
Feature Engineering with Regularity Structures

Ilya Chevyrev

(Joint work with Andris Gerasimovičs & Hendrik Weber)
arXiv:2108.05879

The University of Edinburgh

7 September 2022

BIRS Workshop: New interfaces of Stochastic Analysis and Rough
Paths

https://arxiv.org/abs/2108.05879

Overview

1 Background - signatures

2 Higher dimensions

3 Numerical experiments

Background - signatures

Machine learning

Simplistic picture:

data → features → learning algorithm → output

Focus of talk: data → features for data defined on domains D ⊂ Rd

ξ : D → Rn .

Considerations: descriptiveness, vectorisation, dimensional reduction, etc.

Motivating problem: from observed samples of ξ and u, ‘learn’ solution to
Lu = µ(u) + σ(u)ξ .

Naive approach

Discretize D to {xi}N
i=1 ⊂ D and use {ξ(xi)}N

i=1 as a feature vector.

Problems:

Often needs N very large to be descriptive.
▶ Huge computational cost.

Can be unstable to noise.

Don’t have access to {ξ(x)}x∈D, only some ‘observed points’.
▶ number and location of ‘observed points’ can vary from sample to

sample
▶ feature vectors {ξ(xi)}N

i=1 can have different dimensions and not
directly comparable.

One-dimensional case - signature
Definition
Consider a (piecewise smooth) X = (X 1 . . . , Xn) : [0, T] → Rn. The
signature of X is the family of numbers

(S(X)i1,...,ik)k≥0, 1≤i1,...,ik≤n

where
S(X)i1,...ik =

∫ T

0

∫ tk

0
. . .

∫ t2

0
dX i1

t1 . . . dX ik−1
tk−1 dX ik

tk .

Chen, Ree, Magnus 50’s, Brockett, Sussmann, Fliess 70’s+, Lyons ‘90’s+
Properties:

expansions of ODEs dY = σ(Y) dX ,
geometric description of X ,
algebraic properties: generalises polynomials (shuffle product) ⇒ ‘universal’
feature set,
stable under natural metrics (rough paths).

The signature transform helps analyse time-ordered data:

Financial times-series.

Text: “The quick brown fox jumped over the lazy dog.”

Time-evolving network.

Grandjean 2014 Les Cahiers du Numérique

However, signatures not directly applicable to spatial data:

Image recognition.

RSSCN7 dataset [Zou et al. 2015]

Meteorological data.

ECMWF 2011

Higher dimensions

Generalise signatures to higher dimensions?

Zhang–Lin–Tindel1 generalise signatures via spatial differentials.
▶ Applied to image and texture classification.

Giusti–Lee–Nanda–Oberhauser2 generalise signatures via cubical
mapping spaces.

Our approach is based on regularity structures.

SPDEs: rough paths ⇝ regularity structures; signatures ⇝ models

1Sheng Zhang, Guang Lin, and Samy Tindel. “2-d signature of images and texture
classification”. arXiv e-prints, arXiv:2205.11236 (May 2022).

2Chad Giusti et al. “A Topological Approach to Mapping Space Signatures”. arXiv
e-prints, arXiv:2202.00491 (Feb. 2022).

Motivation – Picard’s theorem

Given ξ : D → R, want to approximate the solution u : D → R to

Lu = µ(u, ∇u) + σ(u, ∇u)ξ , u
∣∣
∂D = u0 .

L is a differential operator, µ, σ are polynomials.

Operator: I = L−1: LI[f] = f , I[f]
∣∣
∂D = 0.

Picard’s theorem: u = limn→∞ u(n) whereLu(1) = 0 , u(1)
∣∣∣
∂D

= u0 ,

u(n+1) = u(1) + I[µ(u(n))] + I[σ(u(n))ξ] ,

u(n) is multi-linear function of u(1) and ξ.
⇝ model feature vector

Motivation – Picard’s theorem

Given ξ : D → R, want to approximate the solution u : D → R to

Lu = µ(u, ∇u) + σ(u, ∇u)ξ , u
∣∣
∂D = u0 .

L is a differential operator, µ, σ are polynomials.
Operator: I = L−1: LI[f] = f , I[f]

∣∣
∂D = 0.

Picard’s theorem: u = limn→∞ u(n) whereLu(1) = 0 , u(1)
∣∣∣
∂D

= u0 ,

u(n+1) = u(1) + I[µ(u(n))] + I[σ(u(n))ξ] ,

u(n) is multi-linear function of u(1) and ξ.
⇝ model feature vector

Motivation – Picard’s theorem

Given ξ : D → R, want to approximate the solution u : D → R to

Lu = µ(u, ∇u) + σ(u, ∇u)ξ , u
∣∣
∂D = u0 .

L is a differential operator, µ, σ are polynomials.
Operator: I = L−1: LI[f] = f , I[f]

∣∣
∂D = 0.

Picard’s theorem: u = limn→∞ u(n) whereLu(1) = 0 , u(1)
∣∣∣
∂D

= u0 ,

u(n+1) = u(1) + I[µ(u(n))] + I[σ(u(n))ξ] ,

u(n) is multi-linear function of u(1) and ξ.
⇝ model feature vector

Models

Definition (Model feature vector)
Static objects: set D ⊂ Rd , linear operator I acting on RD.

(Think: I[u] = K ∗ u for a kernel K .)

Input: ({u(i)}ℓ
i=1, ξ) functions ξ, u(i) : D → R.

The model feature vector is the family of functions ∪n≥0Mn

M0 = {u(i)}ℓ
i=1 (initialising set) ,

Mn =
{

I
[
ξj

k∏
i=1

∂ai fi
]

: fi ∈ Mn−1 , ai ∈ Nd , j , k ∈ N
}

∪ Mn−1 .

(ξ is called forcing.)

Think: each f ∈ M is indexed by corresponding symbol (tree).

Models

Definition (Model feature vector)
Static objects: set D ⊂ Rd , linear operator I acting on RD.

(Think: I[u] = K ∗ u for a kernel K .)

Input: ({u(i)}ℓ
i=1, ξ) functions ξ, u(i) : D → R.

The model feature vector is the family of functions ∪n≥0Mn

M0 = {u(i)}ℓ
i=1 (initialising set) ,

Mn =
{

I
[
ξj

k∏
i=1

∂ai fi
]

: fi ∈ Mn−1 , ai ∈ Nd , j , k ∈ N
}

∪ Mn−1 .

(ξ is called forcing.)

Think: each f ∈ M is indexed by corresponding symbol (tree).

Signature

Example (Signature)
Forcing: ξ : [0, T] → R.

Operator: It [ξ] =
∫ t

0 ξs ds.

Initialising set: M0 = ∅.

⇒ functions in model feature vector M evaluated at T encode the
signature of X :=

∫ ·
0 ξs ds.

▶ (Works also for ξ : [0, T] → Rn.)

Numerical experiments

Parabolic PDE with forcing

For input ξ : [0, 1] × [0, 1] → R, consider

(∂t − ∂2
x)u = 3u − u3 + u ξ on [0, 1] × [0, 1],

u(t, 0) = u(t, 1) (Periodic BC),
u(0, x) = x(1 − x) .

Aim: for fixed (t, x) ∈ [0, 1] × [0, 1], learn u(t, x) from ξ by linear
regression at against model at (t, x).

Method:
Train and test: compute models {f }f ∈M with |M| < 60 functions.
Here: I = (∂t − ∂2

x)−1 and M0 = ∅ (‘forget’ the initial condition)
Train: fit linear regression of u(t, x) against {f (t, x)}f ∈M.
Test: apply fit from training step.

Parabolic PDE with forcing

For input ξ : [0, 1] × [0, 1] → R, consider

(∂t − ∂2
x)u = 3u − u3 + u ξ on [0, 1] × [0, 1],

u(t, 0) = u(t, 1) (Periodic BC),
u(0, x) = x(1 − x) .

Aim: for fixed (t, x) ∈ [0, 1] × [0, 1], learn u(t, x) from ξ by linear
regression at against model at (t, x).

Method:
Train and test: compute models {f }f ∈M with |M| < 60 functions.
Here: I = (∂t − ∂2

x)−1 and M0 = ∅ (‘forget’ the initial condition)
Train: fit linear regression of u(t, x) against {f (t, x)}f ∈M.
Test: apply fit from training step.

(a) Prediction at (t, x) = (0.05, 0.5).
Relative ℓ2 error: 4.7%. Slope: 1.01.

(b) Prediction at (t, x) = (1, 0.5).
Relative ℓ2 error: 6.9%. Slope: 0.98.

Remark: similar for additive forcing, but prediction worsens far from boundary.

Wave equation with forcing
As before, but for wave equation

(∂2
t − ∂2

x)u = cos(π u) + u2 + u ξ for (t, x) ∈ [0, 1] × [0, 1],
u(t, 0) = u(t, 1) (Periodic BC),
u(0, x) = u0(x) := sin(2π x),

∂tu(0, x) = v0(x) := x(1 − x) ,

Aim: for fixed (t, x) ∈ [0, 1] × [0, 1], learn u(t, x) from ξ by linear
regression at against model at (t, x).

Now I = (∂2
t − ∂2

x)−1 and include both initial condition and speed in
initialising set, M0 = {Ic [u0], Is [v0]}:

(∂2

t − ∂2
x)Ic [u0] = 0

Ic [u0](0, x) = u0(x) ,

∂t Ic [u0](0, x) = 0 .

(∂2

t − ∂2
x)Is [v0] = 0

Is [v0](0, x) = 0 ,

∂t Is [v0](0, x) = v0(x) .

Wave equation with forcing
As before, but for wave equation

(∂2
t − ∂2

x)u = cos(π u) + u2 + u ξ for (t, x) ∈ [0, 1] × [0, 1],
u(t, 0) = u(t, 1) (Periodic BC),
u(0, x) = u0(x) := sin(2π x),

∂tu(0, x) = v0(x) := x(1 − x) ,

Aim: for fixed (t, x) ∈ [0, 1] × [0, 1], learn u(t, x) from ξ by linear
regression at against model at (t, x).

Now I = (∂2
t − ∂2

x)−1 and include both initial condition and speed in
initialising set, M0 = {Ic [u0], Is [v0]}:

(∂2

t − ∂2
x)Ic [u0] = 0

Ic [u0](0, x) = u0(x) ,

∂t Ic [u0](0, x) = 0 .

(∂2

t − ∂2
x)Is [v0] = 0

Is [v0](0, x) = 0 ,

∂t Is [v0](0, x) = v0(x) .

(a) Prediction at (t, x) = (1, 0.5) for model
with M0 = ∅. Relative ℓ2 error: 84.1%.

(b) Prediction at (t, x) = (1, 0.5) for
model with M0 = {Ic [u0], Is [v0]}. Relative
ℓ2 error: 1.8%.

Burgers’ equation

Learn entire solution {u(t, x)}(t,x)∈[0,10]×[−8,8] of

(∂t − 0.1∂2
x)u = −u∂xu (t, x) ∈ [0, 10] × [−8, 8]

u(t, −8) = u(t, 8) (Periodic BC) ,

u0(x) =
10∑

k=−10

ak
1 + |k|2

sin
(
λ−1πkx

)
Input: initial condition u0 with (ak)k=−10,...,10 i.i.d. standard normal,
λ = 2, 4, 8 uniformly.

Heat-maps for four tests.

Burgers’ equation

No forcing (ξ = 0).
⇒ learn dynamical system: find functions a, b : [−8, 8] → R such
that, for some δ > 0 and all k = 0, . . . , 10/δ,

u((k + 1)δ, ·) ≈ a(·) +
∑

f ∈M
bf (·)f (δ, ·) ,

where M is model as in heat equation but on [0, δ] × [−8, 8] and with
ξ ≡ 0 and initialising set M0 = {Ic [u(kδ, ·)]}.

Divide [0, 10] into 200 intervals of length δ = 0.05.

Train: fit a linear regression for functions a(x), bf (x) at each
x ∈ [−8, 8] (constant in time!)

⇒ training set size effectively increases 100⇝ 200 × 100.

Remarks – Burgers’ equation experiment

Predictive power stable under noisy observations.

The viscosity ν = 0.1 in PDE can be estimated.

Benchmarked against two other methods:
▶ Naive Euler regression algorithm: much less predictive power
▶ An adaptation of PDE-FIND algorithm3 to learn coefficients of PDE:

almost as good on original data, but much worse on noisy data.

3Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.
Science Advances 3.4 (2017), e1602614.

Further directions
Applications beyond PDEs? Possible domains:
▶ meteorological data,
▶ image and remote sensing recognition,
▶ fluid dynamics.

Universality properties?

How to choose ‘hyperparameter’ I? Can it be learnt?

Combine with other learning algorithms (neural networks, random
forests, etc.)? Kernelisation?
▶ Recently combined with neural networks by Hu et al.4
▶ See also Salvi–Lemercier–Gerasimovics.5

4Peiyan Hu et al. “Neural Operator with Regularity Structure for Modeling Dynamics
Driven by SPDEs”. arXiv e-prints, arXiv:2204.06255 (Apr. 2022).

5Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. “Neural Stochastic
Partial Differential Equations: Resolution-Invariant Learning of Continuous
Spatiotemporal Dynamics”. arXiv e-prints, arXiv:2110.10249 (Oct. 2021).

Thank you!

