x),
0ru(0, x) = wvo(x) := x(1 — x),

e Aim: for fixed (t,x) € [0,1] x [0, 1], learn u(t,x) from & by linear
regression at against model at (t, x).

Wave equation with forcing

As before, but for wave equation

(07 — 92)u = cos(mu) + u? +u& for (t,x) €[0,1] x [0, 1],
u(t,0) = u(t,1) (Periodic BC),

u(0,x

Oru(0, x

= up(x) :=sin(27 x),
= vw(x) :=x(1—x),

~— —

e Aim: for fixed (t,x) € [0,1] x [0, 1], learn u(t,x) from & by linear
regression at against model at (t, x).

e Now / = (82 — 92)~! and include both initial condition and speed in
initialising set, M° = {I.[uo], Is[vo]}:

(81% - 8)%)’6[”0] =0 (83 - a>2<)ls[V0] =0
Ic[uo](0, x) = up(x) , Is[v0](0, x) =0,
Otlc[w](0,x) =0. Otls[v0](0,x) = w(x) .

—— Regression line between predicted and uft,x)
—— y=xline

061 — Regression line between predicted and u(t.x)
— y=xline

Predicted Values

Predicted Values

e

0 oz
Values of u(t,x)

(a) Prediction at (t,x) = (1,0.5) for model (b) Pred_lctlon {?t (t,x) = (1,0.5) for .
with M® =). Relative ¢2 error: 84.1% model with M= {lc[uo], k[v]}. Relative
’ o 2% error: 1.8%.

Values of u(t,x)

Model's Height 1 2 3 4
With initial speed 60.60% 12.86% 2.09% 1.19%
Without initial speed 60.40% 13.45% 5.39% 4.77%

Burgers' equation

Learn entire solution {u(t,x)} (¢ x)e[o,10x[8,8] Of

(0 —0.10%)u = —udyu (t,x) € [0,10] x [—8, 8]
u(t,—8) = u(t,8) (Periodic BC),
10

ak . -1
up(x) = Z 5 sin (A" mkx)
1o L K

e Input: initial condition ug with (ax)k=—10.... 10 i.i.d. standard normal,
A = 2,4,8 uniformly.

Heat-maps for four tests.

Solution

0

Space
480 440 400 360 320 280 240 200 160 120 B0 40

AN

=4
B
&
2-
-

Solution

[)

Space
480 440 400 360 320 280 240 200 160 120 €0 40

0 100 120 40

Time

W0 120 e 0 15
Time

-04

Space
WUMUWU)GU)ZU)BUZW)DE]EG]ZG 80 4

Space
450 240 400 350 320 280 240 200 160 120 B0 40

0

0

Solution

\\I

L mu 120 10 160 180 200

~ Solutien
06
04
02
-00
1 --02
-04
05
- -08

o % 4 & 6 w0 o Mo 160 W0 20

DEE

Burgers' equation

e No forcing (£ = 0).

e = learn dynamical system: find functions a, b: [—8,8] — R such
that, for some § > 0 and all k =0,...,10/0,

u((k +1)6, () + D be()f

feM

where M is model as in heat equation but on [0, d] x [—8, 8] and with
& = 0 and initialising set MO = {Ic[u(kd,)]}

e Divide [0,10] into 200 intervals of length § = 0.05.

e Train: fit a linear regression for functions a(x), br(x) at each
x € [—8,8] (constant in time!)

@ => training set size effectively increases 100 ~~» 200 x 100.

Remarks — Burgers' equation experiment

@ Predictive power stable under noisy observations.

@ The viscosity ¥ = 0.1 in PDE can be estimated.

@ Benchmarked against two other methods:

> Naive Euler regression algorithm: much less predictive power

» An adaptation of PDE-FIND algorithm? to learn coefficients of PDE:
almost as good on original data, but much worse on noisy data.

3Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.
Science Advances 3.4 (2017), e1602614.

Further directions

@ Applications beyond PDEs? Possible domains:

» meteorological data,
» image and remote sensing recognition,
» fluid dynamics.

@ Universality properties?
@ How to choose ‘hyperparameter’ /7 Can it be learnt?

o Combine with other learning algorithms (neural networks, random
forests, etc.)? Kernelisation?

» Recently combined with neural networks by Hu et al.*

» See also Salvi-Lemercier—Gerasimovics.®

*Peiyan Hu et al. “Neural Operator with Regularity Structure for Modeling Dynamics
Driven by SPDEs". arXiv e-prints, arXiv:2204.06255 (Apr. 2022).

5Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. “Neural Stochastic
Partial Differential Equations: Resolution-Invariant Learning of Continuous
Spatiotemporal Dynamics”. arXiv e-prints, arXiv:2110.10249 (Oct: 2021).

Thank you!

