Anderson operator

Joint work with V.N. Dang \& A. Mouzard

Anderson operator

1. Anderson operator as an unbounded operator
2. Precise heat kernel description
3. Anderson Gaussian free field

1. Anderson operator as an unbounded operator

1.1 Anderson operator

Let \mathcal{S} be a 2-dimensional closed Riemannian manifold.

- Space white noise - A Gaussian random distribution ξ with null mean and covariance $\mathbb{E}\left[\xi\left(f_{1}\right) \xi\left(f_{2}\right)\right]=\left\langle f_{1}, f_{2}\right\rangle_{L^{2}(\mathcal{S})}$, for all smooth test functions f_{1}, f_{2}. It is almost surely of Hölder regularity $\alpha-2$, for any $\alpha<1$, i.e. $(-1)^{-}$.

1.1 Anderson operator

Let \mathcal{S} be a 2-dimensional closed Riemannian manifold.

- Space white noise - A Gaussian random distribution ξ with null mean and covariance $\mathbb{E}\left[\xi\left(f_{1}\right) \xi\left(f_{2}\right)\right]=\left\langle f_{1}, f_{2}\right\rangle_{L^{2}(\mathcal{S})}$, for all smooth test functions f_{1}, f_{2}. It is almost surely of Hölder regularity $\alpha-2$, for any $\alpha<1$, i.e. $(-1)^{-}$.
- Anderson operator $-H u:=\Delta u+\xi u$.

In the discrete 2-dimensional torus $\mathbb{T}_{n}^{2}:=(\mathbb{Z} / n \bmod \mathbb{Z})^{2}$, the large scale limit of the operator

$$
n \Delta_{\mathrm{discr}}+\frac{1}{n} \xi_{i} \delta_{i}
$$

for the discrete Laplace operator $\Delta_{\text {discr }}$ and a random iid potential $\left(\xi_{i}\right)_{i \in \mathbb{T}_{n}^{2}}$ with common law with finite second moment.

1.1 Anderson operator

Let \mathcal{S} be a 2-dimensional closed Riemannian manifold.

- Space white noise - A Gaussian random distribution ξ with null mean and covariance $\mathbb{E}\left[\xi\left(f_{1}\right) \xi\left(f_{2}\right)\right]=\left\langle f_{1}, f_{2}\right\rangle_{L^{2}(\mathcal{S})}$, for all smooth test functions f_{1}, f_{2}. It is almost surely of Hölder regularity $\alpha-2$, for any $\alpha<1$, i.e. $(-1)^{-}$.
- Anderson operator $-H u:=\Delta u+\xi u$.

In the discrete 2-dimensional torus $\mathbb{T}_{n}^{2}:=(\mathbb{Z} / n \bmod \mathbb{Z})^{2}$, the large scale limit of the operator

$$
n \Delta_{\mathrm{discr}}+\frac{1}{n} \xi_{i} \delta_{i}
$$

for the discrete Laplace operator $\Delta_{\text {discr }}$ and a random iid potential $\left(\xi_{i}\right)_{i \in \mathbb{T}_{n}^{2}}$ with common law with finite second moment.
To get an unbounded operator on $L^{2}(\mathcal{S})$ one needs a domain $D(H)$ with $H u \in L^{2}(\mathcal{S})$ when $u \in D(H)$.

The multiplication problem

- Pick $u \beta$-Hölder. Then ξu well-defined iff $(\alpha-2)+\beta>0$, i.e. $\beta>1^{+}$.
- For such u the term ξu is $(\alpha-2)$-regular while Δu is just $(\beta-2)>(\alpha-2)$ regular. No compensation to get $\Delta u+\xi u \in L^{2}(\mathcal{S})$.

1.2 Anderson operator: previous works

- Allez \& Chouk [15'] construct the operator on \mathbb{T}^{2} as a symmetric closed unbounded operator on $L^{2}\left(\mathbb{T}^{2}\right)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.

1.2 Anderson operator: previous works

- Allez \& Chouk [15'] construct the operator on \mathbb{T}^{2} as a symmetric closed unbounded operator on $L^{2}\left(\mathbb{T}^{2}\right)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.
- Labbé [19'] constructs the operator on \mathbb{T}^{3} using regularity structures and proves tail estimates for all eigenvalues.

1.2 Anderson operator: previous works

- Allez \& Chouk [15'] construct the operator on \mathbb{T}^{2} as a symmetric closed unbounded operator on $L^{2}\left(\mathbb{T}^{2}\right)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.
- Labbé [19'] constructs the operator on \mathbb{T}^{3} using regularity structures and proves tail estimates for all eigenvalues.
- Gubinelli, Ugurcan \& Zacchuber [19'] give a simplified construction on \mathbb{T}^{2} and \mathbb{T}^{3} using paracontrolled calculus.

1.2 Anderson operator: previous works

- Allez \& Chouk [15'] construct the operator on \mathbb{T}^{2} as a symmetric closed unbounded operator on $L^{2}\left(\mathbb{T}^{2}\right)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.
- Labbé [19'] constructs the operator on \mathbb{T}^{3} using regularity structures and proves tail estimates for all eigenvalues.
- Gubinelli, Ugurcan \& Zacchuber [19'] give a simplified construction on \mathbb{T}^{2} and \mathbb{T}^{3} using paracontrolled calculus.
- Mouzard [20'] further simplifies the construction of [GUZ], in a

2-dimensional manifold setting, using high order paracontrolled calculus.
Proves an almost sure Weyl law

$$
\sharp\{\text { eigenvalues } \leq \lambda\} \sim \frac{\operatorname{Vol}(\mathcal{S})}{4 \pi} \lambda, \quad(\lambda \rightarrow+\infty) .
$$

1.3 A glimpse at paracontrolled calculus for defining H

- The paracontrolled structure - Regularity is not sufficient for making sense of $H u \in L^{2}(\mathcal{S})$. Impose finer paracontrolled structure

$$
u=P_{u^{\prime}} X+u^{\#}
$$

where is a P bilinear operator called paraproduct, $u^{\prime}, X \in C^{\alpha}(\mathcal{S})$ and a remainder term $u^{\sharp} \in C^{2 \alpha}(\mathcal{S})$, with $X:=-\Delta^{-1}(\xi)$.

1.3 A glimpse at paracontrolled calculus for defining H

- The paracontrolled structure - Regularity is not sufficient for making sense of $H u \in L^{2}(\mathcal{S})$. Impose finer paracontrolled structure

$$
u=P_{u^{\prime}} X+u^{\sharp}
$$

where is a P bilinear operator called paraproduct, $u^{\prime}, X \in C^{\alpha}(\mathcal{S})$ and a remainder term $u^{\sharp} \in C^{2 \alpha}(\mathcal{S})$, with $X:=-\Delta^{-1}(\xi)$. Then the product $u \xi$ is a well-defined element of $C^{\alpha-2}(\mathcal{S})$ and $H u \in L^{2}(\mathcal{S})$ if the random quantity $X \xi$ is given a priori as an element of $C^{\alpha-2}(\mathcal{S})$.

1.3 A glimpse at paracontrolled calculus for defining H

- The paracontrolled structure - Regularity is not sufficient for making sense of $H u \in L^{2}(\mathcal{S})$. Impose finer paracontrolled structure

$$
u=P_{u^{\prime}} X+u^{\sharp}
$$

where is a P bilinear operator called paraproduct, $u^{\prime}, X \in C^{\alpha}(\mathcal{S})$ and a remainder term $u^{\sharp} \in C^{2 \alpha}(\mathcal{S})$, with $X:=-\Delta^{-1}(\xi)$. Then the product $u \xi$ is a well-defined element of $C^{\alpha-2}(\mathcal{S})$ and $H u \in L^{2}(\mathcal{S})$ if the random quantity $X \xi$ is given a priori as an element of $C^{\alpha-2}(\mathcal{S})$.

- Where probability saves us - The quantity $X(\omega) \xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha+(\alpha-2)<0$.

1.3 A glimpse at paracontrolled calculus for defining H

- The paracontrolled structure - Regularity is not sufficient for making sense of $H u \in L^{2}(\mathcal{S})$. Impose finer paracontrolled structure

$$
u=P_{u^{\prime}} X+u^{\sharp}
$$

where is a P bilinear operator called paraproduct, $u^{\prime}, X \in C^{\alpha}(\mathcal{S})$ and a remainder term $u^{\sharp} \in C^{2 \alpha}(\mathcal{S})$, with $X:=-\Delta^{-1}(\xi)$. Then the product $u \xi$ is a well-defined element of $C^{\alpha-2}(\mathcal{S})$ and $H u \in L^{2}(\mathcal{S})$ if the random quantity $X \xi$ is given a priori as an element of $C^{\alpha-2}(\mathcal{S})$.

- Where probability saves us - The quantity $X(\omega) \xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha+(\alpha-2)<0$.
\rightsquigarrow Define $(X \xi)(\omega)$ as a random variable!... after regularizing ξ into $\xi_{r} \in C^{\infty}(\mathcal{S})$, setting $X_{r}:=-\Delta^{-1}\left(\xi_{r}\right)$, and renormalizing

$$
X_{r} \xi_{r}-\mathbb{E}\left[X_{r} \xi_{r}\right]=: X_{r} \xi_{r}+c_{r} \simeq X_{r} \xi_{r}-\frac{\log r}{4 \pi}
$$

1.3 A glimpse at paracontrolled calculus for defining H

- The paracontrolled structure - Regularity is not sufficient for making sense of $H u \in L^{2}(\mathcal{S})$. Impose finer paracontrolled structure

$$
u=P_{u^{\prime}} X+u^{\sharp}
$$

where is a P bilinear operator called paraproduct, $u^{\prime}, X \in C^{\alpha}(\mathcal{S})$ and a remainder term $u^{\sharp} \in C^{2 \alpha}(\mathcal{S})$, with $X:=-\Delta^{-1}(\xi)$. Then the product $u \xi$ is a well-defined element of $C^{\alpha-2}(\mathcal{S})$ and $H u \in L^{2}(\mathcal{S})$ if the random quantity $X \xi$ is given a priori as an element of $C^{\alpha-2}(\mathcal{S})$.

- Where probability saves us - The quantity $X(\omega) \xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha+(\alpha-2)<0$.
\rightsquigarrow Define $(X \xi)(\omega)$ as a random variable!... after regularizing ξ into $\xi_{r} \in C^{\infty}(\mathcal{S})$, setting $X_{r}:=-\Delta^{-1}\left(\xi_{r}\right)$, and renormalizing

$$
X_{r} \xi_{r}-\mathbb{E}\left[X_{r} \xi_{r}\right]=: X_{r} \xi_{r}+c_{r} \simeq X_{r} \xi_{r}-\frac{\log r}{4 \pi}
$$

- Working with $X_{r} \xi_{r}+c_{r}$ instead of $X_{r} \xi_{r}$ is equivalent to working with renormalized operator $\Delta+\xi_{r}+c_{r}$. One has

$$
H^{-1}=\lim _{r \downarrow 0}\left(\Delta+\xi_{r}+c_{r}\right)^{-1}: L^{2}(\mathcal{S}) \rightarrow L^{2}(\mathcal{S})
$$

1.3 A glimpse at paracontrolled calculus for defining H

- The paracontrolled structure - Regularity is not sufficient for making sense of $H u \in L^{2}(\mathcal{S})$. Impose finer paracontrolled structure

$$
u=P_{u^{\prime}} X+u^{\sharp}
$$

where is a P bilinear operator called paraproduct, $u^{\prime}, X \in C^{\alpha}(\mathcal{S})$ and a remainder term $u^{\sharp} \in C^{2 \alpha}(\mathcal{S})$, with $X:=-\Delta^{-1}(\xi)$. Then the product $u \xi$ is a well-defined element of $C^{\alpha-2}(\mathcal{S})$ and $H u \in L^{2}(\mathcal{S})$ if the random quantity $X \xi$ is given a priori as an element of $C^{\alpha-2}(\mathcal{S})$.

- Where probability saves us - The quantity $X(\omega) \xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha+(\alpha-2)<0$.
\rightsquigarrow Define $(X \xi)(\omega)$ as a random variable!... after regularizing ξ into $\xi_{r} \in C^{\infty}(\mathcal{S})$, setting $X_{r}:=-\Delta^{-1}\left(\xi_{r}\right)$, and renormalizing

$$
X_{r} \xi_{r}-\mathbb{E}\left[X_{r} \xi_{r}\right]=: X_{r} \xi_{r}+c_{r} \simeq X_{r} \xi_{r}-\frac{\log r}{4 \pi}
$$

- Working with $X_{r} \xi_{r}+c_{r}$ instead of $X_{r} \xi_{r}$ is equivalent to working with renormalized operator $\Delta+\xi_{r}+c_{r}$. One has

$$
H^{-1}=\lim _{r \downarrow 0}\left(\Delta+\xi_{r}+c_{r}\right)^{-1}: L^{2}(\mathcal{S}) \rightarrow L^{2}(\mathcal{S})
$$

An operator that depends continuously on the enhanced noise $\widehat{\xi}:=(\xi, X \xi) \in C^{\alpha-2}(\mathcal{S}) \times C^{2 \alpha-2}(\mathcal{S})$, with a discrete random real spectrum $\left(\lambda_{n}(\widehat{\xi})\right)_{n \geq 0}$ going to $+\infty$.
2. Precise heat kernel description

2.1 A fine heat kernel description

Recall $\alpha=1^{-}$. For $\gamma>0$ set

$$
t^{-\gamma} C((0, T], E):=\left\{v \in C((0, T], E) ; \sup _{0<s \leq t \leq T} s^{\gamma}|v(t)|<\infty\right\}
$$

Write p_{t}^{Δ} for heat kernel of Laplace-Beltrami operator; it behaves as t^{-1} for small t. Set formally

$$
(\star): v_{0} \mapsto\left\{(t, x) \mapsto\left\langle v_{0}(\cdot),\left(p_{t}-p_{t}^{\Delta}\right)(x, \cdot)\right\rangle\right\} .
$$

2.1 A fine heat kernel description

Recall $\alpha=1^{-}$. For $\gamma>0$ set

$$
t^{-\gamma} C((0, T], E):=\left\{v \in C((0, T], E) ; \sup _{0<s \leq t \leq T} s^{\gamma}|v(t)|<\infty\right\}
$$

Write p_{t}^{Δ} for heat kernel of Laplace-Beltrami operator; it behaves as t^{-1} for small t. Set formally

$$
(\star): v_{0} \mapsto\left\{(t, x) \mapsto\left\langle v_{0}(\cdot),\left(p_{t}-p_{t}^{\Delta}\right)(x, \cdot)\right\rangle\right\} .
$$

- Theorem - Almost surely the map (\star) sends continuously
- the Besov space $B_{1, \infty}^{-\epsilon}(\mathcal{S})$ into $t^{(-1 / 2)^{-}} C\left((0, T], C^{\alpha}(\mathcal{S})\right)$,
- the Sobolev space $H^{-2 \alpha}(\mathcal{S})$ into $t^{-\alpha} C\left((0, T], H^{\alpha}(\mathcal{S})\right)$.

These two functions depend continuously on the enhanced noise $\widehat{\xi}=(\xi, X \xi)$.

2.2 A fine heat kernel description: benefits

- Theorem (Bounds for the eigenvalues) - Small time asymptotics for $\operatorname{tr}_{L^{2}}\left(e^{-t H}\right)$ and Tauberian theorem give direct short proof of Weyl law

$$
\sharp\{\text { eigenvalues } \leq \lambda\} \sim \frac{\operatorname{Vol}(\mathcal{S})}{4 \pi} \lambda .
$$

2.2 A fine heat kernel description: benefits

- Theorem (Bounds for the eigenvalues) - Small time asymptotics for $\operatorname{tr}_{L^{2}}\left(e^{-t H}\right)$ and Tauberian theorem give direct short proof of Weyl law

$$
\sharp\{\text { eigenvalues } \leq \lambda\} \sim \frac{\operatorname{Vol}(\mathcal{S})}{4 \pi} \lambda .
$$

Write u_{n} for eigenfunction associated with eigenvalue λ_{n} and define for $\lambda \in \mathbb{R}$ the spectral projector on $L^{2}(\mathcal{S})$

$$
\pi_{\leq \lambda}(f):=\sum_{\lambda_{n} \leq \lambda}\left(f, u_{n}\right)_{L^{2}} u_{n} .
$$

- Theorem (Bounds for the eigenfunctions of H) - One has for all $n \geq 0$ such that $\left|\lambda_{n}\right| \geq 1$ the n-uniform estimate

$$
\left\|u_{n}\right\|_{C^{2 \alpha-1}} \lesssim\left|\lambda_{n}(\widehat{\xi})\right|^{(1 / 2)^{+}}, \quad\left\|u_{n}\right\|_{L^{p}} \lesssim\left|\lambda_{n}(\widehat{\xi})\right|^{\left(\frac{1}{2}-\frac{1}{p}\right)^{+}}
$$

2.2 A fine heat kernel description: benefits

- Theorem (Bounds for the eigenvalues) - Small time asymptotics for $\operatorname{tr}_{L^{2}}\left(e^{-t H}\right)$ and Tauberian theorem give direct short proof of Weyl law

$$
\sharp\{\text { eigenvalues } \leq \lambda\} \sim \frac{\operatorname{Vol}(\mathcal{S})}{4 \pi} \lambda .
$$

Write u_{n} for eigenfunction associated with eigenvalue λ_{n} and define for $\lambda \in \mathbb{R}$ the spectral projector on $L^{2}(\mathcal{S})$

$$
\pi_{\leq \lambda}(f):=\sum_{\lambda_{n} \leq \lambda}\left(f, u_{n}\right)_{L^{2}} u_{n} .
$$

- Theorem (Bounds for the eigenfunctions of H) - One has for all $n \geq 0$ such that $\left|\lambda_{n}\right| \geq 1$ the n-uniform estimate

$$
\left\|u_{n}\right\|_{C^{2 \alpha-1}} \lesssim\left|\lambda_{n}(\widehat{\xi})\right|^{(1 / 2)^{+}}, \quad\left\|u_{n}\right\|_{L^{p}} \lesssim\left|\lambda_{n}(\widehat{\xi})\right|^{\left(\frac{1}{2}-\frac{1}{p}\right)^{+}}
$$

and for all $\lambda \in \mathbb{R}_{+}$the upper bound

$$
\left\|\pi_{\leq \lambda}(f)\right\|_{H^{\alpha}} \lesssim \lambda^{\frac{1}{2}}\|f\|_{L^{2}}, \quad\left\|\pi_{\leq \lambda}(f)\right\|_{L^{p}} \lesssim \lambda^{\left(\frac{1}{2}-\frac{1}{p}\right)^{+}}\|f\|_{L^{2}}
$$

3. Anderson Gaussian free field

3.1 Anderson GFF: Definition and elementary properties

Gaussian free field (GFF): Random field $\phi_{G F F}$ with centered Gaussian law and covariance

$$
\mathbb{E}\left[\phi_{G F F}\left(f_{1}\right) \phi_{G F F}\left(f_{2}\right)\right]=\int_{S \times S} f_{1}(x) G_{\Delta}(x, y) f_{2}(y) d x d y
$$

with G_{Δ} Green function of Δ - i.e. kernel of Δ^{-1}. One has almost surely $\phi_{G F F} \in H^{-\epsilon}(\mathcal{S})$, for all $\epsilon>0$.

3.1 Anderson GFF: Definition and elementary properties

Gaussian free field (GFF): Random field $\phi_{G F F}$ with centered Gaussian law and covariance

$$
\mathbb{E}\left[\phi_{G F F}\left(f_{1}\right) \phi_{G F F}\left(f_{2}\right)\right]=\int_{S \times S} f_{1}(x) G_{\Delta}(x, y) f_{2}(y) d x d y
$$

with G_{Δ} Green function of Δ - i.e. kernel of Δ^{-1}. One has almost surely $\phi_{G F F} \in H^{-\epsilon}(\mathcal{S})$, for all $\epsilon>0$.

Anderson Gaussian free field: A doubly random field ϕ with centered Gaussian law and covariance

$$
\mathbb{E}^{\prime}\left[\phi\left(f_{1}\right) \phi\left(f_{2}\right)\right]=\int_{S \times S} f_{1}(x) G(x, y) f_{2}(y) d x d y
$$

with G Green function of the random operator $H+c$ - i.e. kernel of $(H+c)^{-1}$, with c random big enough for $H+c$ to be positive. Write $\phi=\phi\left(\omega, \omega^{\prime}\right)$, with ω the randomness from H and ω^{\prime} the additionnal 'field' randomness, and \mathbb{E}^{\prime} expectation wrt ω^{\prime}.

3.1 Anderson GFF: Definition and elementary properties

Gaussian free field (GFF): Random field $\phi_{G F F}$ with centered Gaussian law and covariance

$$
\mathbb{E}\left[\phi_{G F F}\left(f_{1}\right) \phi_{G F F}\left(f_{2}\right)\right]=\int_{S \times S} f_{1}(x) G_{\Delta}(x, y) f_{2}(y) d x d y
$$

with G_{Δ} Green function of Δ - i.e. kernel of Δ^{-1}. One has almost surely $\phi_{G F F} \in H^{-\epsilon}(\mathcal{S})$, for all $\epsilon>0$.
Anderson Gaussian free field: A doubly random field ϕ with centered Gaussian law and covariance

$$
\mathbb{E}^{\prime}\left[\phi\left(f_{1}\right) \phi\left(f_{2}\right)\right]=\int_{S \times S} f_{1}(x) G(x, y) f_{2}(y) d x d y
$$

with G Green function of the random operator $H+c$ - i.e. kernel of $(H+c)^{-1}$, with c random big enough for $H+c$ to be positive. Write $\phi=\phi\left(\omega, \omega^{\prime}\right)$, with ω the randomness from H and ω^{\prime} the additionnal 'field' randomness, and \mathbb{E}^{\prime} expectation wrt ω^{\prime}.

- Theorem - One has $\left(\omega, \omega^{\prime}\right)$-almost surely $\phi \in H^{-\epsilon}(\mathcal{S})$, for all $\epsilon>0$, and the Cameron-Martin space of the ω^{\prime}-law of ϕ is continuously embedded into $H^{1^{-}}(\mathcal{S})$.

3.2 Anderson GFF: Wick square

Even though ϕ is only a distribution one can make sense of its square using a renormalization process after regularization $\phi_{r}:=e^{-r \Delta}(\phi)$

$$
: \phi_{r}^{2}::=\phi_{r}^{2}-\mathbb{E}^{\prime}\left[\phi_{r}^{2}\right]
$$

3.2 Anderson GFF: Wick square

Even though ϕ is only a distribution one can make sense of its square using a renormalization process after regularization $\phi_{r}:=e^{-r \Delta}(\phi)$

$$
: \phi_{r}^{2}::=\phi_{r}^{2}-\mathbb{E}^{\prime}\left[\phi_{r}^{2}\right]
$$

- Theorem - Almost surely in $\omega \in \Omega$, the regularized Wick square : ϕ_{r}^{2} : converges in law as r goes to 0 , as a random variable on Ω^{\prime} with values in $H^{-2 \epsilon}(\mathcal{S})$, to a limit random variable : ϕ^{2} :, and one has for all $\lambda \in \mathbb{C}$ sufficiently small

$$
Z(\lambda):=\mathbb{E}^{\prime}\left[e^{-\lambda: \phi^{2}:(1)}\right]=\operatorname{det}_{2}\left(I d+\lambda(H+c)^{-1}\right)^{-1 / 2}
$$

This random function of λ has almost surely an analytic extension to all of \mathbb{C}.

3.2 Anderson GFF: Wick square

Even though ϕ is only a distribution one can make sense of its square using a renormalization process after regularization $\phi_{r}:=e^{-r \Delta}(\phi)$

$$
: \phi_{r}^{2}::=\phi_{r}^{2}-\mathbb{E}^{\prime}\left[\phi_{r}^{2}\right] .
$$

- Theorem - Almost surely in $\omega \in \Omega$, the regularized Wick square : ϕ_{r}^{2} : converges in law as r goes to 0 , as a random variable on Ω^{\prime} with values in $H^{-2 \epsilon}(\mathcal{S})$, to a limit random variable : ϕ^{2}, and one has for all $\lambda \in \mathbb{C}$ sufficiently small

$$
Z(\lambda):=\mathbb{E}^{\prime}\left[e^{-\lambda: \phi^{2} \cdot(1)}\right]=\operatorname{det}_{2}\left(I d+\lambda(H+c)^{-1}\right)^{-1 / 2} .
$$

This random function of λ has almost surely an analytic extension to all of \mathbb{C}.

- Theorem (The distribution of Z characterizes the distribution of the spectrum of H) - Let $\left(S_{1}, g_{1}\right)$ and $\left(S_{2}, g_{2}\right)$ be two Riemannian closed surfaces. Then the spectra of the operators $H\left(S_{1}, g_{1}\right)$ and $H\left(S_{2}, g_{2}\right)$ have the same law iff the random holomorphic functions $Z\left(S_{1}, g_{1}\right)$ and $Z\left(S_{2}, g_{2}\right)$ have the same law.

Two open questions

- Prove that the (2-dimensional) Anderson operator (on a closed manifold) has almost surely a simple spectrum.

Two open questions

- Prove that the (2-dimensional) Anderson operator (on a closed manifold) has almost surely a simple spectrum.

From our analysis of p_{t} the zeta function of the Anderson operator

$$
\zeta_{H}(s):=\sum_{n \geq 0} \lambda_{n}(\widehat{\xi})^{-s}
$$

has almost surely a meromorphic extension to the half plane $\{\operatorname{Re}(s)>1 / 2\}$.

- Prove the function $\mathbb{E}\left[\zeta_{H}(\cdot)\right]$ has a meromorphic extension to all of \mathbb{C}.

Thank you for your attention!

