

Tangent Space and Dimension Estimation with the Wasserstein Distance

> Uzu Lim
with Harald Oberhauser and Vidit Nanda

Introduction

- Consider data given as points on \mathbb{R}^{D}.
$>$ Good local parametrization \Longrightarrow Data lies on manifold.
- Assuming that such a manifold exists: Manifold hypothesis.
- Inferring properties of such manifold: Manifold learning.

Introduction

Figure: Synthetic images of face (embedded to $\mathbb{R}^{64^{2}}$ from 64×64 images), projected to \mathbb{R}^{2} using the LTSA algorithm.

Introduction

- PCA (principal component analysis): Optimal linear regression
- Local PCA: Optimal local linear regression
- Local PCA on manifold \rightarrow Tangent space \& dimension

Introduction

Figure: Local PCA estimates tangent spaces and intrinsic dimension(=2)

Introduction

- Question: How to quantify accuracy of estimating tangent space and intrinsic dimension with Local PCA?
- Answer: Use a matrix concentration inequality and a transportation plan.

PCA (principal component analysis)

- If $\underline{x}=\left\{x_{1}, \ldots x_{m}\right\} \subseteq \mathbb{R}^{D}$ then PCA is the diagonalization:

$$
\Sigma\left[\delta_{\underline{\chi}}\right]=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}=U \wedge U^{\top}
$$

where $\bar{x}=\frac{1}{m} \sum_{i} x_{i}, U$ is orthogonal and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots \lambda_{D}\right)$.

- Main interest: largest eigenvalues and the corresponding eigenvectors.

Local PCA - Tangent space

- If $y \in \mathbb{R}^{D}$ and $r>0$, Local PCA performs PCA on:

$$
\left\{x_{1}, \ldots x_{m}\right\} \cap B_{r}(y)
$$

- Let $M \subseteq \mathbb{R}^{D}$ be a compact smooth d-dim. submanifold. If $\underline{X}=\left(X_{1}, \cdots X_{m}\right)$ is drawn from the uniform distribution on M and tiny r, we should have:

$$
\hat{T}_{i}:=\pi_{d}\left[\underline{X}_{i}\right] \approx T_{X_{i}} M, \text { where } \underline{X}_{i}=\underline{X} \cap B_{r}\left(X_{i}\right)
$$

Local PCA - Dimension

Theorem A - Tangent Space

Let $X_{1}, \ldots X_{m}$ be an iid sample from μ, with $\mu=\operatorname{Law}(X+Y)$. X has probability density $\varphi: M \rightarrow \mathbb{R}$ and $\|Y\| \leq s$.
Given $\theta, \delta>0$, suppose that:

$$
\sqrt{2 \tau s} \leq r \leq S_{1} \quad \text { and } \quad \frac{m(r-2 s)^{d}}{\log m} \geq S_{2}
$$

Then with probability at least $1-\delta$,

$$
\max _{i} \measuredangle\left(\hat{T}_{i}, T_{i}\right) \leq \theta
$$

Here S_{1}, S_{2} are:

$$
\begin{aligned}
& S_{1}=\frac{c_{1} \tau \sin \theta}{(d+2)} \cdot \frac{\varphi_{\text {min }}}{3 \varphi_{\text {min }}+8 d \varphi_{\text {max }}+5 \alpha \tau} \\
& S_{2}=\frac{c_{2}(d+2)^{2}}{\omega_{d} \varphi_{\min } \sin ^{2} \theta} \log \left(\frac{c_{3} D}{\delta}\right)
\end{aligned}
$$

and $c_{1}=1 / 16, c_{2}=4642, c_{3}=14$.

Theorem A - Tangent Space

Let $X_{1}, \ldots X_{m}$ be an iid sample from μ, with $\mu=\operatorname{Law}(X+Y)$. X has probability density $\varphi: M \rightarrow \mathbb{R}$ and $\|Y\| \leq s$.
Given $\theta, \delta>0$, suppose that:

$$
\sqrt{2 \tau s} \leq r \leq S_{1} \quad \text { and } \quad \frac{m(r-2 s)^{d}}{\log m} \geq S_{2}
$$

Then with probability at least $1-\delta$,

$$
\max _{i} \measuredangle\left(\widehat{T}_{i}, T_{i}\right) \leq \theta
$$

Here S_{1}, S_{2} are:

$$
\begin{aligned}
& \qquad \begin{aligned}
S_{1} & =\frac{c_{1} \tau \sin \theta}{(d+2)} \cdot \frac{\varphi_{\text {min }}}{3 \varphi_{\min }+8 d \varphi_{\max }+5 \alpha \tau} \\
S_{2} & =\frac{c_{2}(d+2)^{2}}{\omega_{d} \varphi_{\min } \sin ^{2} \theta} \log \left(\frac{c_{3} D}{\delta}\right) \\
\text { and } c_{1}=1 / 16, c_{2} & =4642, c_{3}=14 .
\end{aligned}
\end{aligned}
$$

Theorem A - Tangent Space

Let $X_{1}, \ldots X_{m}$ be an iid sample from μ, with $\mu=\operatorname{Law}(X+Y)$. X has probability density $\varphi: M \rightarrow \mathbb{R}$ and $\|Y\| \leq s$.
Given $\theta, \delta>0$, suppose that:

$$
\sqrt{2 \tau s} \leq r \leq S_{1} \quad \text { and } \quad \frac{m(r-2 s)^{d}}{\log m} \geq S_{2}
$$

Then with probability at least $1-\delta$,

$$
\max _{i} \measuredangle\left(\widehat{T}_{i}, T_{i}\right) \leq \theta
$$

Here S_{1}, S_{2} are:

$$
\begin{aligned}
& \qquad \begin{array}{l}
S_{1}=\frac{c_{1} \tau \sin \theta}{(d+2)} \cdot \frac{\varphi_{\min }}{3 \varphi_{\min }+8 d \varphi_{\max }+5 \alpha \tau} \\
S_{2}=\frac{c_{2}(d+2)^{2}}{\omega_{d} \varphi_{\min } \sin ^{2} \theta} \log \left(\frac{c_{3} D}{\delta}\right) \\
\text { and } c_{1}=1 / 16, c_{2}=4642, c_{3}=14 .
\end{array}
\end{aligned}
$$

Theorem B - Dimension

Let $X_{1}, \ldots X_{m}$ be an iid sample from μ, with $\mu=\operatorname{Law}(X+Y)$. X has probability density $\varphi: M \rightarrow \mathbb{R}$ and $\|Y\| \leq s$.
Given $\eta, \delta>0$, suppose that:

$$
\sqrt{2 \tau s} \leq r \leq S_{1} \quad \text { and } \quad \frac{m(r-2 s)^{d}}{\log m} \geq S_{2}
$$

Then with probability at least $1-\delta$,

$$
\forall i, \quad \hat{d}_{i}=d
$$

Here S_{1}, S_{2} are:

$$
\begin{aligned}
& \quad S_{1}=\frac{c_{1} \tau}{(d+2) D\left(1+\eta^{-1}\right)} \cdot \frac{\varphi_{\text {min }}}{3 \varphi_{\text {min }}+8 d \varphi_{\text {max }}+5 \alpha \tau} \\
& S_{2}=\frac{c_{2}(d+2)^{2} D^{2}\left(1+\eta^{-1}\right)^{2}}{\omega_{d} \varphi_{\text {min }}} \log \left(\frac{c_{3} D}{\delta}\right) \\
& \text { and } c_{1}=1 / 48, c_{2}=41778, c_{3}=14 .
\end{aligned}
$$

Theorem B - Dimension

Let $X_{1}, \ldots X_{m}$ be an iid sample from μ, with $\mu=\operatorname{Law}(X+Y)$. X has probability density $\varphi: M \rightarrow \mathbb{R}$ and $\|Y\| \leq s$.
Given $\eta, \delta>0$, suppose that:

$$
\sqrt{2 \tau s} \leq r \leq S_{1} \quad \text { and } \quad \frac{m(r-2 s)^{d}}{\log m} \geq S_{2}
$$

Then with probability at least $1-\delta$,

$$
\forall i, \quad \hat{d}_{i}=d
$$

Here S_{1}, S_{2} are:

$$
\begin{aligned}
& S_{1}=\frac{c_{1} \tau}{(d+2) D\left(1+\eta^{-1}\right)} \cdot \frac{\varphi_{\min }}{3 \varphi_{\min }+8 d \varphi_{\max }+5 \alpha \tau} \\
& S_{2}=\frac{c_{2}(d+2)^{2} D^{2}\left(1+\eta^{-1}\right)^{2}}{\omega_{d} \varphi_{\min }} \log \left(\frac{c_{3} D}{\delta}\right)
\end{aligned}
$$

and $c_{1}=1 / 48, c_{2}=41778, c_{3}=14$.

Strategy of proof

Total estimation error is allocated to two approximations:

1. Empirical covariance \approx True covariance
2. Covariance over curvy disk \approx Covariance over flat disk.

Part 1 is a modified matrix Hoeffding inequality.
Part 2 is measured using the Wasserstein distance. This is translated to matrix norm using a Lipschitz relation.

Strategy of proof

Part 1: Matrix Hoeffding: $\Sigma\left[\hat{\mu} \mid u_{i}\right] \approx \Sigma\left[\mu \mid u_{i}\right]$
Part 2: Wasserstein distance and Lipschitz relation $W_{1}\left(\left.\mu\right|_{U_{i}}\right.$, Unif $\left._{\Delta_{i}}\right) \approx 0$ and thus $\Sigma\left[\left.\mu\right|_{U_{i}}\right] \approx \sum\left[\right.$ Unif $\left._{\triangle_{i}}\right]$.

Transportation plan

Flattening a manifold using a transportation plan.

$$
\begin{aligned}
Q= & 3 \sigma+(\rho+2 \sigma)^{2}+\frac{1.18 \varphi_{\max }}{\phi}\left(2 \rho+(\rho+2 \sigma)^{2}\right)\left(1-\Omega^{d}\right) \\
& +\frac{2.18 \rho}{\phi}\left(\varphi_{\max }-\varphi_{\min }\right)+1.38 \rho^{3} \\
\leq & 3+\frac{8 \varphi_{\max } d+5 \alpha \tau}{\varphi_{\min }}
\end{aligned}
$$

Thank you!

