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Goal: Solve Bayesian inference problems at scale

I Characterize posterior distribution of parameters X given data Y

⇡X|Y / ⇡Y|X⇡X

I Applications: inverse problems and data assimilation in geophysics,
pharmacology, materials science, medical imaging, etc.

Wind forecasting [Source: NCAR] Inference of population dynamics
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One approach: Characterize posterior using transport maps

Idea: Find map T that pushes forward reference distribution ⌘ (e.g.,
standard Normal) to posterior ⇡X|Y

xi
T (xi)

⇡X ⇡X|Y =y⇤⌘

Advantages of invertible map:
1 Generate cheap and independent samples xi ⇠ ⌘ , Ty⇤(xi) ⇠ ⇡X|y⇤

2 Evaluate the posterior density ⇡X|y⇤(x) = ⌘ � T
�1
y⇤ (x)|rT

�1
y⇤ (x)|
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Block-triangular maps enable conditional sampling

Consider the map pushing forward ⌘Z1,Z2 to ⇡Y,X = ⇡Y⇡X|Y:

T (y, x) =

T
Y(y)

T
X (y, x)

�

I T
Y pushes forward ⌘Z1 to ⇡Y

I T
X (y, ·) pushes forward ⌘Z2 to ⇡X|y for any y

Recipe for amortized inference:
To characterize posterior ⇡X|y⇤ / ⇡y⇤|X⇡X given an observation y⇤:
I Simulate from the prior and likelihood model: xi ⇠ ⇡X, yi ⇠ ⇡Y|xi

I Estimate transport map T
X from joint samples (xi , yi) ⇠ ⇡X,Y

I Simulate xi = bTX (y⇤, zi) for zi ⇠ ⌘Z2

Related Work: Papamakarios & Murray, 2016; Lueckmann et al., 2017;
Greenberg et al., 2019
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Example: ODE parameter inference [Kovachki, B, et al., 2022]

I Infer four parameters in Lotka–Volterra ODE with log-normal prior
I Observation: Noisy populations of two species at 9 times
I Inference is tractable without likelihood or prior evaluations

x|y⇤ samples
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Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

0 1 2 3 4 5
x/c

-1

0

1

y/
c

Vortex shedding around an aircraft wing

Challenge:
I High-dimensional states and observations d = 180 and m = 50
I States: Positions and strengths of point vortices yt 2 Rd

I Observation: Pressure along airfoil yt 2 Rm
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Jointly reducing parameters and observation dimensions

Main ideas

I Only part of the parameters is informed by observations
I Only part of the observations is relevant to the parameters

⇡X ⇡X|Y

Related work: State-space projections [Cui et al., 2014, Zahm et al., 2018],
Observation-space projections [Giraldi et al., 2018]
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Decomposition of parameters and observations

I Decompose X 2 Rd ,Y 2 Rm using orthogonal subspaces

X = U
T
r Xr + U

T
?X?, Xr 2 Rr is informed by Y

Y = V
T
s Ys + V

T
? Y?, Ys 2 Rs is informative of X

I Consider the class of posterior density approximations

b⇡X|Y(x|y) = b⇡Xr |Ys (xr |ys)⇡X?|Xr (x?|xr ) / b⇡Ys |Xr (ys |xr )⇡X(x)

I Goal: Find Ur ,Vs with r(✏)⌧ d and s(✏)⌧ m such that

EY[DKL(⇡X|Y||b⇡X|Y)]  ✏

I Result: Sample posterior by building lower dimensional maps:
1 Construct map T

X (ys , xr ) to sample Xi
r ⇠ ⇡Xr |Ys

2 Join with conditional prior samples Xi
? ⇠ ⇡X?|xi

r
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Decomposition of parameters and observations

Approach: Minimize error of closest approximation ⇡⇤Y|X := ⇡Ys |Xr⇡X

EY[DKL(⇡X|Y||⇡⇤X|Y)] = I (X?,Y|Xr ) + I (Y?,X|Ys)� I (Y?,Y?|Ys ,Xr )

 I (X?,Y|Xr )| {z }
function(U?)

+ I (Y?,X|Ys)| {z }
function(V?)

Recall: Conditional mutual information (CMI) I (A,B|C) = 0 if A ?? B|C

Idea: For non-Gaussian ⇡, minimize tractable upper bounds for CMI

Theorem [B, Marzouk, et al., 2021]

If ⇡X,Y satisfies a conditional log-Sobolev inequality with constant C⇡,

I (X?,Y|Xr )  C
2
⇡E⇡kry,x log⇡Y|X(y|x)U?k2F

I (Y?,X|Ys)  C
2
⇡E⇡kV T

? ry,x log⇡Y|X(y|x)k2F
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Example: subspaces for Gaussian likelihood models

Let Y = G (X) + ✏ where Cov(X) = Id and ✏ ⇠ N (0, Im).

Informed state space [Cui et al., 2020]
I Ur = [u1, . . . , ur ] where (�X,i , ui) are leading eigen-pairs of

HX =

Z
rG (x)TrG (x)d⇡X(x)

Informative observations space
I Vs = [v1, . . . , vs ] where (�Y,j , vj) are leading eigen-pairs of

HY =

Z
rG (x)rG (x)Td⇡X(x)

Corollary: Error bound for posterior approximation

EY[DKL(⇡X|Y||⇡⇤X|Y)]  C
2
⇡(
X

i>r

�X,i +
X

j>s

�Y,j)
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Generalization of linear dimension reduction

Let Y = GX + ✏ where Cov(X) = Id and ✏ ⇠ N (0, Im).

Diagnostic matrices:

HX = GTG, HY = GGT

Proposition

After a rotation, eigenvectors of HX and HY reduce to solution of
canonical correlation analysis (CCA)

Cov(X,Y)Cov(Y)�1Cov(X,Y)Tui = �X,i/(1 + �X,i)ui

Cov(Y,X)Cov(X)�1Cov(Y,X)T vj = �Y,j/(1 + �Y,i)vj

Takeaway: Gradient-based diagnostic matrices generalize CCA for
nonlinear forward models
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CMI-based subspaces are more relevant for inference

Conditioned diffusion problem
I Particle follows SDE: dut = f (ut)dt + dXt with drift

f (u) = �u(1� u
2)/(1 + u

2) and Brownian motion X

I Infer driving force x given noisy state observations yti = uti + ✏i
I Discretized parameters X and observations Y have dimension 100

Sample realizations of yt U1:5 from PCA U1:5 from CMI

Takeaway: CMI-based eigenvectors are more relevant for inference
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Back to turbulent flows

Sequential Bayesian inference:
I States: Biot-Savart dynamics ⇡Xt |Xt�1

I Observations: Poisson equation with additive noise ⇡Yt |Xt

XtXt�1 Xt+1

Yt Yt+1Yt�1

X1X0

Y1

Goal: Recursively characterize filtering distributions ⇡Xt |y⇤1,...,y⇤t

Recursive approach: At each time t

I Use model dynamics to predict state from ⇡Xt |y⇤1,...,y⇤t�1
(i.e., prior)

I Solve inverse problem for ⇡Xt |y⇤1,...,y⇤t given observation y⇤t
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State and observation diagnostic matrices are often low-rank

Spectra and energy of HX, HY

1 2 3 5 10
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 x
,i

(a)

1 2 3 5 10
i

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
,i

(b)

1 2 3 5 10
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 x
,i

�
�

2 x
,i
+

1

(c)

1 4 10 30
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 y,

i

(d)

1 4 10 30
i

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
y,

i

(e)

1 4 10 30
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 y,

i
�

�
2 y,

i+
1

(f )

1 2 3 5 10
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 x
,i

(a)

1 2 3 5 10
i

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
,i

(b)

1 2 3 5 10
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 x
,i

�
�

2 x
,i
+

1

(c)

1 4 10 30
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 y,

i

(d)

1 4 10 30
i

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
y,

i

(e)

1 4 10 30
i

100

10�2

10�4

10�6

10�8

10�10

10�12

�
2 y,

i
�

�
2 y,

i+
1

(f )

Adaptive rank algorithm
I Use energy Ei =

Pi
j=1 �j/

P
j �j to select reduced dimensions

I For example, choose r such that Er > 0.99
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Low-rank filter is stable for small ensemble sizes

Ensemble size N

r
s

Observations:
I RMSE is stable for small N for different energy ratios
I Reduced dimensions r , s do not increase over time
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Low-rank filter improves pressure estimation

I Estimate flow around the airfoil at 20� angle of attack and Re = 500
subject to force actuation mimicking gusts

TE LE

P
re

ss
ur

e
Ju

m
p

CFD Truth Prior

I Posterior predictive distribution has lower bias and spread at the
leading edge
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Conclusion and outlook

Main idea: Dimension reduction of parameters and observations

I Detect subspaces using gradients of the observation model
I Provide error guarantees on posterior approximation
I Stable tracking of turbulent flows with small ensemble sizes

Future work

I Gradient-free identification of low-dimensional structure (e.g., using
score estimation methods [Song et al., 2019])

I Other sources of structure, e.g., conditional independence

References: arXiv:2203.05120, arXiv:2207.08670
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