Feature Engineering with Regularity Structures

Ilya Chevyrev
(Joint work with Andris Gerasimovičs \& Hendrik Weber)
arXiv:2108. 05879
The University of Edinburgh

7 September 2022
BIRS Workshop: New interfaces of Stochastic Analysis and Rough Paths

Overview

(1) Background - signatures
(2) Higher dimensions
(3) Numerical experiments

Background - signatures

Machine learning

Simplistic picture:

$$
\text { data } \rightarrow \text { features } \rightarrow \text { learning algorithm } \rightarrow \text { output }
$$

Focus of talk: data \rightarrow features for data defined on domains $D \subset \mathbb{R}^{d}$

$$
\xi: D \rightarrow \mathbb{R}^{n}
$$

Considerations: descriptiveness, vectorisation, dimensional reduction, etc.

Motivating problem: from observed samples of ξ and u, 'learn' solution to

$$
\mathcal{L} u=\mu(u)+\sigma(u) \xi
$$

Naive approach

Discretize D to $\left\{x_{i}\right\}_{i=1}^{N} \subset D$ and use $\left\{\xi\left(x_{i}\right)\right\}_{i=1}^{N}$ as a feature vector.

Problems:

- Often needs N very large to be descriptive.
- Huge computational cost.
- Can be unstable to noise.
- Don't have access to $\{\xi(x)\}_{x \in D}$, only some 'observed points'.
- number and location of 'observed points' can vary from sample to sample
- feature vectors $\left\{\xi\left(x_{i}\right)\right\}_{i=1}^{N}$ can have different dimensions and not directly comparable.

One-dimensional case - signature

Definition

Consider a (piecewise smooth) $X=\left(X^{1} \ldots, X^{n}\right):[0, T] \rightarrow \mathbb{R}^{n}$. The signature of X is the family of numbers

$$
\left(S(X)^{i_{1}, \ldots, i_{k}}\right)_{k \geq 0,1 \leq i_{1}, \ldots, i_{k} \leq n}
$$

where

$$
S(X)^{i_{1}, \ldots i_{k}}=\int_{0}^{T} \int_{0}^{t_{k}} \cdots \int_{0}^{t_{2}} \mathrm{~d} X_{t_{1}}^{i_{1}} \ldots \mathrm{~d} X_{t_{k-1}}^{i_{k-1}} \mathrm{~d} X_{t_{k}}^{i_{k}}
$$

Chen, Ree, Magnus 50's, Brockett, Sussmann, Fliess 70's+, Lyons '90's+ Properties:

- expansions of ODEs $\mathrm{d} Y=\sigma(Y) \mathrm{d} X$,
- geometric description of X,
- algebraic properties: generalises polynomials (shuffle product) \Rightarrow 'universal’ feature set,
- stable under natural metrics (rough paths).

The signature transform helps analyse time-ordered data:

- Text: "The quick brown fox jumped over the lazy dog."
- Time-evolving network.

Grandjean 2014 Les Cahiers du Numérique

However, signatures not directly applicable to spatial data:

RSSCN7 dataset [Zou et al. 2015]

- Meteorological data.

ECMWF 2011

Higher dimensions

Generalise signatures to higher dimensions?

- Zhang-Lin-Tindel ${ }^{1}$ generalise signatures via spatial differentials.
- Applied to image and texture classification.
- Giusti-Lee-Nanda-Oberhauser ${ }^{2}$ generalise signatures via cubical mapping spaces.

Our approach is based on regularity structures.

- SPDEs: rough paths \rightsquigarrow regularity structures; signatures \rightsquigarrow models

[^0]
Motivation - Picard's theorem

Given $\xi: D \rightarrow \mathbb{R}$, want to approximate the solution $u: D \rightarrow \mathbb{R}$ to

$$
\mathcal{L} u=\mu(u, \nabla u)+\sigma(u, \nabla u) \xi,\left.\quad u\right|_{\partial D}=u_{0}
$$

- \mathcal{L} is a differential operator, μ, σ are polynomials.

Motivation - Picard's theorem

Given $\xi: D \rightarrow \mathbb{R}$, want to approximate the solution $u: D \rightarrow \mathbb{R}$ to

$$
\mathcal{L} u=\mu(u, \nabla u)+\sigma(u, \nabla u) \xi,\left.\quad u\right|_{\partial D}=u_{0}
$$

- \mathcal{L} is a differential operator, μ, σ are polynomials.
- Operator: $I=\mathcal{L}^{-1}: \mathcal{L} I[f]=f,\left.\quad I[f]\right|_{\partial D}=0$.
- Picard's theorem: $u=\lim _{n \rightarrow \infty} u^{(n)}$ where

$$
\begin{cases}\mathcal{L} u^{(1)} & =0,\left.\quad u^{(1)}\right|_{\partial D}=u_{0} \\ u^{(n+1)} & =u^{(1)}+\iota\left[\mu\left(u^{(n)}\right)\right]+!\left[\sigma\left(u^{(n)}\right) \xi\right]\end{cases}
$$

Motivation - Picard's theorem

Given $\xi: D \rightarrow \mathbb{R}$, want to approximate the solution $u: D \rightarrow \mathbb{R}$ to

$$
\mathcal{L} u=\mu(u, \nabla u)+\sigma(u, \nabla u) \xi,\left.\quad u\right|_{\partial D}=u_{0}
$$

- \mathcal{L} is a differential operator, μ, σ are polynomials.
- Operator: $I=\mathcal{L}^{-1}: \mathcal{L} I[f]=f,\left.\quad I[f]\right|_{\partial D}=0$.
- Picard's theorem: $u=\lim _{n \rightarrow \infty} u^{(n)}$ where

$$
\begin{cases}\mathcal{L} u^{(1)} & =0,\left.\quad u^{(1)}\right|_{\partial D}=u_{0} \\ u^{(n+1)} & =u^{(1)}+I\left[\mu\left(u^{(n)}\right)\right]+!\left[\sigma\left(u^{(n)}\right) \xi\right]\end{cases}
$$

- $u^{(n)}$ is multi-linear function of $u^{(1)}$ and ξ. \rightsquigarrow model feature vector

Models

Definition (Model feature vector)

Static objects: set $D \subset \mathbb{R}^{d}$, linear operator I acting on \mathbb{R}^{D}.
(Think: $I[u]=K * u$ for a kernel K.)
Input: $\left(\left\{u^{(i)}\right\}_{i=1}^{\ell}, \xi\right)$ functions $\xi, u^{(i)}: D \rightarrow \mathbb{R}$.

Models

Definition (Model feature vector)

Static objects: set $D \subset \mathbb{R}^{d}$, linear operator I acting on \mathbb{R}^{D}.
(Think: $I[u]=K * u$ for a kernel K.)
Input: $\left(\left\{u^{(i)}\right\}_{i=1}^{\ell}, \xi\right)$ functions $\xi, u^{(i)}: D \rightarrow \mathbb{R}$.
The model feature vector is the family of functions $\cup_{n \geq 0} \mathcal{M}^{n}$

$$
\begin{aligned}
& \mathcal{M}^{0}=\left\{u^{(i)}\right\}_{i=1}^{\ell} \quad \text { (initialising set) } \\
& \mathcal{M}^{n}=\left\{I\left[\xi^{j} \prod_{i=1}^{k} \partial^{a_{i}} f_{i}\right]: f_{i} \in \mathcal{M}^{n-1}, a_{i} \in \mathbb{N}^{d}, j, k \in \mathbb{N}\right\} \cup \mathcal{M}^{n-1}
\end{aligned}
$$

(ξ is called forcing.)
Think: each $f \in \mathcal{M}$ is indexed by corresponding symbol (tree).

Signature

Example (Signature)

- Forcing: $\xi:[0, T] \rightarrow \mathbb{R}$.
- Operator: $I_{t}[\xi]=\int_{0}^{t} \xi_{s} \mathrm{~d} s$.
- Initialising set: $\mathcal{M}^{0}=\emptyset$.
- \Rightarrow functions in model feature vector \mathcal{M} evaluated at T encode the signature of $X:=\int_{0}^{s} \xi_{s} \mathrm{ds}$.
- (Works also for $\xi:[0, T] \rightarrow \mathbb{R}^{n}$.)

Numerical experiments

Parabolic PDE with forcing

For input $\xi:[0,1] \times[0,1] \rightarrow \mathbb{R}$, consider

$$
\begin{aligned}
\left(\partial_{t}-\partial_{x}^{2}\right) u & =3 u-u^{3}+u \xi \quad \text { on }[0,1] \times[0,1], \\
u(t, 0) & =u(t, 1) \quad(\text { Periodic } B C), \\
u(0, x) & =x(1-x) .
\end{aligned}
$$

Aim: for fixed $(t, x) \in[0,1] \times[0,1]$, learn $u(t, x)$ from ξ by linear regression at against model at (t, x).

Parabolic PDE with forcing

For input $\xi:[0,1] \times[0,1] \rightarrow \mathbb{R}$, consider

$$
\begin{aligned}
\left(\partial_{t}-\partial_{x}^{2}\right) u & =3 u-u^{3}+u \xi \quad \text { on }[0,1] \times[0,1] \\
u(t, 0) & =u(t, 1) \quad(\text { Periodic } B C) \\
u(0, x) & =x(1-x)
\end{aligned}
$$

Aim: for fixed $(t, x) \in[0,1] \times[0,1]$, learn $u(t, x)$ from ξ by linear regression at against model at (t, x).

Method:

- Train and test: compute models $\{f\}_{f \in \mathcal{M}}$ with $|\mathcal{M}|<60$ functions.
- Here: $I=\left(\partial_{t}-\partial_{x}^{2}\right)^{-1}$ and $\mathcal{M}^{0}=\emptyset$ ('forget' the initial condition)
- Train: fit linear regression of $u(t, x)$ against $\{f(t, x)\}_{f \in \mathcal{M}}$.
- Test: apply fit from training step.

(a) Prediction at $(t, x)=(0.05,0.5)$. Relative ℓ^{2} error: 4.7%. Slope: 1.01 .

(b) Prediction at $(t, x)=(1,0.5)$. Relative ℓ^{2} error: 6.9%. Slope: 0.98 .

	$(\mathbf{t}, \mathbf{x})=(0.05,0.5)$		$(\mathbf{t}, \mathbf{x})=(0.5,0.5)$		$(\mathbf{t}, \mathbf{x})=(\mathbf{1}, \mathbf{0 . 5})$		$(\mathbf{t}, \mathbf{x})=(1, \mathbf{0 . 9 5)}$	
Model's Height	Error	Slope	Error	Slope	Error	Slope	Error	Slope
$\mathbf{1}$	8.83%	0.91	21.14%	0.85	22.81%	0.72	22.95%	0.75
$\mathbf{2}$	5.60%	0.96	9.79%	0.97	13.42%	0.91	13.16%	0.91
$\mathbf{3}$	5.15%	0.97	8.15%	0.98	7.90%	0.97	8.69%	0.96
4	4.88%	0.97	7.85%	0.98	6.61%	0.98	7.06%	0.98

Remark: similar for additive forcing, but prediction worsens far from boundary.

Wave equation with forcing

As before, but for wave equation

$$
\begin{aligned}
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u & =\cos (\pi u)+u^{2}+u \xi \quad \text { for }(t, x) \in[0,1] \times[0,1] \\
u(t, 0) & =u(t, 1) \quad(\text { Periodic BC }), \\
u(0, x) & =u_{0}(x):=\sin (2 \pi x), \\
\partial_{t} u(0, x) & =v_{0}(x):=x(1-x),
\end{aligned}
$$

- Aim: for fixed $(t, x) \in[0,1] \times[0,1]$, learn $u(t, x)$ from ξ by linear regression at against model at (t, x).

Wave equation with forcing

As before, but for wave equation

$$
\begin{aligned}
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u & =\cos (\pi u)+u^{2}+u \xi \quad \text { for }(t, x) \in[0,1] \times[0,1] \\
u(t, 0) & =u(t, 1) \quad(\text { Periodic BC }), \\
u(0, x) & =u_{0}(x):=\sin (2 \pi x), \\
\partial_{t} u(0, x) & =v_{0}(x):=x(1-x),
\end{aligned}
$$

- Aim: for fixed $(t, x) \in[0,1] \times[0,1]$, learn $u(t, x)$ from ξ by linear regression at against model at (t, x).
- Now $I=\left(\partial_{t}^{2}-\partial_{x}^{2}\right)^{-1}$ and include both initial condition and speed in initialising set, $\mathcal{M}^{0}=\left\{I_{c}\left[u_{0}\right], I_{s}\left[v_{0}\right]\right\}$:

$$
\left\{\begin{array} { l l }
{ (\partial _ { t } ^ { 2 } - \partial _ { x } ^ { 2 }) I _ { c } [u _ { 0 }] } & { = 0 } \\
{ I _ { c } [u _ { 0 }] (0 , x) } & { = u _ { 0 } (x) , } \\
{ \partial _ { t } I _ { c } [u _ { 0 }] (0 , x) } & { = 0 . }
\end{array} \quad \left\{\begin{array}{ll}
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) I_{s}\left[v_{0}\right] & =0 \\
I_{s}\left[v_{0}\right](0, x) & =0 \\
\partial_{t} I_{s}\left[v_{0}\right](0, x) & =v_{0}(x)
\end{array}\right.\right.
$$

(a) Prediction at $(t, x)=(1,0.5)$ for model with $\mathcal{M}^{0}=\emptyset$. Relative ℓ^{2} error: 84.1%.

(b) Prediction at $(t, x)=(1,0.5)$ for model with $\mathcal{M}^{0}=\left\{I_{c}\left[u_{0}\right], I_{s}\left[v_{0}\right]\right\}$. Relative ℓ^{2} error: 1.8%.

Model's Height	1	2	3	4
With initial speed	60.60%	12.86%	2.09%	1.19%
Without initial speed	60.40%	13.45%	5.39%	4.77%

Burgers' equation

Learn entire solution $\{u(t, x)\}_{(t, x) \in[0,10] \times[-8,8]}$ of

$$
\begin{aligned}
\left(\partial_{t}-0.1 \partial_{x}^{2}\right) u & =-u \partial_{x} u \quad(t, x) \in[0,10] \times[-8,8] \\
u(t,-8) & =u(t, 8) \quad \text { (Periodic } B C) \\
u_{0}(x) & =\sum_{k=-10}^{10} \frac{a_{k}}{1+|k|^{2}} \sin \left(\lambda^{-1} \pi k x\right)
\end{aligned}
$$

- Input: initial condition u_{0} with $\left(a_{k}\right)_{k=-10, \ldots, 10}$ i.i.d. standard normal, $\lambda=2,4,8$ uniformly.

Heat-maps for four tests.

Burgers' equation

- No forcing $(\xi=0)$.
- \Rightarrow learn dynamical system: find functions $a, b:[-8,8] \rightarrow \mathbb{R}$ such that, for some $\delta>0$ and all $k=0, \ldots, 10 / \delta$,

$$
u((k+1) \delta, \cdot) \approx a(\cdot)+\sum_{f \in \mathcal{M}} b_{f}(\cdot) f(\delta, \cdot)
$$

where \mathcal{M} is model as in heat equation but on $[0, \delta] \times[-8,8]$ and with $\xi \equiv 0$ and initialising set $\mathcal{M}^{0}=\left\{I_{c}[u(k \delta, \cdot)]\right\}$.

- Divide $[0,10]$ into 200 intervals of length $\delta=0.05$.
- Train: fit a linear regression for functions $a(x), b_{f}(x)$ at each $x \in[-8,8]$ (constant in time!)
- \Rightarrow training set size effectively increases $100 \rightsquigarrow 200 \times 100$.

Remarks - Burgers' equation experiment

- Predictive power stable under noisy observations.
- The viscosity $\nu=0.1$ in PDE can be estimated.
- Benchmarked against two other methods:
- Naive Euler regression algorithm: much less predictive power
- An adaptation of PDE-FIND algorithm ${ }^{3}$ to learn coefficients of PDE: almost as good on original data, but much worse on noisy data.

[^1]
Further directions

- Applications beyond PDEs? Possible domains:
- meteorological data,
- image and remote sensing recognition,
- fluid dynamics.
- Universality properties?
- How to choose 'hyperparameter' I? Can it be learnt?
- Combine with other learning algorithms (neural networks, random forests, etc.)? Kernelisation?
- Recently combined with neural networks by Hu et al. ${ }^{4}$
- See also Salvi-Lemercier-Gerasimovics. ${ }^{5}$

[^2]
Thank you！

[^0]: ${ }^{1}$ Sheng Zhang, Guang Lin, and Samy Tindel. " $2-\mathrm{d}$ signature of images and texture classification". arXiv e-prints, arXiv:2205.11236 (May 2022).
 ${ }^{2}$ Chad Giusti et al. "A Topological Approach to Mapping Space Signatures". arXiv e-prints, arXiv:2202.00491 (Feb. 2022).

[^1]: ${ }^{3}$ Samuel H Rudy et al. "Data-driven discovery of partial differential equations". Science Advances 3.4 (2017), e1602614.

[^2]: ${ }^{4}$ Peiyan Hu et al. "Neural Operator with Regularity Structure for Modeling Dynamics Driven by SPDEs". arXiv e-prints, arXiv:2204.06255 (Apr. 2022).
 ${ }^{5}$ Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. "Neural Stochastic Partial Differential Equations: Resolution-Invariant Learning of Continuous Spatiotemporal Dynamics". arXiv e-prints, arXiv:2110.10249 (Octi 2021).

