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Bayesian machine learning

Standard Bayesian problem:

Sample π(θ) ∝ p0(θ) exp(−l(θ))

Moment constrained Bayesian problem:

Sample q ≈ π s.t. Eq[g(θ)] ≤ ϵ

Equality constraint

Sample q ≈ π s.t. g(x) = 0 for q-a.s.x
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Constraints

Type of constraint functions

Agnostic learning: g(θ) = l(θ)

Fairness: g(θ) = cov(ŷ(x, θ), z)

Montonicity: g(θ) = [−∂xŷ(x, θ)]+
Safety: dist(ŷ(x, θ), S)

Type of questions:

What would the solution be?

How to obtain the distribution?

Pareto front of l vs g

Existing fairness works: Chakraborty, Ji, Dimitrakakis ....
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Review: unconstrained case
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Sampling π

Markov Chain Monte Carlo (MCMC)

Simulate a Markov Chain with π being the invariant

Fairly well understood

Require well specified π

Iterates tend to be dependents

MC convergence: O(1/ϵ2)

Variational method

Try to push a density towards π.

Interacting particle system

Promising on some problems.

Understanding is much less.

Potentially can be faster(?)
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Variation formulation

Basic formulation:

Try to minimize KL(qt, π)

Suppose we have samples from a density qt.

We can estimate Eqt [f ] for any f .

Try to push each point x in qt with ϕt(x)

Continuity equation: d
dtqt = −∇ · (ϕqt)

What is the optimal ϕ for reducing KL?

Solve sampling by optimization methods.
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Review: unconstrained Gradient flow

Rate of decay

− d

dt
KL(qt, π) = Eqt [⟨∇ log π −∇ log qt, ϕ⟩]

Try to maximize, write ∇ log π = sπ

max
ϕ∈H

Eqt [⟨sπ − sqt , ϕ⟩]−
1

2
∥ϕ∥2H
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Langevin Dynamics

If we use H = L2
qt

We obtain ϕt = sπ − sqt .

But how to get sqt?

Stein operator Aπ = (sπ +∇)

d

dt
qt = −∇ · (ϕqt) = −∇ · (sπqt) + ∆qt = ∇ · (Aπqt)

Fokker–Plank equation (FPE) of Langevin dynamics
(LD)[Jordan, Kinderlehrer, and Otto 1998]

Algorithmic implementation (ULA):

θt+1 = θt + ηsπ(θt) +
√
2ηξt+1.

Can be seen as an MCMC as well.
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Convergence

Use
d

dt
KL(qt, π) = −Eqt∥sπ − sqt∥2

∫ T
0 Eqt∥sπ − sqt∥2 ≤ KL(q0, π)

Fisher divergence mint≤T Eqt∥sπ − sqt∥2 = O(1/T )

If the log-Sobolev inequality (LSI) holds,
∥sπ − sqt∥2 ≥ cKL(qt, π), KL(qt, π) = O(exp(−ct)).
Can be inherited by ULA (Vempala and Wibisono 2019)

Xin Tong Constrained sampling 10 / 30



SVGD

Use H =RKHS with kernel k,

ϕ(x) =
∫
(sπ(y)−∇ log qt(y))k(x, y)qt(y)dy

A kernel embedding of Aπ into H
Limit point meets Stein equation Eq∗Aπf = 0 for f ∈ H.

ϕ(x) =
∫
sπ(y)k(x, y)qt(y)dy +

∫
∇yk(x, y)qt(y)dy

Replace qt with samples from qt.

θi,t+1 = θi,t+
η

n

n∑
j=1

k(θi,t, θj,t)∇θj,t log π(θj,t)+∇θj,tk(θi,t, θj,t).

Deterministic after initialization.

Stein Variational Gradient Descent (SVGD) [Liu and Wang
2016]
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Convergence

Use

d

dt
KL(qt, π) = −∥sπ − sqt∥2k

:= −
∫
qt(x)qt(y)k(x, y)(sπ − sqt)(x)

T (sπ − sqt)(y)

Kernel Stein divergence mint≤T Eqt∥sπ − sqt∥2k = O(1/T )

Is there LIS ∥sπ − sqt∥2k ≥ cKL(qt, π)?

Actually not corret in general (Gorham and Mackey 2017)
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Moment constrained
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Formulation

Solve
min
q

KL(q, π), s.t. Eq[g] ≤ 0.

Ignore the possibility Eπ[g] ≤ 0, where π is the solution.

Solution: q = πλ∗ ∝ π exp(−λ∗g) and Eπλ∗ [g] = 0

Chicken: Checking Eπλ [g] = 0 requires samples from πλ

Egg: sampling from πλ requires λ

Double loop: MCMC or variational, feasible but expensive
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Primal dual gradient flow (PDGF)

Reformulate as

min
q

max
λ≥0

{L(q, λ) = KL(q || π) + λEq[g]} .

Gradient ascent on λ:

d

dt
λt = [ηEqt [g]]λt,+

When H = L2, gradient descent on q via ϕ:

ϕt = ∇(log πλt − log qt) = sπ − λt∇g − sq

When H =RKHS, gradient descent on q via ϕ:

ϕt(x) =

∫
(sπ(y)− λt∇g(y) +∇y)k(x, y)qt(y)dy

Assume
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Convergence

Theorem

Suppose
∥sqt − sπλ∗∥

2
qt ≥ c1(Eqt [g]− Eπλ∗ [g])

2

LD-PDGF finds solutions ∥sqt − sπλ∗∥2qt = O(1/T ). If g is
convex, π satisfies log Sobolev, then linear convergence for
KL(qt, πλ∗)

For SVGD, ∥ · ∥2qt is replaced by kernel Stein discrepancy.

Theorem

Suppose
∥sqt − sπλ∗∥

2
k ≥ c1(Eqt [g]− Eπλ∗ [g])

2

LD-PDGF finds solutions ∥sqt − sπλ∗∥2k = O(1/T ).
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Constraint Controlled gradient flow (CCGF)

Try to solve

max
ϕ

Eqt [⟨sπ−sqt , ϕ⟩]−
1

2
∥ϕ∥2H, s.t.

d

dt
Eqtg = EqtϕT∇g ≤ −αEqt [g]

Solve quadratic opt.

min
λ≥0

max
ϕ

Eqt [⟨sπ − sqt , ϕ⟩]−
1

2
∥ϕ∥2H + λ(EqtϕT∇g + αEqt [g])

We have ϕt = sπ − λt∇g − sq (LD case)

λt = max

(
αEqt [g] + ⟨sπ − sqt ,∇g⟩qt

∥∇g∥2qt
, 0

)
Or ϕt(x) =

∫
(sπ − λt∇g − sq)(y)k(x, y)qt(y)dy (SVGD case).

λt = max

(
αEqt [g] + ⟨sπ − sqt ,∇g⟩k

∥∇g∥2k
, 0

)
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Convergence

Theorem

Suppose λt is bounded by a constant, LD-CCGF finds solutions
∥sqt − sπλ∗∥2qt = O(1/T ). If g is convex, π satisfies log Sobolev,
then linear convergence for KL(qt, πλ∗)

For SVGD, ∥ · ∥2qt is replaced by kernel Stein discrepancy.

Theorem

Suppose λt is bounded by a constant, SVGD-CCGF finds
solutions ∥sqt − sπλ∗∥2k = O(1/T ).
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Numerical results

Logic and Montonicity constrained logistic regression.
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Numerical results

Fairness constrained Neural Network
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Equality constrained
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Overview

Formulation of problem

Minimize KL(q, π) so that q is supported on
G0 = {x : g(x) = 0}
Ill-posed: q is singular w.r.t. π.

Try to sample the conditional measaure π0(·) = π[ · |g = 0].

Haussdorf density π(x)/|∇g(x)| on G0.

Sampling on manifolds

Several existing MCMC (Girolami, Brubaker, Lelievre...)

Assume MCMC start and stay on G0

Often require explicit knowledge of G0 (parameterization,
geodesic, projection)

Not so friendly for large scale ML models.
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Deriving algorithm

Try to solve

max
ϕ

Eqt [⟨sπ − sqt , v⟩]−
1

2
∥v∥2H,

s.t.
d

dt
g(xt) = vT (x)∇g(x) = −ψ(g(x))
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Deriving algorithm

Along ∇g
Use ψ(z) = αsign(z)|z|1+β

The component along ∇g: v♯ = −ψ(g(x))∇g(x)
∥∇g(x)∥2

Along the orthogonal direction:

Projection: D = I − ∇g∇gT
∥∇g∥2

v⊥ = Du, maxu Eqt [(D(sπ − sqt))
Tu]− 1

2∥Du∥
2
H.

LD: v⊥ = D(sπ − sqt)

SVGD:

v⊥(x) =

∫
D(x)k(x, y)D(y)(sπ − sqt)(y)qt(y)dy

=

∫
k⊥(x, y)(sπ − sqt)(y)qt(y)dy
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Implementation

LD: v⊥ = D(sπ − sqt) cannot be implemented direclty by
dxt = (v♯(xt) +D(xt)sπ(xt))dt+

√
2D(xt)dWt.

Consider adding a correction drift r

Theorem

When r(x) = ∇ ·D(x),

dxt = (v♯(xt) +D(xt)sπ(xt))dt+
√
2D(xt)dWt (1)

its FPE mathches the orthogonal density flow. Moreover, i) the
value g(xt) has deterministic decay d

dtg(xt) = −ψ(xt); ii) for
any f with ∇f⊥∇g = 0, the generator of xt matches the
Langevin ones Lf(x) = ∇f⊤(x)sπ(x) + ∆f(x).
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Convergence

Define orthogonal space (OS) Fisher divergence

F⊥(q, π) = ∥D(sπ − sq)∥2q or ∥D(sπ − sq)∥2k

Theorem

Suppose g(x) is bounded for the initial distribution, and it’s
“regular”, KL(q0, π) <∞, then

MT = max{g(x), x ∼ qT } = O(T
− 1

β ), also convergence in
OS-Fisher mint≤T F⊥(qt, π) = O(log T/T ).

But is OS-Fisher useful?
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Simpler formulation

The distribution Πz = π( · |g(x) = z) is too abstract.

Theorem

Suppose g♯π has Lipschitz density. Then the weak limit of
πη,z(x) ∝ π(x) exp(− 1

2η (g(x)− z)2) as η → 0 concentrates on
Gz = {x : g(x) = z} and is a version of πz. Moreover,

EΠz [Aπϕ] = 0, ∀ϕ⊥∇g.

This gives a Stein equation Eq [Aπϕ] = 0

The tangent bundle of Gz is a subset of ϕ⊥∇g
Eq [Aπϕ] ≤

√
F⊥(q, π) when ∥ϕ∥ϕ = 1.

Eq [Aπϕ] or F⊥(q, π) do not require q being on Gz
This only check the OS directions.

Checking how far is q away from Gz is easy.
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Fisher-¿TV difference

Theorem

Suppose that Πz satisfies κ-Poincare Inequality for |z| ≤ δ, and
q is supported on {x : |g(x)| ≤ δ}. Then for any function f such
that |f | ≤ 1, the following holds

|Eq[f ]− EΠ0 [f ]| ≤
√
κF⊥(q, π) + max

|z|≤δ
|EΠz [f ]− EΠ0 [f ]|.

Decomposition of mean difference/TV

Only in L2 case

Poincare inequality with Euclidean-inheriant distance

Can be used for q supported on Rd.
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Numerical examples

Toy example (Intialized on/off manifold)

Income prediction

Agonostic Bayesian Image classification

Xin Tong Constrained sampling 30 / 30


	Review: unconstrained case
	Moment constrained
	Equality constrained

