# Sampling with constraints

## Xin T Tong BIRS workshop Joint work with Qiang Liu, Xingchao Liu, Ruqi Zhang (UT Austin)

Friday 9<sup>th</sup> September, 2022



- Constrainted sampling
- Review: KL gradient flow without constraint
- Moment Constraints
- Level set constraints
- Sampling with Trustworthy Constraints: A Variational Gradient Framework NeurIPS 2021.
- Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent Under review



Standard Bayesian problem:

Sample  $\pi(\theta) \propto p_0(\theta) \exp(-l(\theta))$ 

Moment constrained Bayesian problem:

Sample 
$$q \approx \pi$$
 s.t.  $\mathbb{E}_q[g(\theta)] \leq \epsilon$ 

Equality constraint

Sample  $q \approx \pi$  s.t. g(x) = 0 for q-a.s.x



## Type of constraint functions

- $\blacksquare$  Agnostic learning:  $g(\theta) = l(\theta)$
- $\blacksquare$  Fairness:  $g(\theta) = \operatorname{cov}(\hat{y}(x,\theta),z)$
- Montonicity:  $g(\theta) = [-\partial_x \hat{y}(x, \theta)]_+$
- $\blacksquare$  Safety:  $\operatorname{dist}(\hat{y}(x,\theta),S)$

Type of questions:

- What would the solution be?
- How to obtain the distribution?
- $\blacksquare$  Pareto front of l vs g

Existing fairness works: Chakraborty, Ji, Dimitrakakis ....

## Review: unconstrained case



## Markov Chain Monte Carlo (MCMC)

- $\blacksquare$  Simulate a Markov Chain with  $\pi$  being the invariant
- Fairly well understood
- $\blacksquare$  Require well specified  $\pi$
- Iterates tend to be dependents
- MC convergence:  $O(1/\epsilon^2)$

Variational method

- Try to push a density towards  $\pi$ .
- Interacting particle system
- Promising on some problems.
- Understanding is much less.
- Potentially can be faster(?)



Basic formulation:

- **•** Try to minimize  $KL(q_t, \pi)$
- Suppose we have samples from a density  $q_t$ .
- We can estimate  $E_{q_t}[f]$  for any f.
- Try to push each point x in  $q_t$  with  $\phi_t(x)$
- Continuity equation:  $\frac{d}{dt}q_t = -\nabla \cdot (\phi q_t)$
- What is the optimal  $\phi$  for reducing KL?
- Solve sampling by optimization methods.



Rate of decay

$$-\frac{d}{dt}\mathrm{KL}(q_t,\pi) = \mathbb{E}_{q_t}[\langle \nabla \log \pi - \nabla \log q_t, \phi \rangle]$$

Try to maximize, write  $\nabla \log \pi = s_{\pi}$ 

$$\max_{\phi \in \mathcal{H}} \mathbb{E}_{q_t} [\langle s_{\pi} - s_{q_t}, \phi \rangle] - \frac{1}{2} \|\phi\|_{\mathcal{H}}^2$$

# Langevin Dynamics



If we use  $\mathcal{H} = L_{q_t}^2$ 

- We obtain  $\phi_t = s_{\pi} s_{q_t}$ .
- But how to get  $s_{q_t}$ ?
- Stein operator  $A_{\pi} = (s_{\pi} + \nabla)$

$$\frac{d}{dt}q_t = -\nabla \cdot (\phi q_t) = -\nabla \cdot (s_\pi q_t) + \Delta q_t = \nabla \cdot (A_\pi q_t)$$

- Fokker–Plank equation (FPE) of Langevin dynamics (LD)[Jordan, Kinderlehrer, and Otto 1998]
- Algorithmic implementation (ULA):

$$\theta_{t+1} = \theta_t + \eta s_\pi(\theta_t) + \sqrt{2\eta} \xi_{t+1}.$$

 $\blacksquare$  Can be seen as an MCMC as well.



Use

$$\frac{d}{dt}\mathrm{KL}(q_t,\pi) = -\mathbb{E}_{q_t} \|s_{\pi} - s_{q_t}\|^2$$

$$\int_0^T \mathbb{E}_{q_t} \| s_\pi - s_{q_t} \|^2 \le \mathrm{KL}(q_0, \pi)$$

- Fisher divergence  $\min_{t \leq T} \mathbb{E}_{q_t} \| s_{\pi} s_{q_t} \|^2 = O(1/T)$
- If the log-Sobolev inequality (LSI) holds,  $\|s_{\pi} - s_{q_t}\|^2 \ge c \operatorname{KL}(q_t, \pi), \operatorname{KL}(q_t, \pi) = O(\exp(-ct)).$
- Can be inherited by ULA (Vempala and Wibisono 2019)

# SVGD



Use  $\mathcal{H} = \text{RKHS}$  with kernel k,

- $\phi(x) = \int (s_{\pi}(y) \nabla \log q_t(y))k(x, y)q_t(y)dy$
- A kernel embedding of  $A_{\pi}$  into  $\mathcal{H}$
- Limit point meets Stein equation  $\mathbb{E}_{q^*}A_{\pi}f = 0$  for  $f \in \mathcal{H}$ .
- $\phi(x) = \int s_{\pi}(y)k(x,y)q_t(y)dy + \int \nabla_y k(x,y)q_t(y)dy$
- Replace  $q_t$  with samples from  $q_t$ .

$$\theta_{i,t+1} = \theta_{i,t} + \frac{\eta}{n} \sum_{j=1}^{n} k(\theta_{i,t}, \theta_{j,t}) \nabla_{\theta_{j,t}} \log \pi(\theta_{j,t}) + \nabla_{\theta_{j,t}} k(\theta_{i,t}, \theta_{j,t}).$$

- Deterministic after initialization.
- Stein Variational Gradient Descent (SVGD) [Liu and Wang 2016]



### Use

$$\frac{d}{dt} \text{KL}(q_t, \pi) = -\|s_{\pi} - s_{q_t}\|_k^2$$
  
:=  $-\int q_t(x)q_t(y)k(x, y)(s_{\pi} - s_{q_t})(x)^T(s_{\pi} - s_{q_t})(y)$ 

- Kernel Stein divergence  $\min_{t \leq T} \mathbb{E}_{q_t} \| s_{\pi} s_{q_t} \|_k^2 = O(1/T)$
- Is there LIS  $||s_{\pi} s_{q_t}||_k^2 \ge c \mathrm{KL}(q_t, \pi)$ ?
- Actually not corret in general (Gorham and Mackey 2017)

# Moment constrained



Solve

$$\min_{q} \operatorname{KL}(q, \pi), \quad s.t. \quad \mathbb{E}_{q}[g] \leq 0.$$

- Ignore the possibility  $\mathbb{E}_{\pi}[g] \leq 0$ , where  $\pi$  is the solution.
- Solution:  $q = \pi_{\lambda^*} \propto \pi \exp(-\lambda^* g)$  and  $\mathbb{E}_{\pi_{\lambda^*}}[g] = 0$
- Chicken: Checking  $\mathbb{E}_{\pi_{\lambda}}[g] = 0$  requires samples from  $\pi_{\lambda}$
- Egg: sampling from  $\pi_{\lambda}$  requires  $\lambda$
- Double loop: MCMC or variational, feasible but expensive



### Reformulate as

$$\min_{q} \max_{\lambda \ge 0} \left\{ L(q, \lambda) = \mathrm{KL}(q \mid\mid \pi) + \lambda \mathbb{E}_{q}[g] \right\}.$$

Gradient ascent on  $\lambda$ :

$$\frac{d}{dt}\lambda_t = [\eta \mathbb{E}_{q_t}[g]]_{\lambda_t,+}$$

When  $\mathcal{H} = L^2$ , gradient descent on q via  $\phi$ :

$$\phi_t = \nabla(\log \pi_{\lambda_t} - \log q_t) = s_\pi - \lambda_t \nabla g - s_q$$

When  $\mathcal{H} = \text{RKHS}$ , gradient descent on q via  $\phi$ :

$$\phi_t(x) = \int (s_\pi(y) - \lambda_t \nabla g(y) + \nabla_y) k(x, y) q_t(y) dy$$

Assume

Xin Tong



#### Theorem

#### Suppose

$$\|s_{q_t} - s_{\pi_{\lambda^*}}\|_{q_t}^2 \ge c_1(\mathbb{E}_{q_t}[g] - \mathbb{E}_{\pi_{\lambda^*}}[g])^2$$

LD-PDGF finds solutions  $||s_{q_t} - s_{\pi_{\lambda^*}}||_{q_t}^2 = O(1/T)$ . If g is convex,  $\pi$  satisfies log Sobolev, then linear convergence for  $KL(q_t, \pi_{\lambda^*})$ 

For SVGD,  $\|\cdot\|_{q_t}^2$  is replaced by kernel Stein discrepancy.

#### Theorem

Suppose

$$|s_{q_t} - s_{\pi_{\lambda^*}}||_k^2 \ge c_1 (\mathbb{E}_{q_t}[g] - \mathbb{E}_{\pi_{\lambda^*}}[g])^2$$

LD-PDGF finds solutions  $\|s_{q_t} - s_{\pi_{\lambda^*}}\|_k^2 = O(1/T)$ .



17 / 30

Try to solve

$$\max_{\phi} \mathbb{E}_{q_t} [\langle s_{\pi} - s_{q_t}, \phi \rangle] - \frac{1}{2} \|\phi\|_{\mathcal{H}}^2, \quad s.t. \frac{d}{dt} \mathbb{E}_{q_t} g = \mathbb{E}_{q_t} \phi^T \nabla g \le -\alpha \mathbb{E}_{q_t} [g]$$

Solve quadratic opt.

$$\min_{\lambda \ge 0} \max_{\phi} \mathbb{E}_{q_t} [\langle s_{\pi} - s_{q_t}, \phi \rangle] - \frac{1}{2} \|\phi\|_{\mathcal{H}}^2 + \lambda (\mathbb{E}_{q_t} \phi^T \nabla g + \alpha \mathbb{E}_{q_t}[g])$$

We have  $\phi_t = s_{\pi} - \lambda_t \nabla g - s_q$  (LD case)

$$\lambda_t = \max\left(\frac{\alpha \mathbb{E}_{q_t}[g] + \langle s_\pi - s_{q_t}, \nabla g \rangle_{q_t}}{\|\nabla g\|_{q_t}^2}, 0\right)$$

Or  $\phi_t(x) = \int (s_\pi - \lambda_t \nabla g - s_q)(y) k(x, y) q_t(y) dy$  (SVGD case).

$$\lambda_t = \max\left(\frac{\alpha \mathbb{E}_{q_t}[g] + \langle s_{\pi} - s_{q_t}, \nabla g \rangle_k}{\|\nabla g\|_k^2}, 0\right)$$

Xin Tong



#### Theorem

Suppose  $\lambda_t$  is bounded by a constant, LD-CCGF finds solutions  $\|s_{q_t} - s_{\pi_{\lambda^*}}\|_{q_t}^2 = O(1/T)$ . If g is convex,  $\pi$  satisfies log Sobolev, then linear convergence for  $KL(q_t, \pi_{\lambda^*})$ 

For SVGD,  $\|\cdot\|_{q_t}^2$  is replaced by kernel Stein discrepancy.

#### Theorem

Suppose  $\lambda_t$  is bounded by a constant, SVGD-CCGF finds solutions  $\|s_{q_t} - s_{\pi_{\lambda^*}}\|_k^2 = O(1/T)$ .

#### Algorithm 3 Primal-Dual Method

 $\begin{array}{l} \mbox{Initialize the particles } \{\theta_{i,0}\}_{i=1}^n \mbox{ and } \lambda_0. \\ \mbox{for iteration } t \mbox{ do} \\ \mbox{ for iteration } t \mbox{ do} \\ \mbox{ ff langevin, update } \theta_{i,t+1} = \theta_{i,t} + h(\nabla \log p_0^*(\theta_{i,t}) - \lambda_t \nabla g(\theta_{i,t})) + \sqrt{2h}\xi_{i,t}. \\ \mbox{ ff SVGD, update } \\ \mbox{ } \theta_{i,t+1} = \theta_{i,t} + \frac{h}{n}\sum_{j=1}^n [(\nabla \log p_0^*(\theta_{j,t}) - \lambda_t \nabla g(\theta_{j,t}))k_t(\theta_{j,t},\theta_{i,t})] + \nabla_{\theta_{j,t}}k_t(\theta_{j,t},\theta_{i,t}). \end{array}$ 

Update  $\lambda_t$  by  $\lambda_{t+1} = \max(\lambda_t + \frac{\tilde{h}}{n} \sum_{i=1}^n [g(\theta_{i,t+1})], 0)$ . end for

#### Algorithm 4 Constraint Controlled Method

Initialize the particles  $\{\theta_{i,0}\}_{i=1}^{n}$ . for iteration t do

If Langevin, update

$$\lambda_t = \max\left(\frac{\sum_{j=1}^n \alpha g(\theta_{j,t}) + [(\nabla \log p_0^*(\theta_{j,t}))^\top \nabla g(\theta_{j,t}) + \nabla^\top \nabla g(\theta_{j,t})]}{\sum_{j=1}^n [\|\nabla g(\theta_{j,t})\|^2]}, 0\right)$$

 $\begin{array}{l} \text{update } \theta_{i,t+1} = \theta_{i,t} + h(\nabla \log p_0^*(\theta_{i,t}) - \lambda_t \nabla g(\theta_{i,t})) + \sqrt{2h}\xi_{i,t}. \end{array} \\ \text{If SVGD, update} \end{array}$ 

$$\lambda_t = \max\left(\frac{\sum_{i,j=1}^n \alpha g(\theta_{i,t}) + [\nabla g(\theta_{j,t})^\top (\nabla \log p_0^*(\theta_{i,t}) + \nabla \theta_{i,t})k_t(\theta_{i,t}, \theta_{j,t})]]}{\sum_{i,j=1}^n [\nabla g(\theta_{i,t})^\top \nabla g(\theta_{j,t})k_t(\theta_{i,t}, \theta_{j,t})]}, 0\right)$$

update

$$\theta_{i,t+1} = \theta_{i,t} + \frac{h}{n} \sum_{j=1}^{n} [(\nabla \log p^*(\theta_{j,t}) - \lambda_t \nabla g(\theta_{j,t})) k_t(\theta_{j,t}, \theta_{i,t}) + \nabla_{\theta_{j,t}} k_t(\theta_{j,t}, \theta_{i,t})].$$

end for



### Logic and Montonicity constrained logistic regression.







# Equality constrained



### Formulation of problem

- Minimize  $\operatorname{KL}(q, \pi)$  so that q is supported on  $\mathcal{G}_0 = \{x : g(x) = 0\}$
- Ill-posed: q is singular w.r.t.  $\pi$ .
- Try to sample the conditional measure  $\pi_0(\cdot) = \pi[\cdot | g = 0]$ .
- Haussdorf density  $\pi(x)/|\nabla g(x)|$  on  $\mathcal{G}_0$ .

Sampling on manifolds

- Several existing MCMC (Girolami, Brubaker, Lelievre...)
- Assume MCMC start and stay on  $\mathcal{G}_0$
- Often require explicit knowledge of  $\mathcal{G}_0$  (parameterization, geodesic, projection)
- Not so friendly for large scale ML models.



Try to solve

$$\max_{\phi} \mathbb{E}_{q_t}[\langle s_{\pi} - s_{q_t}, v \rangle] - \frac{1}{2} \|v\|_{\mathcal{H}}^2,$$
$$s.t.\frac{d}{dt}g(x_t) = v^T(x)\nabla g(x) = -\psi(g(x))$$





### Along $\nabla g$

- Use  $\psi(z) = \alpha \operatorname{sign}(z)|z|^{1+\beta}$
- The component along  $\nabla g$ :  $v_{\sharp} = \frac{-\psi(g(x))\nabla g(x)}{\|\nabla g(x)\|^2}$

Along the orthogonal direction:

• Projection: 
$$D = I - \frac{\nabla g \nabla g^T}{\|\nabla g\|^2}$$

• 
$$v_{\perp} = Du, \max_{u} \mathbb{E}_{q_t}[(D(s_{\pi} - s_{q_t}))^T u] - \frac{1}{2} \|Du\|_{\mathcal{H}}^2.$$

• LD: 
$$v_{\perp} = D(s_{\pi} - s_{q_t})$$

• SVGD:

$$v_{\perp}(x) = \int D(x)k(x,y)D(y)(s_{\pi} - s_{q_t})(y)q_t(y)dy$$
$$= \int k_{\perp}(x,y)(s_{\pi} - s_{q_t})(y)q_t(y)dy$$



• LD: 
$$v_{\perp} = D(s_{\pi} - s_{q_t})$$
 cannot be implemented directly by  $dx_t = (v_{\sharp}(x_t) + D(x_t)s_{\pi}(x_t))dt + \sqrt{2}D(x_t)dW_t.$ 

 $\blacksquare$  Consider adding a correction drift r

#### Theorem

When 
$$r(x) = \nabla \cdot D(x)$$
,

$$dx_t = (v_{\sharp}(x_t) + D(x_t)s_{\pi}(x_t))dt + \sqrt{2}D(x_t)dW_t$$
(1)

its FPE mathches the orthogonal density flow. Moreover, i) the value  $g(x_t)$  has deterministic decay  $\frac{d}{dt}g(x_t) = -\psi(x_t)$ ; ii) for any f with  $\nabla f \perp \nabla g = 0$ , the generator of  $x_t$  matches the Langevin ones  $\mathcal{L}f(x) = \nabla f^{\top}(x)s_{\pi}(x) + \Delta f(x)$ .



Define orthogonal space (OS) Fisher divergence

$$F_{\perp}(q,\pi) = \|D(s_{\pi} - s_q)\|_q^2 \text{ or } \|D(s_{\pi} - s_q)\|_k^2$$

#### Theorem

Suppose g(x) is bounded for the initial distribution, and it's "regular",  $KL(q_0, \pi) < \infty$ , then  $M_T = \max\{g(x), x \sim q_T\} = O(T^{-\frac{1}{\beta}})$ , also convergence in OS-Fisher  $\min_{t < T} F_{\perp}(q_t, \pi) = O(\log T/T)$ .

But is OS-Fisher useful?

# Simpler formulation



The distribution  $\Pi_z = \pi(\cdot | g(x) = z)$  is too abstract.

#### Theorem

Suppose  $g \sharp \pi$  has Lipschitz density. Then the weak limit of  $\pi_{\eta,z}(x) \propto \pi(x) \exp(-\frac{1}{2\eta}(g(x)-z)^2)$  as  $\eta \to 0$  concentrates on  $\mathcal{G}_z = \{x : g(x) = z\}$  and is a version of  $\pi_z$ . Moreover,

$$\mathbb{E}_{\Pi_z} \left[ A_\pi \phi \right] = 0, \quad \forall \phi \bot \nabla g.$$

- This gives a Stein equation  $\mathbb{E}_q \left[ A_\pi \phi \right] = 0$
- The tangent bundle of  $\mathcal{G}_z$  is a subset of  $\phi \perp \nabla g$
- $\mathbb{E}_q[A_\pi\phi] \le \sqrt{F_\perp(q,\pi)}$  when  $\|\phi\|_\phi = 1$ .
- $\mathbb{E}_q[A_{\pi}\phi]$  or  $F_{\perp}(q,\pi)$  do not require q being on  $\mathcal{G}_z$
- This only check the OS directions.
- Checking how far is q away from  $\mathcal{G}_z$  is easy.



#### Theorem

Suppose that  $\Pi_z$  satisfies  $\kappa$ -Poincare Inequality for  $|z| \leq \delta$ , and q is supported on  $\{x : |g(x)| \leq \delta\}$ . Then for any function f such that  $|f| \leq 1$ , the following holds

$$|\mathbb{E}_q[f] - \mathbb{E}_{\Pi_0}[f]| \leq \sqrt{\kappa F_{\perp}(q, \pi)} + \max_{|z| \leq \delta} |\mathbb{E}_{\Pi_z}[f] - \mathbb{E}_{\Pi_0}[f]|.$$

- Decomposition of mean difference/TV
- $\blacksquare$  Only in  $L^2$  case
- Poincare inequality with Euclidean-inheriant distance
- Can be used for q supported on  $\mathbb{R}^d$ .

# Numerical examples



### Toy example (Intialized on/off manifold)



### Income prediction



### Agonostic Bayesian Image classification

|               | Test Error $(\downarrow)$ | ECE $(\downarrow)$ | AUROC (†) |
|---------------|---------------------------|--------------------|-----------|
| SGLD          | 15.00                     | 2.21               | 89.41     |
| Tempered SGLD | 4.73                      | 0.83               | 97.63     |
| O-Langevin    | 4.46                      | 0.87               | 98.68     |
| SVGD          | 6.11                      | 0.93               | 93.55     |
| O-SVGD        | 4.92                      | 0.77               | 94.69     |

#### Xin Tong

#### Constrained sampling 30 / 30