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1. Anderson operator as an
unbounded operator



1.1 Anderson operator

Let S be a 2-dimensional closed Riemannian manifold.

� Space white noise – A Gaussian random distribution ξ with null mean and
covariance E[ξ(f1)ξ(f2)] = 〈f1, f2〉L2(S), for all smooth test functions f1, f2. It is

almost surely of Hölder regularity α− 2, for any α < 1, i.e. (−1)−.

� Anderson operator – Hu ··= ∆u + ξu.

In the discrete 2-dimensional torus T2
n ··= (Z/n mod Z)2, the large scale limit of

the operator

n∆discr +
1

n
ξiδi

for the discrete Laplace operator ∆discr and a random iid potential (ξi )i∈T2
n

with common law with finite second moment.

To get an unbounded operator on L2(S) one needs a domain D(H) with
Hu ∈ L2(S) when u ∈ D(H).

The multiplication problem

– Pick u β-Hölder. Then ξu well-defined iff (α− 2) + β > 0, i.e. β > 1+.

– For such u the term ξu is (α− 2)-regular while ∆u is just
(β − 2) > (α− 2) regular. No compensation to get ∆u + ξu ∈ L2(S).
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1.2 Anderson operator: previous works

• Allez & Chouk [15’] construct the operator on T2 as a symmetric closed
unbounded operator on L2(T2) using paracontrolled calculus. It has compact
resolvent, hence a nice spectral theory. They prove tail estimates for smallest
eigenvalue.

• Labbé [19’] constructs the operator on T3 using regularity structures and
proves tail estimates for all eigenvalues.

• Gubinelli, Ugurcan & Zacchuber [19’] give a simplified construction on T2

and T3 using paracontrolled calculus.

• Mouzard [20’] further simplifies the construction of [GUZ], in a
2-dimensional manifold setting, using high order paracontrolled calculus.
Proves an almost sure Weyl law

]
{
eigenvalues ≤ λ

}
∼ Vol(S)

4π
λ, (λ→ +∞).
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• Labbé [19’] constructs the operator on T3 using regularity structures and
proves tail estimates for all eigenvalues.

• Gubinelli, Ugurcan & Zacchuber [19’] give a simplified construction on T2

and T3 using paracontrolled calculus.

• Mouzard [20’] further simplifies the construction of [GUZ], in a
2-dimensional manifold setting, using high order paracontrolled calculus.
Proves an almost sure Weyl law

]
{
eigenvalues ≤ λ

}
∼ Vol(S)

4π
λ, (λ→ +∞).



1.3 A glimpse at paracontrolled calculus for defining H
• The paracontrolled structure – Regularity is not sufficient for making sense
of Hu ∈ L2(S). Impose finer paracontrolled structure

u = Pu′X + u]

where is a P bilinear operator called paraproduct, u′,X ∈ Cα(S) and a
remainder term u] ∈ C 2α(S), with X ··= −∆−1(ξ).

Then the product uξ is a
well-defined element of Cα−2(S) and Hu ∈ L2(S) if the random quantity Xξ
is given a priori as an element of Cα−2(S).

• Where probability saves us – The quantity X (ω)ξ(ω) does not make sense
for a generic chance element ω ∈ Ω, as α + (α− 2) < 0.
 Define (Xξ)(ω) as a random variable!... after regularizing ξ into
ξr ∈ C∞(S), setting Xr ··= −∆−1(ξr ), and renormalizing

Xrξr − E[Xrξr ] =: Xrξr + cr ' Xrξr −
log r

4π
.

• Working with Xrξr + cr instead of Xrξr is equivalent to working with
renormalized operator ∆ + ξr + cr . One has

H−1 = lim
r↓0

(
∆ + ξr + cr

)−1
: L2(S)→ L2(S).

An operator that depends continuously on the enhanced noise
ξ̂ ··= (ξ,Xξ) ∈ Cα−2(S)× C 2α−2(S), with a discrete random real spectrum(
λn(ξ̂ )

)
n≥0

going to +∞.
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2. Precise heat kernel description



2.1 A fine heat kernel description

Recall α = 1−. For γ > 0 set

t−γC
(
(0,T ],E

) ··= {
v ∈ C

(
(0,T ],E

)
; sup

0<s≤t≤T
sγ |v(t)| <∞

}
.

Write p∆
t for heat kernel of Laplace-Beltrami operator; it behaves as t−1 for

small t. Set formally

(?) : v0 7→
{

(t, x) 7→
〈
v0(·), (pt − p∆

t )(x , ·)
〉}
.

� Theorem – Almost surely the map (?) sends continuously

– the Besov space B−ε1,∞(S) into t(−1/2)−C
(
(0,T ],Cα(S)

)
,

– the Sobolev space H−2α(S) into t−αC
(
(0,T ],Hα(S)

)
.

These two functions depend continuously on the enhanced noise ξ̂ = (ξ,Xξ).
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2.2 A fine heat kernel description: benefits

� Theorem (Bounds for the eigenvalues) – Small time asymptotics for
trL2 (e−tH) and Tauberian theorem give direct short proof of Weyl law

]
{
eigenvalues ≤ λ

}
∼ Vol(S)

4π
λ.

Write un for eigenfunction associated with eigenvalue λn and define for λ ∈ R
the spectral projector on L2(S)

π≤λ(f ) ··=
∑
λn≤λ

(f , un)L2 un.

� Theorem (Bounds for the eigenfunctions of H) – One has for all n ≥ 0
such that |λn| ≥ 1 the n-uniform estimate

‖un‖C2α−1 .
∣∣λn(ξ̂ )

∣∣(1/2)+

, ‖un‖Lp .
∣∣λn(ξ̂ )

∣∣( 1
2
− 1

p
)+

,

and for all λ ∈ R+ the upper bound

‖π≤λ(f )‖Hα . λ
1
2 ‖f ‖L2 , ‖π≤λ(f )‖Lp . λ( 1

2
− 1

p
)+

‖f ‖L2 .
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3. Anderson Gaussian free field



3.1 Anderson GFF: Definition and elementary properties

Gaussian free field (GFF): Random field φGFF with centered Gaussian law and
covariance

E
[
φGFF (f1)φGFF (f2)

]
=

∫
S×S

f1(x)G∆(x , y)f2(y) dxdy ,

with G∆ Green function of ∆ – i.e. kernel of ∆−1. One has almost surely
φGFF ∈ H−ε(S), for all ε > 0.

Anderson Gaussian free field: A doubly random field φ with centered
Gaussian law and covariance

E′
[
φ(f1)φ(f2)

]
=

∫
S×S

f1(x)G(x , y)f2(y) dxdy ,

with G Green function of the random operator H + c – i.e. kernel of
(H + c)−1, with c random big enough for H + c to be positive. Write
φ = φ(ω, ω′), with ω the randomness from H and ω′ the additionnal ‘field’
randomness, and E′ expectation wrt ω′.

� Theorem – One has (ω, ω′)-almost surely φ ∈ H−ε(S), for all ε > 0, and
the Cameron-Martin space of the ω′-law of φ is continuously embedded into

H1−(S).
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3.2 Anderson GFF: Wick square

Even though φ is only a distribution one can make sense of its square using a
renormalization process after regularization φr ··= e−r∆(φ)

:φ2
r : ··= φ2

r − E′
[
φ2
r

]
.

� Theorem – Almost surely in ω ∈ Ω, the regularized Wick square :φ2
r :

converges in law as r goes to 0, as a random variable on Ω′ with values in
H−2ε(S), to a limit random variable :φ2 :, and one has for all λ ∈ C
sufficiently small

Z(λ) ··= E′
[
e−λ:φ2:(1)

]
= det2

(
Id + λ(H + c)−1

)−1/2

.

This random function of λ has almost surely an analytic extension to all of
C.

� Theorem (The distribution of Z characterizes the distribution of the
spectrum of H) – Let (S1, g1) and (S2, g2) be two Riemannian closed
surfaces. Then the spectra of the operators H(S1, g1) and H(S2, g2) have the
same law iff the random holomorphic functions Z(S1, g1) and Z(S2, g2) have
the same law.
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� Theorem – Almost surely in ω ∈ Ω, the regularized Wick square :φ2
r :

converges in law as r goes to 0, as a random variable on Ω′ with values in
H−2ε(S), to a limit random variable :φ2 :, and one has for all λ ∈ C
sufficiently small

Z(λ) ··= E′
[
e−λ:φ2:(1)

]
= det2

(
Id + λ(H + c)−1

)−1/2

.

This random function of λ has almost surely an analytic extension to all of
C.

� Theorem (The distribution of Z characterizes the distribution of the
spectrum of H) – Let (S1, g1) and (S2, g2) be two Riemannian closed
surfaces. Then the spectra of the operators H(S1, g1) and H(S2, g2) have the
same law iff the random holomorphic functions Z(S1, g1) and Z(S2, g2) have
the same law.



Two open questions

• Prove that the (2-dimensional) Anderson operator (on a closed manifold)
has almost surely a simple spectrum.

From our analysis of pt the zeta function of the Anderson operator

ζH(s) ··=
∑
n≥0

λn(ξ̂ )−s

has almost surely a meromorphic extension to the half plane
{
Re(s) > 1/2

}
.

• Prove the function E[ζH(·)] has a meromorphic extension to all of C.
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Thank you for your attention!


