Generalized iterated-sums signatures

Nikolas Tapia joint with J. Diehl and K. Ebrahimi-Fard FG6

Outline

- 2. ISS as feature map
- 3. Quasi-shuffle algebra
- 4. Some properties
- 5. Finer structure of quasi-shuffle
- 6. Transformations of the first kind
- 7. Transformations of the second kind

ISS as feature map

Feature extraction takes a data point $x \in \mathfrak{X}$ and maps it to $\phi(\mathbf{x}) \in \mathfrak{F}$ in *feature space*.

If \mathfrak{X} consists of sequences (time series) in \mathbb{R}^d , (Bonnier–Oberhauser–Toth, 2020) propose to define another feature map $\Phi \colon \mathfrak{X} \to \mathsf{T}(\mathfrak{F})$ by

$$\Phi(\mathbf{x}) = \prod_{0 \le j < N}^{\rightarrow} (1 + \phi(\mathbf{x}_j))$$

Depending on the properties of ϕ we get different properties of Φ .

One common choice is the *polynomial augmentation*

$$\phi(\mathbf{x}) = \sum_{n=1}^{\infty} \mathbf{x}^{\otimes n}.$$

The iterated-sums signature (Diehl–Ebrahimi-Fard–T., 2020) is a map from sequence space \mathfrak{X} to a tensor space $\mathsf{T}(V)$, with $V = \mathsf{S}(\mathbb{R}^d)$.

It admits the following factorization (can be taken as def.):

$$\operatorname{Sig}(\mathbf{x}) = \prod_{0 \le j < N}^{\rightarrow} \left(1 + \sum_{n=1}^{\infty} \mathbf{x}_{j}^{\otimes n} \right)$$
$$= \prod_{0 \le j < N}^{\rightarrow} \left(1 - \mathbf{x}_{j} \right)^{-1}$$
$$= 1 + \sum_{n=1}^{\infty} \operatorname{Sig}^{n}(\mathbf{x})$$

where

$$\operatorname{Sig}^{n}(\mathbf{x}) := \sum_{0 \leq i_{1} < \dots < i_{n} < N} \sum_{k_{1}, \dots, k_{n} = 1}^{\infty} \mathbf{x}_{i_{1}}^{\otimes k_{1}} \cdots \mathbf{x}_{i_{n}}^{\otimes k_{n}}.$$

Quasi-shuffle algebra

Assume we fix a basis $\{e_1, \ldots, e_d\}$ of \mathbb{R}^d . Expanding each term we find

$$\operatorname{Sig}^n(\mathbf{x}) = \sum_{I \in \mathcal{I}_n} \mathbf{M}^I(\mathbf{x}) e_I.$$

Here:

- The set \mathcal{I} consists of n-tuples of multi-indices on $\{1, \ldots, d\}$,
- For $I = (I_1, \ldots, I_n) \in I_n$, $e_I = (e_{I_1^1} \, \hat{\otimes} \cdots \, \hat{\otimes} \, e_{I_n^{k_1}}) \cdots (e_{I_n^1} \, \hat{\otimes} \cdots \, \hat{\otimes} \, e_{I_n^{k_n}})$,
- For $I \in \mathcal{I}_n$,

$$M^{I}(\mathbf{x}) = \sum_{0 \le j_{1} < \dots < j_{n} < N} \mathbf{x}_{j_{1}}^{I_{1}^{1}} \cdots \mathbf{x}_{j_{n}}^{I_{n}^{k_{1}}} \cdots \mathbf{x}_{j_{n}}^{I_{n}^{k}} \cdots \mathbf{x}_{j_{n}}^{I_{n}^{k_{n}}}.$$

Shorthand:

$$egin{aligned} e_I \ \hat{\otimes} \ e_J &\sim [IJ], & I, J \in \mathcal{I}_1 \ e_I e_J &\sim IJ, & I \in \mathcal{I}_n, J \in \mathcal{I}_m \ e_I &\sim [i_1^1 \cdots i_1^{k_1}] \cdots [i_n \cdots i_n^{k_n}], & I \in \mathcal{I}_n \ M^I(\mathbf{x}) &\sim \langle \mathrm{Sig}(\mathbf{x}), e_I
angle. \end{aligned}$$

Definition (Quasi-shuffle (stuffle, sticky shuffle, ...) product)

For
$$I \in I_n$$
, $J \in I_m$ and $a, b \in I_1$,
$$Ia * Jb := (I * Jb)a + (Ia * J)b + (I * J)[ab].$$

Example

$$\begin{split} i_1[i_2^1i_2^2]*j_1 &= i_1[i_2^1i_2^2]j_1 + i_1j_1[i_2^1i_2^2] + j_1i_1[i_2^1i_2^2] \\ &+ [i_1j_1][i_2^1i_2^2] + i_1[i_2^1i_2^2j_1]. \end{split}$$

Some properties

Theorem (Diehl-Ebrahimi-Fard-T., 2020)

The iterated sums-signature satisfies the following properties:

• Chen's identity:

$$\operatorname{Sig}(\mathbf{x})_{n,m}\operatorname{Sig}(\mathbf{x})_{m,l}=\operatorname{Sig}(\mathbf{x})_{n,l},$$

quasi-shuffle identity:

$$\langle \operatorname{Sig}(\mathbf{x}), I \rangle \langle \operatorname{Sig}(\mathbf{x}), J \rangle = \langle \operatorname{Sig}(\mathbf{x}), I * J \rangle.$$

Theorem (Bonnier-Oberhauser-Toth, 2020)

The iterated-sums signatures is a universal map. That is, under some compactness assumptions, every functional $\mathcal{F}:\mathfrak{X}\to\mathbb{R}$ can be a approximated by a linear function of the iterated-sums signature.

Finer structure of quasi-shuffle

The quasi-shuffle product can be split: $I * J = I > J + J > I + I \bullet J$ where

$$I > Ja = (I * J)a$$
, $Ia \bullet Jb = (I * J)[ab]$.

Proposition

The triple $(\mathsf{T}(\mathsf{S}(\mathbb{R}^d)), \succ, \bullet)$ is a CTD algebra:

$$I > (J > K) = (I * J) > K,$$

 $(I > J) \bullet K = I > (J \bullet K),$
 $(I \bullet J) \bullet K = I \bullet (J \bullet K).$

In fact, it is the free CTD algebra (Loday, 2007).

Theorem (Diehl-Ebrahimi-Fard-T., 2021)

The iterated-sums signature is the unique CTD morphism such that $i \mapsto (\mathbf{x}_k^i : 0 \le k < N)$. In particular

$$\langle \operatorname{Sig}(\mathbf{x}), I > J \rangle = \sum_{j=1}^{N-1} \sum_{i=0}^{j-1} \langle \operatorname{Sig}(\mathbf{x})_{0,i}, I \rangle \langle \operatorname{Sig}(\mathbf{x})_{j,j+1}, J \rangle.$$

Transformations of the first kind

We apply a "formal diffeomorphism" $f \in t\mathbb{R}[[t]]$ on top of the polynomial extension $\phi_P \colon \mathfrak{X} \to S(\mathbb{R}^d)$.

Let $f(t) = \sum_{n \ge 0} c_n t^n$ with $c_0 = 0$, $c_1 = 1$. Induces a map on the tensor algebra by

$$F(S) = \sum_{n=1}^{\infty} c_n S^n.$$

Let $\Psi_f^* \colon \mathfrak{X} \to \mathsf{T}(\mathsf{S}(\mathbb{R}^d))$ by $\Psi_f^* \coloneqq F \circ \phi_P$. The resulting signature is

$$\operatorname{Sig}^{f}(\mathbf{x}) = \prod_{0 \le j < N}^{\rightarrow} \left(1 + F\left(\sum_{n=1}^{\infty} \mathbf{x}_{j}^{\otimes n}\right) \right)$$

Running example: $f_2(t) = t + \frac{1}{2}t^2$ (in general $f_p(t) = t + \frac{1}{2}t^2 + \cdots + \frac{1}{p!}t^p$ as in Kiraly–Oberhauser, 2019).

$$\operatorname{Sig}^{f_p}(\mathbf{x}) = \prod_{0 \le j < N}^{\to} \sum_{k=0}^{p} \frac{1}{k!} \left(\sum_{n=1}^{\infty} \mathbf{x}_j^{\otimes n} \right)^k.$$

Transformations of the first kind

A simple case:

$$\langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_1 \rangle = \sum_{j=0}^{N-1} \mathbf{x}_j^{i_1}$$

$$\langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_1 i_2 \rangle = \sum_{0 \le j_1 < j_2 < N} \mathbf{x}_{j_1}^{i_1} \mathbf{x}_{j_2}^{i_2} + \frac{1}{2} \sum_{j=0}^{N-1} \mathbf{x}_j^{i_1} \mathbf{x}_j^{i_2}.$$

Therefore,

$$\langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_1 \rangle \langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_2 \rangle = \langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_1 i_2 + i_2 i_1 \rangle.$$

However, it can be checked that this fails for the product $\langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_1 \rangle \langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_2 i_3 \rangle$

(Hoffman–Ihara, 2017) introduce a map induced by a formal diffeomorphism by performing contractions. For $I = (I_1, \ldots, I_n) \in I_n$ and $\alpha \in C(n)$ define

$$\alpha[I] = [I_1 \cdots I_{\alpha_1}][I_{\alpha_1+1} \cdots I_{\alpha_1+\alpha_2}] \cdots [I_{\alpha_1+\cdots+\alpha_{k-1}+1} \cdots I_n].$$

and let

$$\Psi_f(I) = \sum_{\alpha \in C(n)} c_{\alpha_1} \cdots c_{\alpha_k} \alpha[I].$$

Example

$$(2,1)[i_1i_2i_3] = [i_1i_2]i_3.$$

Theorem (Diehl-Ebrahimi-Fard-T., 2021)

The twisted quasi-shuffle

$$I *_f J := \Psi_f^{-1}(\Psi_f(I) * \Psi_f(J))$$

is associative. Moreover, it is also a CTD algebra.

Transformations of the first kind

Theorem (Diehl-Ebrahimi-Fard-T., 2021)

Let f be a formal diffeomorphism. The generalized iterated-sums signature satisfies

$$\langle \operatorname{Sig}^f(\mathbf{x}), I \rangle = \langle \operatorname{Sig}(\mathbf{x}), \Psi_f(I) \rangle,$$

that is,

$$\operatorname{Sig}^f(\mathbf{x}) = \Psi_f^*(\operatorname{Sig}(\mathbf{x})).$$

In particular, $\operatorname{Sig}^f(\mathbf{x})$ satisfies the twisted quasi-shuffle identity

$$\langle \operatorname{Sig}^f(\mathbf{x}), I \rangle \langle \operatorname{Sig}^f(\mathbf{x}), J \rangle = \langle \operatorname{Sig}^f(\mathbf{x}), I *_f J \rangle.$$

One can check that, since $f_2^{-1}(t) = \sqrt{2t+1} - 1 = t - t^2/2 + t^3/2 - 5t^4/8 + \cdots$ (and $\Psi_f^{-1} = \Psi_{f^{-1}}$):

$$\langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_1 \rangle \langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_2 i_3 \rangle = \left\langle \operatorname{Sig}^{f_2}(\mathbf{x}), i_1 i_2 i_3 + i_2 i_1 i_3 + i_2 i_3 i_1 + \frac{1}{2} [i_1 i_2 i_3] \right\rangle$$

The map Ψ_f with $f(t) = e^t - 1$ is known as Hoffman's exponential, and the associated twisted quasi-shuffle is simply the shuffle product.

Transformations of the second kind

Now we only observe a polynomially transformed path: for $P: \mathbb{R}^d \to \mathbb{R}^e$ we consider $\mathbf{y} := (P(\mathbf{x}_0), \dots, P(\mathbf{x}_{N-1}))$.

Example

 $P: \mathbb{R}^2 \to \mathbb{R}$ given by $P(\mathbf{x}) = ||\mathbf{x}||^2$. Then

$$\langle \operatorname{Sig}(\mathbf{y}), e_1 e_1 \rangle = \sum_{0 \le j_1 < j_2 < N} \left((\mathbf{x}_{j_1}^1)^2 + (\mathbf{x}_{j_1}^2)^2 \right) \left((\mathbf{x}_{j_2}^1)^2 + (\mathbf{x}_{j_2}^2)^2 \right)$$
$$= \langle \operatorname{Sig}(\mathbf{x}), [11][11] + [11][22] + [22][11] + [22][22] \rangle.$$

Let $P = (p_1, \ldots, p_e)$, with

$$p_j(\mathbf{x}) = \sum_{\mathbf{v} \in \mathbb{N}^d} p_{j;\mathbf{v}} \mathbf{x}^{\mathbf{v}}.$$

This induces a map $p_{\diamond} \colon \mathbb{R}^e \to \mathsf{T}(\mathsf{S}(\mathbb{R}^d))$ by

$$p_{\diamond}(e_i) = \sum_{v \in \mathbb{N}^d} p_{j;v} e_1^{\hat{\otimes} v_1} \hat{\otimes} \cdots \hat{\otimes} e_d^{v_d}.$$

It extends uniquely to a map $\Phi^P : T(S(\mathbb{R}^e)) \to T(S(\mathbb{R}^d))$.

Transformations of the second kind

Theorem (Diehl-Ebrahimi-Fard-T., 2021)

Let $P: \mathbb{R}^d \to \mathbb{R}^e$ be a polynomial transformation, and consider the transformed time series $\mathbf{y} = (P(\mathbf{x}_0), \dots, P(\mathbf{x}_{N-1}))$. The identity

$$\langle \operatorname{Sig}(\mathbf{y}), I \rangle = \langle \operatorname{Sig}(\mathbf{x}), \Phi^P(I) \rangle$$

holds.

In the previous example: $p_{\diamond}(e_1) = e_1 \, \hat{\otimes} \, e_1 + e_2 \, \hat{\otimes} \, e_2 \sim [11] + [22]$ so that $\Phi^P(e_1e_1) = p_{\diamond}(e_1)p_{\diamond}(e_1)$

$$\Phi^{P}(e_{1}e_{1}) = p_{\diamond}(e_{1})p_{\diamond}(e_{1})$$

$$= ([11] + [22])([11] + [22])$$

$$= [11][11] + [11][22] + [22][11] + [22][22].$$

Theorem (Diehl-Ebrahimi-Fard-T., 2021)

The following "Schur-Weyl" duality holds: for any polynomial map P and invertible series f,

$$\Phi^P \circ \Psi_f = \Psi_f \circ \Phi^P.$$

Thanks for your attention!

