Anderson operator

Joint work with V.N. Dang & A. Mouzard

(ロ)、(型)、(E)、(E)、 E) の(()

Anderson operator

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- 1. Anderson operator as an unbounded operator
- 2. Precise heat kernel description
- 3. Anderson Gaussian free field

1. Anderson operator as an unbounded operator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1.1 Anderson operator

Let S be a 2-dimensional closed Riemannian manifold.

▶ Space white noise – A Gaussian random distribution ξ with null mean and covariance $\mathbb{E}[\xi(f_1)\xi(f_2)] = \langle f_1, f_2 \rangle_{L^2(S)}$, for all smooth test functions f_1, f_2 . It is almost surely of Hölder regularity $\alpha - 2$, for any $\alpha < 1$, i.e. $(-1)^-$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1.1 Anderson operator

Let S be a 2-dimensional closed Riemannian manifold.

▶ Space white noise – A Gaussian random distribution ξ with null mean and covariance $\mathbb{E}[\xi(f_1)\xi(f_2)] = \langle f_1, f_2 \rangle_{L^2(S)}$, for all smooth test functions f_1, f_2 . It is almost surely of Hölder regularity $\alpha - 2$, for any $\alpha < 1$, i.e. $(-1)^-$.

• Anderson operator – $Hu := \Delta u + \xi u$.

In the discrete 2-dimensional torus $\mathbb{T}_n^2 := (\mathbb{Z}/n \mod \mathbb{Z})^2$, the large scale limit of the operator

$$n\Delta_{\mathrm{discr}} + \frac{1}{n}\xi_i\delta_i$$

A D N A 目 N A E N A E N A B N A C N

for the discrete Laplace operator $\Delta_{\operatorname{discr}}$ and a random iid potential $(\xi_i)_{i \in \mathbb{T}_n^2}$ with common law with finite second moment.

1.1 Anderson operator

Let S be a 2-dimensional closed Riemannian manifold.

▶ Space white noise – A Gaussian random distribution ξ with null mean and covariance $\mathbb{E}[\xi(f_1)\xi(f_2)] = \langle f_1, f_2 \rangle_{L^2(S)}$, for all smooth test functions f_1, f_2 . It is almost surely of Hölder regularity $\alpha - 2$, for any $\alpha < 1$, i.e. $(-1)^-$.

• Anderson operator – $Hu := \Delta u + \xi u$.

In the discrete 2-dimensional torus $\mathbb{T}_n^2 := (\mathbb{Z}/n \mod \mathbb{Z})^2$, the large scale limit of the operator

$$n\Delta_{\mathrm{discr}} + \frac{1}{n}\xi_i\delta_i$$

for the discrete Laplace operator Δ_{discr} and a random iid potential $(\xi_i)_{i \in \mathbb{T}_n^2}$ with common law with finite second moment.

To get an unbounded operator on $L^2(S)$ one needs a domain D(H) with $Hu \in L^2(S)$ when $u \in D(H)$.

The multiplication problem

- Pick $\mu \beta$ -Hölder. Then ξu well-defined iff $(\alpha 2) + \beta > 0$, i.e. $\beta > 1^+$.
- For such *u* the term ξu is $(\alpha 2)$ -regular while Δu is just $(\beta 2) > (\alpha 2)$ regular. No compensation to get $\Delta u + \xi u \in L^2(S)$.

• Allez & Chouk [15'] construct the operator on \mathbb{T}^2 as a symmetric closed unbounded operator on $L^2(\mathbb{T}^2)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Allez & Chouk [15'] construct the operator on \mathbb{T}^2 as a symmetric closed unbounded operator on $L^2(\mathbb{T}^2)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.

• Labbé [19'] constructs the operator on \mathbb{T}^3 using regularity structures and proves tail estimates for all eigenvalues.

• Allez & Chouk [15'] construct the operator on \mathbb{T}^2 as a symmetric closed unbounded operator on $L^2(\mathbb{T}^2)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.

• Labbé [19'] constructs the operator on \mathbb{T}^3 using regularity structures and proves tail estimates for all eigenvalues.

• Gubinelli, Ugurcan & Zacchuber [19'] give a simplified construction on \mathbb{T}^2 and \mathbb{T}^3 using paracontrolled calculus.

• Allez & Chouk [15'] construct the operator on \mathbb{T}^2 as a symmetric closed unbounded operator on $L^2(\mathbb{T}^2)$ using paracontrolled calculus. It has compact resolvent, hence a nice spectral theory. They prove tail estimates for smallest eigenvalue.

• Labbé [19'] constructs the operator on \mathbb{T}^3 using regularity structures and proves tail estimates for all eigenvalues.

• Gubinelli, Ugurcan & Zacchuber [19'] give a simplified construction on \mathbb{T}^2 and \mathbb{T}^3 using paracontrolled calculus.

• **Mouzard** [20'] further simplifies the construction of [GUZ], in a 2-dimensional manifold setting, using high order paracontrolled calculus. Proves an almost sure Weyl law

$$\sharp \{ \text{eigenvalues} \leq \lambda \} \sim \frac{\mathsf{Vol}(\mathcal{S})}{4\pi} \, \lambda, \qquad (\lambda \to +\infty).$$

• The paracontrolled structure – Regularity is not sufficient for making sense of $Hu \in L^2(S)$. Impose finer paracontrolled structure

$$u = P_{u'}X + u^{\sharp}$$

where is a *P* bilinear operator called paraproduct, $u', X \in C^{\alpha}(S)$ and a remainder term $u^{\sharp} \in C^{2\alpha}(S)$, with $X := -\Delta^{-1}(\xi)$.

• The paracontrolled structure – Regularity is not sufficient for making sense of $Hu \in L^2(S)$. Impose finer paracontrolled structure

$$u = P_{u'}X + u^{\sharp}$$

where is a *P* bilinear operator called paraproduct, $u', X \in C^{\alpha}(S)$ and a remainder term $u^{\sharp} \in C^{2\alpha}(S)$, with $X := -\Delta^{-1}(\xi)$. Then the product $u\xi$ is a well-defined element of $C^{\alpha-2}(S)$ and $Hu \in L^2(S)$ if the random quantity $X\xi$ is given a priori as an element of $C^{\alpha-2}(S)$.

(日)(1)(1

• The paracontrolled structure – Regularity is not sufficient for making sense of $Hu \in L^2(S)$. Impose finer paracontrolled structure

$$u = P_{u'}X + u^{\sharp}$$

where is a *P* bilinear operator called paraproduct, $u', X \in C^{\alpha}(S)$ and a remainder term $u^{\sharp} \in C^{2\alpha}(S)$, with $X := -\Delta^{-1}(\xi)$. Then the product $u\xi$ is a well-defined element of $C^{\alpha-2}(S)$ and $Hu \in L^2(S)$ if the random quantity $X\xi$ is given a priori as an element of $C^{\alpha-2}(S)$.

• Where probability saves us – The quantity $X(\omega)\xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha + (\alpha - 2) < 0$.

(日)(1)</

• The paracontrolled structure – Regularity is not sufficient for making sense of $Hu \in L^2(S)$. Impose finer paracontrolled structure

$$u = P_{u'}X + u^{\sharp}$$

where is a *P* bilinear operator called paraproduct, $u', X \in C^{\alpha}(S)$ and a remainder term $u^{\sharp} \in C^{2\alpha}(S)$, with $X := -\Delta^{-1}(\xi)$. Then the product $u\xi$ is a well-defined element of $C^{\alpha-2}(S)$ and $Hu \in L^2(S)$ if the random quantity $X\xi$ is given a priori as an element of $C^{\alpha-2}(S)$.

• Where probability saves us – The quantity $X(\omega)\xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha + (\alpha - 2) < 0$. \rightarrow Define $(X\xi)(\omega)$ as a random variable!... after regularizing ξ into $\xi_r \in C^{\infty}(S)$, setting $X_r := -\Delta^{-1}(\xi_r)$, and renormalizing

$$X_r\xi_r - \mathbb{E}[X_r\xi_r] =: X_r\xi_r + c_r \simeq X_r\xi_r - \frac{\log r}{4\pi}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• The paracontrolled structure – Regularity is not sufficient for making sense of $Hu \in L^2(S)$. Impose finer paracontrolled structure

$$u = P_{u'}X + u^{\sharp}$$

where is a *P* bilinear operator called paraproduct, $u', X \in C^{\alpha}(S)$ and a remainder term $u^{\sharp} \in C^{2\alpha}(S)$, with $X := -\Delta^{-1}(\xi)$. Then the product $u\xi$ is a well-defined element of $C^{\alpha-2}(S)$ and $Hu \in L^2(S)$ if the random quantity $X\xi$ is given a priori as an element of $C^{\alpha-2}(S)$.

• Where probability saves us – The quantity $X(\omega)\xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha + (\alpha - 2) < 0$. \rightarrow Define $(X\xi)(\omega)$ as a random variable!... after regularizing ξ into $\xi_r \in C^{\infty}(S)$, setting $X_r := -\Delta^{-1}(\xi_r)$, and renormalizing

$$X_r\xi_r - \mathbb{E}[X_r\xi_r] =: X_r\xi_r + c_r \simeq X_r\xi_r - \frac{\log r}{4\pi}.$$

• Working with $X_r\xi_r + c_r$ instead of $X_r\xi_r$ is equivalent to working with renormalized operator $\Delta + \xi_r + c_r$. One has

$$H^{-1} = \lim_{r\downarrow 0} \left(\Delta + \xi_r + c_r \right)^{-1} : L^2(\mathcal{S}) \to L^2(\mathcal{S}).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• The paracontrolled structure – Regularity is not sufficient for making sense of $Hu \in L^2(S)$. Impose finer paracontrolled structure

$$u = P_{u'}X + u^{\sharp}$$

where is a *P* bilinear operator called paraproduct, $u', X \in C^{\alpha}(S)$ and a remainder term $u^{\sharp} \in C^{2\alpha}(S)$, with $X := -\Delta^{-1}(\xi)$. Then the product $u\xi$ is a well-defined element of $C^{\alpha-2}(S)$ and $Hu \in L^2(S)$ if the random quantity $X\xi$ is given a priori as an element of $C^{\alpha-2}(S)$.

• Where probability saves us – The quantity $X(\omega)\xi(\omega)$ does not make sense for a generic chance element $\omega \in \Omega$, as $\alpha + (\alpha - 2) < 0$. \rightarrow Define $(X\xi)(\omega)$ as a random variable!... after regularizing ξ into $\xi_r \in C^{\infty}(S)$, setting $X_r := -\Delta^{-1}(\xi_r)$, and renormalizing

$$X_r\xi_r - \mathbb{E}[X_r\xi_r] =: X_r\xi_r + c_r \simeq X_r\xi_r - \frac{\log r}{4\pi}$$

• Working with $X_r\xi_r + c_r$ instead of $X_r\xi_r$ is equivalent to working with renormalized operator $\Delta + \xi_r + c_r$. One has

$$H^{-1} = \lim_{r \downarrow 0} \left(\Delta + \xi_r + c_r \right)^{-1} : L^2(\mathcal{S}) \to L^2(\mathcal{S}).$$

An operator that depends continuously on the enhanced noise $\widehat{\xi} := (\xi, X\xi) \in C^{\alpha-2}(S) \times C^{2\alpha-2}(S)$, with a discrete random real spectrum $(\lambda_n(\widehat{\xi}))_{n\geq 0}$ going to $+\infty$.

2. Precise heat kernel description

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

2.1 A fine heat kernel description

Recall
$$\alpha = 1^-$$
. For $\gamma > 0$ set
$$t^{-\gamma} C((0, T], E) := \Big\{ v \in C((0, T], E) ; \sup_{0 < s \le t \le T} s^{\gamma} |v(t)| < \infty \Big\}.$$

Write p_t^{Δ} for heat kernel of Laplace-Beltrami operator; it behaves as t^{-1} for small *t*. Set formally

$$(\star): v_0 \mapsto \Big\{(t,x) \mapsto \big\langle v_0(\cdot), (p_t - p_t^{\Delta})(x, \cdot) \big\rangle \Big\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

2.1 A fine heat kernel description

Recall
$$\alpha = 1^-$$
. For $\gamma > 0$ set
$$t^{-\gamma}C((0, T], E) := \Big\{ v \in C((0, T], E) ; \sup_{0 < s \le t \le T} s^{\gamma} |v(t)| < \infty \Big\}.$$

Write p_t^{Δ} for heat kernel of Laplace-Beltrami operator; it behaves as t^{-1} for small t. Set formally

$$(\star): v_0 \mapsto \Big\{(t,x) \mapsto \big\langle v_0(\cdot), (p_t - p_t^{\Delta})(x, \cdot) \big\rangle \Big\}.$$

Theorem – Almost surely the map (\star) sends continuously

- the Besov space $B_{1,\infty}^{-\epsilon}(\mathcal{S})$ into $t^{(-1/2)^{-}}C((0,T], C^{\alpha}(\mathcal{S}))$,

- the Sobolev space $H^{-2\alpha}(\mathcal{S})$ into $t^{-\alpha}C((0,T], H^{\alpha}(\mathcal{S}))$.

These two functions depend continuously on the enhanced noise $\hat{\xi} = (\xi, X\xi)$.

2.2 A fine heat kernel description: benefits

Theorem (Bounds for the eigenvalues) – Small time asymptotics for $tr_{L^2}(e^{-tH})$ and Tauberian theorem give direct short proof of Weyl law

$$\sharp \{ ext{eigenvalues} \leq \lambda \} \sim rac{\mathsf{Vol}(\mathcal{S})}{4\pi} \, \lambda.$$

2.2 A fine heat kernel description: benefits

▶ Theorem (Bounds for the eigenvalues) – Small time asymptotics for $tr_{L^2}(e^{-tH})$ and Tauberian theorem give direct short proof of Weyl law

$$\sharp \{ \text{eigenvalues} \leq \lambda \} \sim \frac{\text{Vol}(S)}{4\pi} \lambda.$$

Write u_n for eigenfunction associated with eigenvalue λ_n and define for $\lambda \in \mathbb{R}$ the spectral projector on $L^2(S)$

$$\pi_{\leq \lambda}(f) := \sum_{\lambda_n \leq \lambda} (f, u_n)_{L^2} u_n.$$

► Theorem (Bounds for the eigenfunctions of *H*) – One has for all $n \ge 0$ such that $|\lambda_n| \ge 1$ the *n*-uniform estimate

 $\|u_n\|_{C^{2\alpha-1}} \lesssim |\lambda_n(\widehat{\xi})|^{(1/2)^+}, \qquad \|u_n\|_{L^p} \lesssim |\lambda_n(\widehat{\xi})|^{(\frac{1}{2}-\frac{1}{p})^+},$

2.2 A fine heat kernel description: benefits

▶ Theorem (Bounds for the eigenvalues) – Small time asymptotics for $tr_{L^2}(e^{-tH})$ and Tauberian theorem give direct short proof of Weyl law

$$\sharp \{ \text{eigenvalues} \leq \lambda \} \sim \frac{\text{Vol}(S)}{4\pi} \lambda.$$

Write u_n for eigenfunction associated with eigenvalue λ_n and define for $\lambda \in \mathbb{R}$ the spectral projector on $L^2(S)$

$$\pi_{\leq \lambda}(f) := \sum_{\lambda_n \leq \lambda} (f, u_n)_{L^2} u_n.$$

► Theorem (Bounds for the eigenfunctions of *H*) – One has for all $n \ge 0$ such that $|\lambda_n| \ge 1$ the *n*-uniform estimate

$$\|u_n\|_{C^{2\alpha-1}} \lesssim |\lambda_n(\widehat{\xi})|^{(1/2)^+}, \qquad \|u_n\|_{L^p} \lesssim |\lambda_n(\widehat{\xi})|^{(\frac{1}{2}-\frac{1}{p})^+}$$

and for all $\lambda \in \mathbb{R}_+$ the upper bound $\|\pi_{\leq \lambda}(f)\|_{H^{\alpha}} \lesssim \lambda^{\frac{1}{2}} \|f\|_{L^2},$

 $\|\pi_{\leq\lambda}(f)\|_{H^{lpha}}\lesssim\lambda^{rac{1}{2}}\,\|f\|_{L^{2}},\qquad \|\pi_{\leq\lambda}(f)\|_{L^{p}}\lesssim\lambda^{(rac{1}{2}-rac{1}{p})^{+}}\|f\|_{L^{2}}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

3. Anderson Gaussian free field

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

3.1 Anderson GFF: Definition and elementary properties

Gaussian free field (GFF): Random field ϕ_{GFF} with centered Gaussian law and covariance

$$\mathbb{E}\big[\phi_{GFF}(f_1)\phi_{GFF}(f_2)\big] = \int_{S\times S} f_1(x)G_{\Delta}(x,y)f_2(y)\,dxdy,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

with G_{Δ} Green function of Δ – i.e. kernel of Δ^{-1} . One has almost surely $\phi_{GFF} \in H^{-\epsilon}(S)$, for all $\epsilon > 0$.

3.1 Anderson GFF: Definition and elementary properties

Gaussian free field (GFF): Random field ϕ_{GFF} with centered Gaussian law and covariance

$$\mathbb{E}\big[\phi_{GFF}(f_1)\phi_{GFF}(f_2)\big] = \int_{S\times S} f_1(x)G_{\Delta}(x,y)f_2(y)\,dxdy,$$

with G_{Δ} Green function of Δ – i.e. kernel of Δ^{-1} . One has almost surely $\phi_{GFF} \in H^{-\epsilon}(S)$, for all $\epsilon > 0$.

Anderson Gaussian free field: A doubly random field ϕ with centered Gaussian law and covariance

$$\mathbb{E}'\big[\phi(f_1)\phi(f_2)\big] = \int_{S\times S} f_1(x)G(x,y)f_2(y)\,dxdy,$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with *G* Green function of the *random* operator H + c – i.e. kernel of $(H + c)^{-1}$, with *c* random big enough for H + c to be positive. Write $\phi = \phi(\omega, \omega')$, with ω the randomness from *H* and ω' the additionnal 'field' randomness, and \mathbb{E}' expectation wrt ω' .

3.1 Anderson GFF: Definition and elementary properties

Gaussian free field (GFF): Random field ϕ_{GFF} with centered Gaussian law and covariance

$$\mathbb{E}\big[\phi_{GFF}(f_1)\phi_{GFF}(f_2)\big] = \int_{S\times S} f_1(x)G_{\Delta}(x,y)f_2(y)\,dxdy,$$

with G_{Δ} Green function of Δ – i.e. kernel of Δ^{-1} . One has almost surely $\phi_{GFF} \in H^{-\epsilon}(S)$, for all $\epsilon > 0$.

Anderson Gaussian free field: A doubly random field ϕ with centered Gaussian law and covariance

$$\mathbb{E}'\left[\phi(f_1)\phi(f_2)\right] = \int_{S\times S} f_1(x)G(x,y)f_2(y)\,dxdy,$$

with *G* Green function of the *random* operator H + c – i.e. kernel of $(H + c)^{-1}$, with *c* random big enough for H + c to be positive. Write $\phi = \phi(\omega, \omega')$, with ω the randomness from *H* and ω' the additionnal 'field' randomness, and \mathbb{E}' expectation wrt ω' .

▶ Theorem – One has (ω, ω') -almost surely $\phi \in H^{-\epsilon}(S)$, for all $\epsilon > 0$, and the Cameron-Martin space of the ω' -law of ϕ is continuously embedded into $H^{1^-}(S)$.

3.2 Anderson GFF: Wick square

Even though ϕ is only a distribution one can make sense of its square using a renormalization process after regularization $\phi_r := e^{-r\Delta}(\phi)$

$$:\phi_r^2::=\phi_r^2-\mathbb{E}'[\phi_r^2].$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

3.2 Anderson GFF: Wick square

Even though ϕ is only a distribution one can make sense of its square using a renormalization process after regularization $\phi_r := e^{-r\Delta}(\phi)$

$$:\phi_r^2::=\phi_r^2-\mathbb{E}'\big[\phi_r^2\big].$$

▶ **Theorem** – Almost surely in $\omega \in \Omega$, the regularized Wick square $:\phi_r^2:$ converges in law as \mathbf{r} goes to $\mathbf{0}$, as a random variable on Ω' with values in $H^{-2\epsilon}(S)$, to a limit random variable $:\phi^2:$, and one has for all $\lambda \in \mathbb{C}$ sufficiently small

$$Z(\lambda) := \mathbb{E}'\left[e^{-\lambda;\phi^2:(1)}\right] = \mathsf{det}_2\Big(\mathsf{Id} + \lambda(\mathsf{H} + \mathsf{c})^{-1}\Big)^{-1/2}$$

This random function of λ has almost surely an analytic extension to all of \mathbb{C} .

3.2 Anderson GFF: Wick square

Even though ϕ is only a distribution one can make sense of its square using a renormalization process after regularization $\phi_r := e^{-r\Delta}(\phi)$

$$:\phi_r^2::=\phi_r^2-\mathbb{E}'\big[\phi_r^2\big].$$

▶ **Theorem** – Almost surely in $\omega \in \Omega$, the regularized Wick square $:\phi_r^2:$ converges in law as r goes to 0, as a random variable on Ω' with values in $H^{-2\epsilon}(S)$, to a limit random variable $:\phi^2:$, and one has for all $\lambda \in \mathbb{C}$ sufficiently small

$$Z(\lambda) := \mathbb{E}'\left[e^{-\lambda:\phi^2:(1)}\right] = \det_2\left(\mathit{Id} + \lambda(\mathit{H} + c)^{-1}\right)^{-1/2}.$$

This random function of λ has almost surely an analytic extension to all of \mathbb{C} .

▶ Theorem (The distribution of Z characterizes the distribution of the spectrum of H) – Let (S_1, g_1) and (S_2, g_2) be two Riemannian closed surfaces. Then the spectra of the operators $H(S_1, g_1)$ and $H(S_2, g_2)$ have the same law iff the random holomorphic functions $Z(S_1, g_1)$ and $Z(S_2, g_2)$ have the same law.

Two open questions

• Prove that the (2-dimensional) Anderson operator (on a closed manifold) has almost surely a simple spectrum.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Two open questions

• Prove that the (2-dimensional) Anderson operator (on a closed manifold) has almost surely a simple spectrum.

From our analysis of p_t the zeta function of the Anderson operator

$$\zeta_{\mathcal{H}}(s) := \sum_{n \geq 0} \lambda_n(\widehat{\xi})^{-s}$$

has almost surely a meromorphic extension to the half plane $\{\operatorname{Re}(s) > 1/2\}$.

• Prove the function $\mathbb{E}[\zeta_H(\cdot)]$ has a meromorphic extension to all of \mathbb{C} .

Thank you for your attention!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで