Generalized iterated-sums signatures

Outline

2. ISS as feature map
3. Quasi-shuffle algebra
4. Some properties
5. Finer structure of quasi-shuffle
6. Transformations of the first kind
7. Transformations of the second kind

ISS as feature map

Feature extraction takes a data point $x \in \mathfrak{X}$ and maps it to $\phi(\mathbf{x}) \in \mathscr{F}$ in feature space.

If \mathfrak{X} consists of sequences (time series) in \mathbb{R}^{d}, (Bonnier-Oberhauser-Toth, 2020) propose to define another feature map $\Phi: \mathfrak{X} \rightarrow \mathrm{T}(\mathfrak{F})$ by

$$
\Phi(\mathbf{x})=\prod_{0 \leq j<N}^{\rightarrow}\left(1+\phi\left(\mathbf{x}_{j}\right)\right)
$$

Depending on the properties of ϕ we get different properties of Φ.

One common choice is the polynomial augmentation

$$
\phi(\mathbf{x})=\sum_{n=1}^{\infty} \mathbf{x}^{\otimes n}
$$

The iterated-sums signature (Diehl-Ebrahimi-Fard-T., 2020) is a map from sequence space \mathfrak{X} to a tensor space $\mathrm{T}(V)$, with $V=\mathrm{S}\left(\mathbb{R}^{d}\right)$.

It admits the following factorization (can be taken as def.):

$$
\begin{aligned}
\operatorname{Sig}(\mathbf{x}) & =\prod_{0 \leq j<N}^{\rightarrow}\left(1+\sum_{n=1}^{\infty} \mathbf{x}_{j}^{\otimes n}\right) \\
& =\prod_{0 \leq j<N}^{\rightarrow}\left(1-\mathbf{x}_{j}\right)^{-1} \\
& =1+\sum_{n=1}^{\infty} \operatorname{Sig}^{n}(\mathbf{x})
\end{aligned}
$$

where

$$
\operatorname{Sig}^{n}(\mathbf{x}):=\sum_{0 \leq i_{1}<\cdots<i_{n}<N} \sum_{k_{1}, \ldots, k_{n}=1}^{\infty} \mathbf{x}_{i_{1}}^{\otimes k_{1}} \cdots \mathbf{x}_{i_{n}}^{\otimes k_{n}}
$$

Quasi-shuffle algebra

Assume we fix a basis $\left\{e_{1}, \ldots, e_{d}\right\}$ of \mathbb{R}^{d}. Expanding each term we find

$$
\operatorname{Sig}^{n}(\mathbf{x})=\sum_{I \in I_{n}} M^{I}(\mathbf{x}) e_{I}
$$

Here:

- The set I consists of n-tuples of multi-indices on $\{1, \ldots, d\}$,
- For $I=\left(I_{1}, \ldots, I_{n}\right) \in I_{n}$,

$$
e_{I}=\left(e_{I_{1}^{1}} \hat{\otimes} \cdots \hat{\otimes} e_{I_{1}^{k_{1}}}\right) \cdots\left(e_{I_{n}^{1}} \hat{\otimes} \cdots \hat{\otimes} e_{I_{n}^{k_{n}}}\right)
$$

- For $I \in I_{n}$,

$$
M^{I}(\mathbf{x})=\sum_{0 \leq j_{1}<\cdots<j_{n}<N} \mathbf{x}_{j_{1}}^{I_{1}^{1}} \cdots \mathbf{x}_{j_{1}}^{I_{1}^{K_{1}}} \cdots \mathbf{x}_{j_{n}}^{I_{n}^{1}} \cdots \mathbf{x}_{j_{n}}^{I_{n}^{K_{n}}} .
$$

Shorthand:

$$
\begin{aligned}
e_{I} \hat{\otimes} e_{J} & \sim[I J] \\
e_{I} e_{J} & \sim I J, \\
e_{I} & \sim\left[i_{1}^{1} \cdots i_{1}^{k_{1}}\right] \cdots\left[i_{n} \cdots i_{n}^{k_{n}}\right], \\
M^{I}(\mathbf{x}) & \sim\left\langle\operatorname{Sig}(\mathbf{x}), e_{I}\right\rangle .
\end{aligned}
$$

Definition (Quasi-shuffle (stuffle, sticky shuffle, ...) product)

For $I \in I_{n}, J \in I_{m}$ and $a, b \in I_{1}$,

$$
I a * J b:=(I * J b) a+(I a * J) b+(I * J)[a b]
$$

Example

$$
\begin{aligned}
i_{1}\left[i_{2}^{1} i_{2}^{2}\right] * j_{1}=i_{1}\left[i_{2}^{1} i_{2}^{2}\right] j_{1} & +i_{1} j_{1}\left[i_{2}^{1} i_{2}^{2}\right]+j_{1} i_{1}\left[i_{2}^{1} i_{2}^{2}\right] \\
& +\left[i_{1} j_{1}\right]\left[i_{2}^{1} i_{2}^{2}\right]+i_{1}\left[i_{2}^{1} i_{2}^{2} j_{1}\right]
\end{aligned}
$$

Some properties

Theorem (Diehl-Ebrahimi-Fard-T., 2020)
The iterated sums-signature satisfies the following properties:

- Chen's identity:

$$
\operatorname{Sig}(\mathbf{x})_{n, m} \operatorname{Sig}(\mathbf{x})_{m, l}=\operatorname{Sig}(\mathbf{x})_{n, l},
$$

- quasi-shuffle identity:

$$
\langle\operatorname{Sig}(\mathbf{x}), I\rangle\langle\operatorname{Sig}(\mathbf{x}), J\rangle=\langle\operatorname{Sig}(\mathbf{x}), I * J\rangle .
$$

Theorem (Bonnier-Oberhauser-Toth, 2020)
The iterated-sums signatures is a universal map. That is, under some compactness assumptions, every functional $\mathcal{F}: \mathfrak{X} \rightarrow \mathbb{R}$ can be a approximated by a linear function of the iterated-sums signature.

Finer structure of quasi-shuffle

The quasi-shuffle product can be split: $I * J=I \succ J+J \succ I+I \bullet J$ where

$$
I>J a=(I * J) a, \quad I a \bullet J b=(I * J)[a b] .
$$

Proposition

The triple $\left.\left(\mathrm{T}\left(\mathrm{S}\left(\mathbb{R}^{d}\right)\right),\right\rangle, \bullet\right)$ is a CTD algebra:

$$
\begin{aligned}
I>(J>K) & =(I * J)>K, \\
(I>J) \bullet K & =I>(J \bullet K), \\
(I \bullet J) \bullet K & =I \bullet(J \bullet K) .
\end{aligned}
$$

In fact, it is the free CTD algebra (Loday, 2007).
Theorem (Diehl-Ebrahimi-Fard-T., 2021)
The iterated-sums signature is the unique CTD morphism such that $i \mapsto\left(\mathbf{x}_{k}^{i}: 0 \leq k<N\right)$. In particular

$$
\langle\operatorname{Sig}(\mathbf{x}), I\rangle J\rangle=\sum_{j=1}^{N-1} \sum_{i=0}^{j-1}\left\langle\operatorname{Sig}(\mathbf{x})_{0, j}, I\right\rangle\left\langle\operatorname{Sig}(\mathbf{x})_{j, j+1}, J\right\rangle .
$$

Transformations of the first kind

We apply a "formal diffeomorphism" $f \in t \mathbb{R}[[t]]$ on top of the polynomial extension $\phi_{P}: \mathfrak{X} \rightarrow \mathrm{S}\left(\mathbb{R}^{d}\right)$.
Let $f(t)=\sum_{n \geq 0} c_{n} t^{n}$ with $c_{0}=0, c_{1}=1$. Induces a map on the tensor algebra by

$$
F(S)=\sum_{n=1}^{\infty} c_{n} S^{n}
$$

Let $\Psi_{f}^{*}: \mathfrak{X} \rightarrow \mathrm{T}\left(S\left(\mathbb{R}^{d}\right)\right)$ by $\Psi_{f}^{*}:=F \circ \phi_{P}$. The resulting signature is

$$
\operatorname{Sig}^{f}(\mathbf{x})=\prod_{0 \leq j<N}\left(1+F\left(\sum_{n=1}^{\infty} \mathbf{x}_{j}^{\otimes n}\right)\right)
$$

Running example: $f_{2}(t)=t+\frac{1}{2} t^{2}$ (in general $f_{p}(t)=t+\frac{1}{2} t^{2}+\cdots+\frac{1}{p!} t^{p}$ as in Kiraly-Oberhauser, 2019).

$$
\operatorname{Sig}^{f_{p}}(\mathbf{x})=\prod_{0 \leq j<N} \sum_{k=0}^{p} \frac{1}{k!}\left(\sum_{n=1}^{\infty} \mathbf{x}_{j}^{\otimes n}\right)^{k} .
$$

Transformations of the first kind

A simple case:

$$
\begin{aligned}
\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{1}\right\rangle & =\sum_{j=0}^{N-1} \mathbf{x}_{j}^{i_{1}} \\
\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{1} i_{2}\right\rangle & =\sum_{0 \leq j_{1}<j_{2}<N} \mathbf{x}_{j_{1}}^{i_{1}} \mathbf{x}_{j_{2}}^{i_{2}}+\frac{1}{2} \sum_{j=0}^{N-1} \mathbf{x}_{j}^{i_{1}} \mathbf{x}_{j}^{i_{2}} .
\end{aligned}
$$

Therefore,

$$
\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{1}\right\rangle\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{2}\right\rangle=\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{1} i_{2}+i_{2} i_{1}\right\rangle
$$

However, it can be checked that this fails for the product

$$
\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{1}\right\rangle\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{2} i_{3}\right\rangle
$$

(Hoffman-Ihara, 2017) introduce a map induced by a formal diffeomorphism by performing contractions. For $I=\left(I_{1}, \ldots, I_{n}\right) \in I_{n}$ and $\alpha \in C(n)$ define
$\alpha[I]=\left[I_{1} \cdots I_{\alpha_{1}}\right]\left[I_{\alpha_{1}+1} \cdots I_{\alpha_{1}+\alpha_{2}}\right] \cdots\left[I_{\alpha_{1}+\cdots+\alpha_{k-1}+1} \cdots I_{n}\right]$. and let

$$
\Psi_{f}(I)=\sum_{\alpha \in C(n)} c_{\alpha_{1}} \cdots c_{\alpha_{k}} \alpha[I] .
$$

Example

$(2,1)\left[i_{1} i_{2} i_{3}\right]=\left[i_{1} i_{2}\right] i_{3}$.
Theorem (Diehl-Ebrahimi-Fard-T., 2021)
The twisted quasi-shuffle

$$
I *_{f} J:=\Psi_{f}^{-1}\left(\Psi_{f}(I) * \Psi_{f}(J)\right)
$$

is associative. Moreover, it is also a CTD algebra.

Transformations of the first kind

Theorem (Diehl-Ebrahimi-Fard-T., 2021)

Let f be a formal diffeomorphism. The generalized iterated-sums signature satisfies

$$
\left\langle\operatorname{Sig}^{f}(\mathbf{x}), I\right\rangle=\left\langle\operatorname{Sig}(\mathbf{x}), \Psi_{f}(I)\right\rangle
$$

that is,

$$
\operatorname{Sig}^{f}(\mathbf{x})=\Psi_{f}^{*}(\operatorname{Sig}(\mathbf{x}))
$$

In particular, $\operatorname{Sig}^{f}(\mathbf{x})$ satisfies the twisted quasi-shuffle identity

$$
\left\langle\operatorname{Sig}^{f}(\mathbf{x}), I\right\rangle\left\langle\operatorname{Sig}^{f}(\mathbf{x}), J\right\rangle=\left\langle\operatorname{Sig}^{f}(\mathbf{x}), I *_{f} J\right\rangle
$$

One can check that, since $f_{2}^{-1}(t)=\sqrt{2 t+1}-1=t-t^{2} / 2+t^{3} / 2-5 t^{4} / 8+\cdots\left(\right.$ and $\left.\Psi_{f}^{-1}=\Psi_{f-1}\right)$:

$$
\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{1}\right\rangle\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{2} i_{3}\right\rangle=\left\langle\operatorname{Sig}^{f_{2}}(\mathbf{x}), i_{1} i_{2} i_{3}+i_{2} i_{1} i_{3}+i_{2} i_{3} i_{1}+\frac{1}{2}\left[i_{1} i_{2} i_{3}\right]\right\rangle
$$

The map Ψ_{f} with $f(t)=e^{t}-1$ is known as Hoffman's exponential, and the associated twisted quasi-shuffle is simply the shuffle product.

Transformations of the second kind

Now we only observe a polynomially transformed path: for $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{e}$ we consider $\mathbf{y}:=\left(P\left(\mathbf{x}_{0}\right), \ldots, P\left(\mathbf{x}_{N-1}\right)\right)$.

Example

$P: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $P(\mathbf{x})=\|\mathbf{x}\|^{2}$. Then

$$
\begin{aligned}
\left\langle\operatorname{Sig}(\mathbf{y}), e_{1} e_{1}\right\rangle & =\sum_{0 \leq j_{1}<j_{2}<N}\left(\left(\mathbf{x}_{j_{1}}^{1}\right)^{2}+\left(\mathbf{x}_{j_{1}}^{2}\right)^{2}\right)\left(\left(\mathbf{x}_{j_{2}}^{1}\right)^{2}+\left(\mathbf{x}_{j_{2}}^{2}\right)^{2}\right) \\
& =\langle\operatorname{Sig}(\mathbf{x}),[11][11]+[11][22]+[22][11]+[22][22]\rangle .
\end{aligned}
$$

Let $P=\left(p_{1}, \ldots, p_{e}\right)$, with

$$
p_{j}(\mathbf{x})=\sum_{\nu \in \mathbb{N}^{d}} p_{j ; \nu} \mathbf{x}^{\nu}
$$

This induces a map $p_{\diamond}: \mathbb{R}^{e} \rightarrow \mathrm{~T}\left(\mathrm{~S}\left(\mathbb{R}^{d}\right)\right)$ by

$$
p_{\diamond}\left(e_{i}\right)=\sum_{v \in \mathbb{N}^{d}} p_{j ; v} e_{1}^{\hat{\otimes} v_{1}} \hat{\otimes} \cdots \hat{\otimes} e_{d}^{v_{d}}
$$

It extends uniquely to a map $\Phi^{P}: \mathrm{T}\left(\mathrm{S}\left(\mathbb{R}^{e}\right)\right) \rightarrow \mathrm{T}\left(\mathrm{S}\left(\mathbb{R}^{d}\right)\right)$.

Transformations of the second kind

Theorem (Diehl-Ebrahimi-Fard-T., 2021)
Let $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{e}$ be a polynomial transformation, and consider the transformed time series $\mathbf{y}=\left(P\left(\mathbf{x}_{0}\right), \ldots, P\left(\mathbf{x}_{N-1}\right)\right)$. The identity

$$
\langle\operatorname{Sig}(\mathbf{y}), I\rangle=\left\langle\operatorname{Sig}(\mathbf{x}), \Phi^{P}(I)\right\rangle
$$

holds.

In the previous example: $p_{\diamond}\left(e_{1}\right)=e_{1} \hat{\otimes} e_{1}+e_{2} \hat{\otimes} e_{2} \sim$ [11] + [22] so that

$$
\begin{aligned}
\Phi^{P}\left(e_{1} e_{1}\right) & =p_{\diamond}\left(e_{1}\right) p_{\diamond}\left(e_{1}\right) \\
& =([11]+[22])([11]+[22]) \\
& =[11][11]+[11][22]+[22][11]+[22][22] .
\end{aligned}
$$

Theorem (Diehl-Ebrahimi-Fard-T., 2021)
The following "Schur-Weyl" duality holds: for any polynomial map P and invertible series f,

$$
\Phi^{P} \circ \Psi_{f}=\Psi_{f} \circ \Phi^{P}
$$

Thanks for your attention!

