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Introduction

I Consider data given as points on RD .

I Good local parametrization =⇒ Data lies on manifold.

I Assuming that such a manifold exists: Manifold hypothesis.

I Inferring properties of such manifold: Manifold learning.
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Introduction

Figure: Synthetic images of face (embedded to R642

from 64× 64

images), projected to R2 using the LTSA algorithm.
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Introduction

I PCA (principal component analysis): Optimal linear regression

I Local PCA: Optimal local linear regression

I Local PCA on manifold → Tangent space & dimension
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Introduction

Figure: Local PCA estimates tangent spaces and intrinsic dimension(=2)
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Introduction

I Question: How to quantify accuracy of estimating tangent

space and intrinsic dimension with Local PCA?

I Answer: Use a matrix concentration inequality and a

transportation plan.
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PCA (principal component analysis)

I If x = {x1, . . . xm} ⊆ RD then PCA is the diagonalization:

Σ[δx ] =
1

m

m∑
i=1

(xi − x̄)(xi − x̄)> = UΛU>

where x̄ = 1
m

∑
i xi , U is orthogonal and Λ = diag(λ1, · · ·λD).

I Main interest: largest eigenvalues and the corresponding

eigenvectors.
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Local PCA - Tangent space

I If y ∈ RD and r > 0, Local PCA performs PCA on:

{x1, . . . xm} ∩ Br (y)

I Let M ⊆ RD be a compact smooth d-dim. submanifold. If

X = (X1, · · ·Xm) is drawn from the uniform distribution on M

and tiny r , we should have:

T̂i := πd [X i ] ≈ TXi
M, where X i = X ∩ Br (Xi )
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Local PCA - Dimension

d̂η = min

{
k

∣∣∣∣ (λk+1 + · · ·+ λD) ≤ η · (λ1 + · · ·+ λD)

}
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Theorem A - Tangent Space

Let X1, . . .Xm be an iid sample from µ, with µ = Law(X + Y ).

X has probability density ϕ : M → R and ‖Y ‖ ≤ s.

Given θ, δ > 0, suppose that:

√
2τs ≤ r ≤ S1 and

m(r − 2s)d

logm
≥ S2

Then with probability at least 1− δ,

max
i

]
(
T̂i ,Ti

)
≤ θ

Here S1, S2 are:

S1 =
c1τ sin θ

(d + 2)
· ϕmin

3ϕmin + 8dϕmax + 5ατ

S2 =
c2(d + 2)2

ωdϕmin sin2 θ
log

(
c3D

δ

)
and c1 = 1/16, c2 = 4642, c3 = 14.
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Theorem B - Dimension

Let X1, . . .Xm be an iid sample from µ, with µ = Law(X + Y ).

X has probability density ϕ : M → R and ‖Y ‖ ≤ s.

Given η, δ > 0, suppose that:

√
2τs ≤ r ≤ S1 and

m(r − 2s)d

logm
≥ S2

Then with probability at least 1− δ,

∀i , d̂i = d

Here S1, S2 are:

S1 =
c1τ

(d + 2)D(1 + η−1)
· ϕmin

3ϕmin + 8dϕmax + 5ατ

S2 =
c2(d + 2)2D2(1 + η−1)2

ωdϕmin
log

(
c3D

δ

)
and c1 = 1/48, c2 = 41778, c3 = 14.
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Strategy of proof

Total estimation error is allocated to two approximations:

1. Empirical covariance ≈ True covariance

2. Covariance over curvy disk ≈ Covariance over flat disk.

Part 1 is a modified matrix Hoeffding inequality.

Part 2 is measured using the Wasserstein distance. This is

translated to matrix norm using a Lipschitz relation.
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Strategy of proof

Part 1: Matrix Hoeffding: Σ[µ̂|Ui
] ≈ Σ[µ|Ui

]

Part 2: Wasserstein distance and Lipschitz relation

W1(µ|Ui
,Unif∆i

) ≈ 0 and thus Σ[µ|Ui
] ≈ Σ[Unif∆i

].
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Transportation plan

Flattening a manifold using a transportation plan.

Q =3σ + (ρ+ 2σ)2 +
1.18ϕmax

Φ
(2ρ+ (ρ+ 2σ)2)(1− Ωd)

+
2.18ρ

Φ
(ϕmax − ϕmin) + 1.38ρ3

≤3 +
8ϕmaxd + 5ατ

ϕmin
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Thank you!
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