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Introduction

» Consider data given as points on RP.
» Good local parametrization = Data lies on manifold.
» Assuming that such a manifold exists: Manifold hypothesis.

» Inferring properties of such manifold: Manifold learning.
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Introduction
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Synthetic images of face (embedded to R from 64 x 64
images), projected to R? using the LTSA algorithm.
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Introduction
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» PCA (principal component analysis): Optimal linear regression
> Local PCA: Optimal local linear regression

» Local PCA on manifold — Tangent space & dimension
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Introduction

Figure: Local PCA estimates tangent spaces and intrinsic dimension(=2)
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Introduction

Question: How to quantify accuracy of estimating tangent
space and intrinsic dimension with Local PCA?
Answer: Use a matrix concentration inequality and a

transportation plan.
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PCA (principal component analysis)

If x = {x1,...xm} € RP then PCA is the diagonalization:

Y[0,] = % i(x,- —R)(x; — %) = UAUT

i=1

where X = L ™. x;, U is orthogonal and A = diag(A1, -+ Ap).

Main interest: largest eigenvalues and the corresponding

eigenvectors.
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Local PCA - Tangent space

If y € RP and r > 0, Local PCA performs PCA on:

{x1,...Xm} N B(y)

Let M C RP be a compact smooth d-dim. submanifold. If
X = (Xy, -+ Xny) is drawn from the uniform distribution on M

and tiny r, we should have:

Ti = m4[X;] = Tx. M, where X; = X N B,(X;)
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Local PCA - Dimension
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Theorem A - Tangent Space

Let X1, ... X be an iid sample from p, with = Law (X + Y).

X has probability density ¢ : M — R and || Y]] <'s.

Given 6,6 > 0, suppose that:

m(r — 2s)9
log m

V2rs<r<5S; and >S5

Then with probability at least 1 — 9,

maxé (?,‘, T,') < 0

Here S1, S, are:

_clTsin9 itz

" (d+2)  3Qmin + 8dwmax + 5aT
d + 2)? D

S, — o(d+2) log<C3(s >

51

WdPmin sin2 0

and ¢; = 1/16, ¢ = 4642, c3 = 14.
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Theorem B - Dimension

Let Xi,...Xn be an iid sample from p, with g = Law(X + Y).
X has probability density ¢ : M — R and || Y|| < s.
Given 1,0 > 0, suppose that:

— 25)d
V21s<r<5 and u >S5,
log m
Then with probability at least 1 — 9,
Vi, di=d
Here 51, S, are:
arT Pmin

S =

(d+2)D(1+771)  3¢min + 8dPmax + 50T

d 2 2D2 1 n—1)2 D
52:C2( +2)°D°(L+n"") |Og<C35 )
©

WdPmin

and ¢; = 1/48, ¢ = 41778, c3 = 14.
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Theorem B - Dimension

Let X1, ... X be an iid sample from p, with = Law (X + Y).

X has probability density ¢ : M — R and || Y|| < s.

Given 7,6 > 0, suppose that:
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Strategy of proof

Total estimation error is allocated to two approximations:
Empirical covariance =~ True covariance
Covariance over curvy disk =~ Covariance over flat disk.

Part 1 is a modified matrix Hoeffding inequality.
Part 2 is measured using the Wasserstein distance. This is

translated to matrix norm using a Lipschitz relation.
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Strategy of proof

L’,Tf’lfj”g””l ‘rY'V\e Cowvariance
Covariance Cpuari¢tm e over Disk
A -
/W‘u,2 ~ /u"u‘z ~  Wify,
port 2

Part 1: Matrix Hoeffding: > [/i/1/ | = X[u|u ]
Part 2: Wasserstein distance and Lipschitz relation
Wi (ply;, Unifa,) = 0 and thus X[u|y,| = ]
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Transportation plan

? Qnisv expy \F\»ldln L‘m’forry Y:alp

e

Flattening a manifold using a transportation plan.

1.18max
Q =30+ (p+20)* + %(% +(p+20)2)(1 — Q)
2.18
+ Tp(‘»@max — Pmin) + 1-3893

<34 8Wmaxd + bart

Pmin
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Thank you!
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