Gradient-based dimension reduction for solving Bayesian inverse problems

Ricardo Baptista¹

Joint work with Youssef Marzouk² and Olivier Zahm³

¹Computing+Mathematical Sciences California Institute of Technology

²Center for Computational Science and Engineering Massachusetts Institute of Technology

³INRIA and Université Grenoble Alpes

October 25, 2022

Goal: Solve Bayesian inference problems at scale

Characterize posterior distribution of parameters X given data Y

 $\pi_{\mathbf{X}|\mathbf{Y}} \propto \pi_{\mathbf{Y}|\mathbf{X}}\pi_{\mathbf{X}}$

Applications: inverse problems and data assimilation in geophysics, pharmacology, materials science, medical imaging, etc.

Inference of population dynamics

One approach: Characterize posterior using transport maps

Idea: Find map T that pushes forward reference distribution η (e.g., standard Normal) to posterior $\pi_{X|Y}$

Idea: Find map T that pushes forward reference distribution η (e.g., standard Normal) to posterior $\pi_{X|Y}$

Advantages of invertible map:

() Generate cheap and independent samples $\mathbf{x}^i \sim \eta \Leftrightarrow T_{\mathbf{y}^*}(\mathbf{x}^i) \sim \pi_{\mathbf{X}|\mathbf{y}^*}$

2 Evaluate the posterior density $\pi_{\mathbf{X}|\mathbf{y}^*}(\mathbf{x}) = \eta \circ \mathcal{T}_{\mathbf{y}^*}^{-1}(\mathbf{x})|\nabla \mathcal{T}_{\mathbf{y}^*}^{-1}(\mathbf{x})|$

Block-triangular maps enable conditional sampling

Consider the map pushing forward η_{Z_1,Z_2} to $\pi_{Y,X} = \pi_Y \pi_{X|Y}$:

$$\mathcal{T}(\mathbf{y},\mathbf{x}) = egin{bmatrix} \mathcal{T}^{\mathcal{Y}}(\mathbf{y}) \ \mathcal{T}^{\mathcal{X}}(\mathbf{y},\mathbf{x}) \end{bmatrix}$$

• $T^{\mathcal{Y}}$ pushes forward η_{Z_1} to π_{Y}

► $T^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\eta_{\mathbf{Z}_2}$ to $\pi_{\mathbf{X}|\mathbf{y}}$ for any \mathbf{y}

Block-triangular maps enable conditional sampling

Consider the map pushing forward η_{Z_1,Z_2} to $\pi_{Y,X} = \pi_Y \pi_{X|Y}$:

$$\mathcal{T}(\mathbf{y},\mathbf{x}) = egin{bmatrix} \mathcal{T}^{\mathcal{Y}}(\mathbf{y}) \ \mathcal{T}^{\mathcal{X}}(\mathbf{y},\mathbf{x}) \end{bmatrix}$$

• $T^{\mathcal{Y}}$ pushes forward η_{Z_1} to π_Y

• $\mathcal{T}^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\eta_{\mathbf{Z}_2}$ to $\pi_{\mathbf{X}|\mathbf{y}}$ for any \mathbf{y}

Recipe for amortized inference:

To characterize posterior $\pi_{X|y^*} \propto \pi_{y^*|X} \pi_X$ given an observation y^* :

- Simulate from the prior and likelihood model: $\mathbf{x}^i \sim \pi_{\mathbf{X}}$, $\mathbf{y}^i \sim \pi_{\mathbf{Y}|\mathbf{x}^i}$
- **•** Estimate transport map $T^{\mathcal{X}}$ from joint samples $(\mathbf{x}^i, \mathbf{y}^i) \sim \pi_{\mathbf{X}, \mathbf{Y}}$
- Simulate $\mathbf{x}^i = \widehat{\mathcal{T}}^{\mathcal{X}}(\mathbf{y}^*, \mathbf{z}^i)$ for $\mathbf{z}^i \sim \eta_{\mathbf{Z}_2}$

Related Work: Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019

Baptista (rsb@caltech.edu)

Example: ODE parameter inference [Kovachki, B, et al., 2022]

- Infer four parameters in Lotka–Volterra ODE with log-normal prior
- Observation: Noisy populations of two species at 9 times
- Inference is tractable without likelihood or prior evaluations

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Vortex shedding around an aircraft wing

Challenge:

- ▶ High-dimensional states and observations d = 180 and m = 50
- ▶ States: Positions and strengths of point vortices $\mathbf{y}_t \in \mathbb{R}^d$
- Observation: Pressure along airfoil $\mathbf{y}_t \in \mathbb{R}^m$

Baptista (rsb@caltech.edu)

Main ideas

- Only part of the parameters is informed by observations
- Only part of the observations is relevant to the parameters

Related work: State-space projections [Cui et al., 2014, Zahm et al., 2018], Observation-space projections [Giraldi et al., 2018]

Decomposition of parameters and observations

▶ Decompose $\mathbf{X} \in \mathbb{R}^d$, $\mathbf{Y} \in \mathbb{R}^m$ using orthogonal subspaces

$$\begin{split} \mathbf{X} &= U_r^T \mathbf{X}_r + U_{\perp}^T \mathbf{X}_{\perp}, \qquad \mathbf{X}_r \in \mathbb{R}^r \text{ is informed by } \mathbf{Y} \\ \mathbf{Y} &= V_s^T \mathbf{Y}_s + V_{\perp}^T \mathbf{Y}_{\perp}, \qquad \mathbf{Y}_s \in \mathbb{R}^s \text{ is informative of } \mathbf{X} \end{split}$$

Decomposition of parameters and observations

▶ Decompose $\mathbf{X} \in \mathbb{R}^d$, $\mathbf{Y} \in \mathbb{R}^m$ using orthogonal subspaces

$$\begin{split} \mathbf{X} &= U_r^T \mathbf{X}_r + U_{\perp}^T \mathbf{X}_{\perp}, \qquad \mathbf{X}_r \in \mathbb{R}^r \text{ is informed by } \mathbf{Y} \\ \mathbf{Y} &= V_s^T \mathbf{Y}_s + V_{\perp}^T \mathbf{Y}_{\perp}, \qquad \mathbf{Y}_s \in \mathbb{R}^s \text{ is informative of } \mathbf{X} \end{split}$$

Consider the class of posterior density approximations

$$\widehat{\pi}_{\mathsf{X}|\mathsf{Y}}(\mathsf{x}|\mathsf{y}) = \widehat{\pi}_{\mathsf{X}_r|\mathsf{Y}_s}(\mathsf{x}_r|\mathsf{y}_s)\pi_{\mathsf{X}_\perp|\mathsf{X}_r}(\mathsf{x}_\perp|\mathsf{x}_r) \propto \widehat{\pi}_{\mathsf{Y}_s|\mathsf{X}_r}(\mathsf{y}_s|\mathsf{x}_r)\pi_{\mathsf{X}}(\mathsf{x})$$

▶ Decompose $\mathbf{X} \in \mathbb{R}^d$, $\mathbf{Y} \in \mathbb{R}^m$ using orthogonal subspaces

$$\begin{split} \mathbf{X} &= U_r^T \mathbf{X}_r + U_{\perp}^T \mathbf{X}_{\perp}, \qquad \mathbf{X}_r \in \mathbb{R}^r \text{ is informed by } \mathbf{Y} \\ \mathbf{Y} &= V_s^T \mathbf{Y}_s + V_{\perp}^T \mathbf{Y}_{\perp}, \qquad \mathbf{Y}_s \in \mathbb{R}^s \text{ is informative of } \mathbf{X} \end{split}$$

Consider the class of posterior density approximations

$$\widehat{\pi}_{\mathsf{X}|\mathsf{Y}}(\mathsf{x}|\mathsf{y}) = \widehat{\pi}_{\mathsf{X}_r|\mathsf{Y}_s}(\mathsf{x}_r|\mathsf{y}_s)\pi_{\mathsf{X}_{\perp}|\mathsf{X}_r}(\mathsf{x}_{\perp}|\mathsf{x}_r) \propto \widehat{\pi}_{\mathsf{Y}_s|\mathsf{X}_r}(\mathsf{y}_s|\mathsf{x}_r)\pi_{\mathsf{X}}(\mathsf{x})$$

▶ **Goal**: Find U_r , V_s with $r(\epsilon) \ll d$ and $s(\epsilon) \ll m$ such that

$$\mathbb{E}_{\mathbf{Y}}[\mathsf{D}_{\mathsf{KL}}(\pi_{\mathbf{X}|\mathbf{Y}}||\widehat{\pi}_{\mathbf{X}|\mathbf{Y}})] \leq \epsilon$$

▶ Decompose $\mathbf{X} \in \mathbb{R}^d$, $\mathbf{Y} \in \mathbb{R}^m$ using orthogonal subspaces

$$\begin{split} \mathbf{X} &= U_r^T \mathbf{X}_r + U_{\perp}^T \mathbf{X}_{\perp}, \qquad \mathbf{X}_r \in \mathbb{R}^r \text{ is informed by } \mathbf{Y} \\ \mathbf{Y} &= V_s^T \mathbf{Y}_s + V_{\perp}^T \mathbf{Y}_{\perp}, \qquad \mathbf{Y}_s \in \mathbb{R}^s \text{ is informative of } \mathbf{X} \end{split}$$

Consider the class of posterior density approximations

$$\widehat{\pi}_{\mathsf{X}|\mathsf{Y}}(\mathsf{x}|\mathsf{y}) = \widehat{\pi}_{\mathsf{X}_r|\mathsf{Y}_s}(\mathsf{x}_r|\mathsf{y}_s)\pi_{\mathsf{X}_{\perp}|\mathsf{X}_r}(\mathsf{x}_{\perp}|\mathsf{x}_r) \propto \widehat{\pi}_{\mathsf{Y}_s|\mathsf{X}_r}(\mathsf{y}_s|\mathsf{x}_r)\pi_{\mathsf{X}}(\mathsf{x})$$

▶ **Goal**: Find
$$U_r$$
, V_s with $r(\epsilon) \ll d$ and $s(\epsilon) \ll m$ such that

$$\mathbb{E}_{\mathbf{Y}}[\mathsf{D}_{\mathsf{KL}}(\pi_{\mathbf{X}|\mathbf{Y}}||\widehat{\pi}_{\mathbf{X}|\mathbf{Y}})] \leq \epsilon$$

▶ Result: Sample posterior by building lower dimensional maps:
 ③ Construct map T^X(y_s, x_r) to sample Xⁱ_r ~ π_{X_r|Y_s}
 ④ Join with conditional prior samples Xⁱ_⊥ ~ π_{X_⊥|xⁱ_r}

Baptista (rsb@caltech.edu)

Decomposition of parameters and observations

Approach: Minimize error of closest approximation $\pi^*_{\mathbf{Y}|\mathbf{X}} \coloneqq \pi_{\mathbf{Y}_s|\mathbf{X}_r} \pi_{\mathbf{X}}$

$$\mathbb{E}_{\mathbf{Y}}[\mathsf{D}_{\mathsf{KL}}(\pi_{\mathbf{X}|\mathbf{Y}}||\pi_{\mathbf{X}|\mathbf{Y}}^{*})] = I(\mathbf{X}_{\perp},\mathbf{Y}|\mathbf{X}_{r}) + I(\mathbf{Y}_{\perp},\mathbf{X}|\mathbf{Y}_{s}) - I(\mathbf{Y}_{\perp},\mathbf{Y}_{\perp}|\mathbf{Y}_{s},\mathbf{X}_{r})$$

$$\leq \underbrace{I(\mathbf{X}_{\perp},\mathbf{Y}|\mathbf{X}_{r})}_{\text{function}(U_{\perp})} + \underbrace{I(\mathbf{Y}_{\perp},\mathbf{X}|\mathbf{Y}_{s})}_{\text{function}(V_{\perp})}$$

Recall: Conditional mutual information (CMI) $I(\mathbf{A}, \mathbf{B}|\mathbf{C}) = 0$ if $\mathbf{A} \perp \mathbf{B}|\mathbf{C}$

Decomposition of parameters and observations

Approach: Minimize error of closest approximation $\pi^*_{\mathbf{Y}|\mathbf{X}} \coloneqq \pi_{\mathbf{Y}_s|\mathbf{X}_r} \pi_{\mathbf{X}}$

$$\mathbb{E}_{\mathbf{Y}}[D_{\mathsf{KL}}(\pi_{\mathbf{X}|\mathbf{Y}}||\pi_{\mathbf{X}|\mathbf{Y}}^{*})] = I(\mathbf{X}_{\perp},\mathbf{Y}|\mathbf{X}_{r}) + I(\mathbf{Y}_{\perp},\mathbf{X}|\mathbf{Y}_{s}) - I(\mathbf{Y}_{\perp},\mathbf{Y}_{\perp}|\mathbf{Y}_{s},\mathbf{X}_{r})$$

$$\leq \underbrace{I(\mathbf{X}_{\perp},\mathbf{Y}|\mathbf{X}_{r})}_{\text{function}(U_{\perp})} + \underbrace{I(\mathbf{Y}_{\perp},\mathbf{X}|\mathbf{Y}_{s})}_{\text{function}(V_{\perp})}$$

Recall: Conditional mutual information (CMI) $I(\mathbf{A}, \mathbf{B}|\mathbf{C}) = 0$ if $\mathbf{A} \perp \!\!\!\perp \mathbf{B}|\mathbf{C}$ **Idea**: For non-Gaussian π , minimize tractable upper bounds for CMI

Theorem [B, Marzouk, et al., 2021]

If $\pi_{\mathbf{X},\mathbf{Y}}$ satisfies a conditional log-Sobolev inequality with constant C_{π} ,

$$I(\mathbf{X}_{\perp}, \mathbf{Y} | \mathbf{X}_{r}) \leq C_{\pi}^{2} \mathbb{E}_{\pi} \| \nabla_{\mathbf{y}, \mathbf{x}} \log \pi_{\mathbf{Y} | \mathbf{X}}(\mathbf{y} | \mathbf{x}) U_{\perp} \|_{F}^{2}$$
$$I(\mathbf{Y}_{\perp}, \mathbf{X} | \mathbf{Y}_{s}) \leq C_{\pi}^{2} \mathbb{E}_{\pi} \| V_{\perp}^{T} \nabla_{\mathbf{y}, \mathbf{x}} \log \pi_{\mathbf{Y} | \mathbf{X}}(\mathbf{y} | \mathbf{x}) \|_{F}^{2}$$

Example: subspaces for Gaussian likelihood models

Let $\mathbf{Y} = G(\mathbf{X}) + \boldsymbol{\epsilon}$ where $Cov(\mathbf{X}) = I_d$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, I_m)$.

Example: subspaces for Gaussian likelihood models

Let
$$\mathbf{Y} = G(\mathbf{X}) + \boldsymbol{\epsilon}$$
 where $Cov(\mathbf{X}) = I_d$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, I_m)$.

Informed state space [Cui et al., 2020]

• $U_r = [u_1, \ldots, u_r]$ where $(\lambda_{\mathbf{X},i}, u_i)$ are leading eigen-pairs of

$$H_{\mathbf{X}} = \int \nabla G(\mathbf{x})^{\mathsf{T}} \nabla G(\mathbf{x}) \mathrm{d}\pi_{\mathbf{X}}(\mathbf{x})$$

Informative observations space

►
$$V_s = [v_1, ..., v_s]$$
 where $(\lambda_{\mathbf{Y}, j}, v_j)$ are leading eigen-pairs of
$$H_{\mathbf{Y}} = \int \nabla G(\mathbf{x}) \nabla G(\mathbf{x})^T \mathrm{d}\pi_{\mathbf{X}}(\mathbf{x})$$

Example: subspaces for Gaussian likelihood models

Let
$$\mathbf{Y} = G(\mathbf{X}) + \boldsymbol{\epsilon}$$
 where $Cov(\mathbf{X}) = I_d$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, I_m)$.

Informed state space [Cui et al., 2020]

• $U_r = [u_1, \ldots, u_r]$ where $(\lambda_{\mathbf{X},i}, u_i)$ are leading eigen-pairs of

$$H_{\mathbf{X}} = \int \nabla G(\mathbf{x})^{\mathsf{T}} \nabla G(\mathbf{x}) \mathrm{d}\pi_{\mathbf{X}}(\mathbf{x})$$

Informative observations space

►
$$V_s = [v_1, ..., v_s]$$
 where $(\lambda_{\mathbf{Y}, j}, v_j)$ are leading eigen-pairs of
$$H_{\mathbf{Y}} = \int \nabla G(\mathbf{x}) \nabla G(\mathbf{x})^T \mathrm{d}\pi_{\mathbf{X}}(\mathbf{x})$$

Corollary: Error bound for posterior approximation

$$\mathbb{E}_{\mathbf{Y}}[\mathsf{D}_{\mathsf{KL}}(\pi_{\mathbf{X}|\mathbf{Y}}||\pi_{\mathbf{X}|\mathbf{Y}}^*)] \leq C_{\pi}^2(\sum_{i>r}\lambda_{\mathbf{X},i} + \sum_{j>s}\lambda_{\mathbf{Y},j})$$

Baptista (rsb@caltech.edu)

Generalization of linear dimension reduction

Let
$$\mathbf{Y} = \mathbf{G}\mathbf{X} + \boldsymbol{\epsilon}$$
 where $Cov(\mathbf{X}) = I_d$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, I_m)$.

Diagnostic matrices:

$$H_{\mathbf{X}} = \mathbf{G}^{\mathsf{T}}\mathbf{G}, \qquad H_{\mathbf{Y}} = \mathbf{G}\mathbf{G}^{\mathsf{T}}$$

Proposition

After a rotation, eigenvectors of H_X and H_Y reduce to solution of canonical correlation analysis (CCA)

$$\mathsf{Cov}(\mathbf{X},\mathbf{Y})\mathsf{Cov}(\mathbf{Y})^{-1}\mathsf{Cov}(\mathbf{X},\mathbf{Y})^{\mathcal{T}}u_i = \lambda_{\mathbf{X},i}/(1+\lambda_{\mathbf{X},i})u_i$$

$$\mathsf{Cov}(\mathbf{Y}, \mathbf{X})\mathsf{Cov}(\mathbf{X})^{-1}\mathsf{Cov}(\mathbf{Y}, \mathbf{X})^{\mathcal{T}}v_j = \lambda_{\mathbf{Y},j}/(1+\lambda_{\mathbf{Y},i})v_j$$

Takeaway: Gradient-based diagnostic matrices generalize CCA for nonlinear forward models

Baptista (rsb@caltech.edu)

Conditioned diffusion problem

- Particle follows SDE: $du_t = f(u_t)dt + dX_t$ with drift $f(u) = \beta u(1 u^2)/(1 + u^2)$ and Brownian motion X
- ▶ Infer driving force x given noisy state observations $y_{t_i} = u_{t_i} + \epsilon_i$
- ► Discretized parameters **X** and observations **Y** have dimension 100

Takeaway: CMI-based eigenvectors are more relevant for inference

CMI-based subspaces are more relevant for inference

Conditioned diffusion problem

- Particle follows SDE: $du_t = f(u_t)dt + dX_t$ with drift $f(u) = \beta u(1 u^2)/(1 + u^2)$ and Brownian motion X
- ▶ Infer driving force x given noisy state observations $y_{t_i} = u_{t_i} + \epsilon_i$
- ► Discretized parameters **X** and observations **Y** have dimension 100

Takeaway: CMI-based subspaces minimize posterior approximation error

Baptista (rsb@caltech.edu)

Gradient-based dimension reduction

Back to turbulent flows

Sequential Bayesian inference:

- States: Biot-Savart dynamics $\pi_{\mathbf{X}_t|\mathbf{X}_{t-1}}$
- Observations: Poisson equation with additive noise $\pi_{\mathbf{Y}_t|\mathbf{X}_t}$

Goal: Recursively characterize filtering distributions $\pi_{\mathbf{X}_t|\mathbf{y}_1^*,...,\mathbf{y}_t^*}$

Back to turbulent flows

Sequential Bayesian inference:

- States: Biot-Savart dynamics $\pi_{\mathbf{X}_t|\mathbf{X}_{t-1}}$
- Observations: Poisson equation with additive noise $\pi_{\mathbf{Y}_t|\mathbf{X}_t}$

Goal: Recursively characterize filtering distributions $\pi_{X_t|y_1^*,...,y_t^*}$

Recursive approach: At each time t

- ▶ Use model dynamics to predict state from $\pi_{\mathbf{X}_t | \mathbf{y}_1^*, \dots, \mathbf{y}_{t-1}^*}$ (i.e., prior)
- Solve inverse problem for $\pi_{\mathbf{X}_t|\mathbf{y}_1^*,...,\mathbf{y}_t^*}$ given observation \mathbf{y}_t^*

Spectra and energy of H_X , H_Y

Adaptive rank algorithm

- Use energy $E_i = \sum_{j=1}^i \lambda_j / \sum_j \lambda_j$ to select reduced dimensions
- For example, choose r such that E_r > 0.99

Low-rank filter is stable for small ensemble sizes

Observations:

- RMSE is stable for small N for different energy ratios
- Reduced dimensions r, s do not increase over time

Estimate flow around the airfoil at 20° angle of attack and Re = 500 subject to force actuation mimicking gusts

Estimate flow around the airfoil at 20° angle of attack and Re = 500 subject to force actuation mimicking gusts

Estimate flow around the airfoil at 20° angle of attack and Re = 500 subject to force actuation mimicking gusts

Estimate flow around the airfoil at 20° angle of attack and Re = 500 subject to force actuation mimicking gusts

Posterior predictive distribution has lower bias and spread at the leading edge

Baptista (rsb@caltech.edu)

Main idea: Dimension reduction of parameters and observations

- Detect subspaces using gradients of the observation model
- Provide error guarantees on posterior approximation
- Stable tracking of turbulent flows with small ensemble sizes

Main idea: Dimension reduction of parameters and observations

- Detect subspaces using gradients of the observation model
- Provide error guarantees on posterior approximation
- Stable tracking of turbulent flows with small ensemble sizes

Future work

- Gradient-free identification of low-dimensional structure (e.g., using score estimation methods [Song et al., 2019])
- Other sources of structure, e.g., conditional independence

Main idea: Dimension reduction of parameters and observations

- Detect subspaces using gradients of the observation model
- Provide error guarantees on posterior approximation
- Stable tracking of turbulent flows with small ensemble sizes

Future work

- Gradient-free identification of low-dimensional structure (e.g., using score estimation methods [Song et al., 2019])
- Other sources of structure, e.g., conditional independence

References: arXiv:2203.05120, arXiv:2207.08670

Thank You

Supported by the U.S. Department of Energy

Baptista (rsb@caltech.edu)