Gradient-based dimension reduction for solving Bayesian inverse problems

Ricardo Baptista ${ }^{1}$

Joint work with Youssef Marzouk ${ }^{2}$ and Olivier Zahm³

${ }^{1}$ Computing+Mathematical Sciences California Institute of Technology
${ }^{2}$ Center for Computational Science and Engineering
Massachusetts Institute of Technology
${ }^{3}$ INRIA and Université Grenoble Alpes

October 25, 2022

Goal: Solve Bayesian inference problems at scale

- Characterize posterior distribution of parameters \mathbf{X} given data \mathbf{Y}

$$
\pi_{\mathbf{X} \mid \mathrm{Y}} \propto \pi_{\mathrm{Y} \mid \mathrm{X}} \pi_{\mathrm{X}}
$$

- Applications: inverse problems and data assimilation in geophysics, pharmacology, materials science, medical imaging, etc.

Wind forecasting [Source: NCAR]

Inference of population dynamics

One approach: Characterize posterior using transport maps

Idea: Find map T that pushes forward reference distribution η (e.g., standard Normal) to posterior $\pi_{\mathrm{X} \mid \mathrm{Y}}$

One approach: Characterize posterior using transport maps

Idea: Find map T that pushes forward reference distribution η (e.g., standard Normal) to posterior $\pi_{\mathbf{X} \mid \mathbf{Y}}$

Advantages of invertible map:

(1) Generate cheap and independent samples $\mathbf{x}^{i} \sim \eta \Leftrightarrow T_{\mathbf{y}^{*}}\left(\mathbf{x}^{i}\right) \sim \pi_{\mathbf{X} \mid \mathbf{y}^{*}}$
(2) Evaluate the posterior density $\pi_{\mathbf{X} \mid \mathbf{y}^{*}}(\mathbf{x})=\eta \circ T_{\mathbf{y}^{*}}^{-1}(\mathbf{x})\left|\nabla T_{\mathbf{y}^{*}}^{-1}(\mathbf{x})\right|$

Block-triangular maps enable conditional sampling

Consider the map pushing forward $\eta_{\mathbf{Z}_{1}, \mathbf{Z}_{2}}$ to $\pi_{\mathrm{Y}, \mathrm{X}}=\pi_{\mathrm{Y}} \pi_{\mathrm{X} \mid \mathrm{Y}}$:

$$
T(\mathbf{y}, \mathbf{x})=\left[\begin{array}{l}
T^{\mathcal{Y}}(\mathbf{y}) \\
T^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
\end{array}\right]
$$

- $T^{\mathcal{Y}}$ pushes forward $\eta_{Z_{1}}$ to π_{Y}
- $T^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\eta_{\mathbf{Z}_{2}}$ to $\pi_{\mathbf{x | y}}$ for any \mathbf{y}

Block-triangular maps enable conditional sampling

Consider the map pushing forward $\eta_{\mathbf{Z}_{1}, \mathbf{Z}_{2}}$ to $\pi_{\mathrm{Y}, \mathrm{X}}=\pi_{\mathrm{Y}} \pi_{\mathrm{X} \mid \mathrm{Y}}$:

$$
T(\mathbf{y}, \mathbf{x})=\left[\begin{array}{l}
T^{\mathcal{Y}}(\mathbf{y}) \\
T^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
\end{array}\right]
$$

- $T^{\mathcal{Y}}$ pushes forward $\eta_{Z_{1}}$ to π_{Y}
- $T^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\eta_{\mathbf{Z}_{2}}$ to $\pi_{\mathbf{X} \mid \mathbf{y}}$ for any \mathbf{y}

Recipe for amortized inference:

To characterize posterior $\pi_{\mathbf{X} \mid \mathbf{y}^{*}} \propto \pi_{\mathbf{y}^{*} \mid \mathbf{X}} \pi_{\mathbf{X}}$ given an observation \mathbf{y}^{*} :

- Simulate from the prior and likelihood model: $\mathbf{x}^{i} \sim \pi_{\mathbf{X}}, \mathbf{y}^{i} \sim \pi_{\mathbf{Y} \mid \mathbf{x}^{i}}$
- Estimate transport map $T^{\mathcal{X}}$ from joint samples $\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right) \sim \pi_{\mathrm{X}, \mathrm{Y}}$
- Simulate $\mathbf{x}^{i}=\widehat{T}^{\mathcal{X}}\left(\mathbf{y}^{*}, \mathbf{z}^{i}\right)$ for $\mathbf{z}^{i} \sim \eta_{\mathbf{Z}_{2}}$

Related Work: Papamakarios \& Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019

Example: ODE parameter inference [Kovachki, B, et al., 2022]

- Infer four parameters in Lotka-Volterra ODE with log-normal prior
- Observation: Noisy populations of two species at 9 times
- Inference is tractable without likelihood or prior evaluations

Transport predictive distribution

$\mathbf{x} \mid \mathbf{y}^{*}$ samples
MCMC predictive distribution

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Vortex shedding around an aircraft wing

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Tackling high-dimensional inverse problems

Motivation: Estimating turbulent flow [Le Provost, B, et al., 2022]

Vortex shedding around an aircraft wing

Challenge:

- High-dimensional states and observations $d=180$ and $m=50$
- States: Positions and strengths of point vortices $\mathbf{y}_{t} \in \mathbb{R}^{d}$
- Observation: Pressure along airfoil $\mathbf{y}_{t} \in \mathbb{R}^{m}$

Jointly reducing parameters and observation dimensions

Main ideas

- Only part of the parameters is informed by observations
- Only part of the observations is relevant to the parameters

π_{X}

$\pi_{X \mid Y}$

Related work: State-space projections [Cui et al., 2014, Zahm et al., 2018], Observation-space projections [Giraldi et al., 2018]

Decomposition of parameters and observations

- Decompose $\mathbf{X} \in \mathbb{R}^{d}, \mathbf{Y} \in \mathbb{R}^{m}$ using orthogonal subspaces

$$
\begin{array}{ll}
\mathbf{X}=U_{r}^{T} \mathbf{X}_{r}+U_{\perp}^{T} \mathbf{X}_{\perp}, & \mathbf{X}_{r} \in \mathbb{R}^{r} \text { is informed by } \mathbf{Y} \\
\mathbf{Y}=V_{s}^{T} \mathbf{Y}_{s}+V_{\perp}^{T} \mathbf{Y}_{\perp}, & \mathbf{Y}_{s} \in \mathbb{R}^{s} \text { is informative of } \mathbf{X}
\end{array}
$$

Decomposition of parameters and observations

- Decompose $\mathbf{X} \in \mathbb{R}^{d}, \mathbf{Y} \in \mathbb{R}^{m}$ using orthogonal subspaces

$$
\begin{array}{ll}
\mathbf{X}=U_{r}^{T} \mathbf{X}_{r}+U_{\perp}^{T} \mathbf{X}_{\perp}, & \mathbf{X}_{r} \in \mathbb{R}^{r} \text { is informed by } \mathbf{Y} \\
\mathbf{Y}=V_{s}^{T} \mathbf{Y}_{s}+V_{\perp}^{T} \mathbf{Y}_{\perp}, & \mathbf{Y}_{s} \in \mathbb{R}^{s} \text { is informative of } \mathbf{X}
\end{array}
$$

- Consider the class of posterior density approximations

$$
\widehat{\pi}_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\widehat{\pi}_{\mathbf{X}_{r} \mid \mathbf{Y}_{s}}\left(\mathbf{x}_{r} \mid \mathbf{y}_{s}\right) \pi_{\mathbf{X}_{\perp} \mid \mathbf{X}_{r}}\left(\mathbf{x}_{\perp} \mid \mathbf{x}_{r}\right) \propto \widehat{\pi}_{\mathbf{Y}_{s} \mid \mathbf{X}_{r}}\left(\mathbf{y}_{s} \mid \mathbf{x}_{r}\right) \pi_{\mathbf{X}}(\mathbf{x})
$$

Decomposition of parameters and observations

- Decompose $\mathbf{X} \in \mathbb{R}^{d}, \mathbf{Y} \in \mathbb{R}^{m}$ using orthogonal subspaces

$$
\begin{array}{ll}
\mathbf{X}=U_{r}^{T} \mathbf{X}_{r}+U_{\perp}^{T} \mathbf{X}_{\perp}, & \mathbf{X}_{r} \in \mathbb{R}^{r} \text { is informed by } \mathbf{Y} \\
\mathbf{Y}=V_{s}^{T} \mathbf{Y}_{s}+V_{\perp}^{T} \mathbf{Y}_{\perp}, & \mathbf{Y}_{s} \in \mathbb{R}^{s} \text { is informative of } \mathbf{X}
\end{array}
$$

- Consider the class of posterior density approximations

$$
\widehat{\pi}_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\widehat{\pi}_{\mathbf{X}_{r} \mid \mathbf{Y}_{s}}\left(\mathbf{x}_{r} \mid \mathbf{y}_{s}\right) \pi_{\mathbf{X}_{\perp} \mid \mathbf{X}_{r}}\left(\mathbf{x}_{\perp} \mid \mathbf{x}_{r}\right) \propto \widehat{\pi}_{\mathbf{Y}_{s} \mid \mathbf{X}_{r}}\left(\mathbf{y}_{s} \mid \mathbf{x}_{r}\right) \pi_{\mathbf{X}}(\mathbf{x})
$$

- Goal: Find U_{r}, V_{s} with $r(\epsilon) \ll d$ and $s(\epsilon) \ll m$ such that

$$
\mathbb{E}_{\mathbf{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(\pi_{\mathrm{X} \mid \mathrm{Y}} \| \widehat{\pi}_{\mathbf{X} \mid \mathrm{Y}}\right)\right] \leq \epsilon
$$

Decomposition of parameters and observations

- Decompose $\mathbf{X} \in \mathbb{R}^{d}, \mathbf{Y} \in \mathbb{R}^{m}$ using orthogonal subspaces

$$
\begin{array}{ll}
\mathbf{X}=U_{r}^{T} \mathbf{X}_{r}+U_{\perp}^{T} \mathbf{X}_{\perp}, & \mathbf{X}_{r} \in \mathbb{R}^{r} \text { is informed by } \mathbf{Y} \\
\mathbf{Y}=V_{s}^{T} \mathbf{Y}_{s}+V_{\perp}^{T} \mathbf{Y}_{\perp}, & \mathbf{Y}_{s} \in \mathbb{R}^{s} \text { is informative of } \mathbf{X}
\end{array}
$$

- Consider the class of posterior density approximations

$$
\widehat{\pi}_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\widehat{\pi}_{\mathbf{X}_{r} \mid \mathbf{Y}_{s}}\left(\mathbf{x}_{r} \mid \mathbf{y}_{s}\right) \pi_{\mathbf{X}_{\perp} \mid \mathbf{X}_{r}}\left(\mathbf{x}_{\perp} \mid \mathbf{x}_{r}\right) \propto \widehat{\pi}_{\mathbf{Y}_{s} \mid \mathbf{X}_{r}}\left(\mathbf{y}_{s} \mid \mathbf{x}_{r}\right) \pi_{\mathbf{X}}(\mathbf{x})
$$

- Goal: Find U_{r}, V_{s} with $r(\epsilon) \ll d$ and $s(\epsilon) \ll m$ such that

$$
\mathbb{E}_{\mathrm{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(\pi_{\mathrm{X} \mid \mathrm{Y}} \| \widehat{\pi}_{\mathrm{X} \mid \mathrm{Y}}\right)\right] \leq \epsilon
$$

- Result: Sample posterior by building lower dimensional maps:
(1) Construct map $T^{\mathcal{X}}\left(\mathbf{y}_{s}, \mathbf{x}_{r}\right)$ to sample $\mathbf{X}_{r}^{i} \sim \pi_{\mathbf{X}_{r} \mid \mathbf{Y}_{s}}$
(2) Join with conditional prior samples $\mathbf{X}_{\perp}^{i} \sim \pi_{\mathbf{X}_{\perp} \mid \mathbf{x}_{r}^{i}}$

Decomposition of parameters and observations

Approach: Minimize error of closest approximation $\pi_{\mathrm{Y} \mid \mathrm{X}}^{*}:=\pi_{\mathrm{Y}_{s} \mid \mathrm{X}_{r}} \pi_{\mathrm{X}}$

$$
\begin{aligned}
\mathbb{E}_{\mathbf{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(\pi_{\mathbf{X} \mid \mathbf{Y}} \| \pi_{\mathbf{X} \mid \mathbf{Y}}^{*}\right)\right] & =I\left(\mathbf{X}_{\perp}, \mathbf{Y} \mid \mathbf{X}_{r}\right)+I\left(\mathbf{Y}_{\perp}, \mathbf{X} \mid \mathbf{Y}_{s}\right)-I\left(\mathbf{Y}_{\perp}, \mathbf{Y}_{\perp} \mid \mathbf{Y}_{s}, \mathbf{X}_{r}\right) \\
& \leq \underbrace{I\left(\mathbf{X}_{\perp}, \mathbf{Y} \mid \mathbf{X}_{r}\right)}_{\text {function }\left(U_{\perp}\right)}+\underbrace{I\left(\mathbf{Y}_{\perp}, \mathbf{X} \mid \mathbf{Y}_{s}\right)}_{\text {function }\left(V_{\perp}\right)}
\end{aligned}
$$

Recall: Conditional mutual information (CMI) $I(\mathbf{A}, \mathbf{B} \mid \mathbf{C})=0$ if $\mathbf{A} \Perp \mathbf{B} \mid \mathbf{C}$

Decomposition of parameters and observations

Approach: Minimize error of closest approximation $\pi_{\mathrm{Y} \mid \mathrm{X}}^{*}:=\pi_{\mathrm{Y}_{s} \mid \mathrm{X}_{r}} \pi_{\mathrm{X}}$

$$
\begin{aligned}
\mathbb{E}_{\mathbf{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(\pi_{\mathbf{X} \mid \mathbf{Y}} \| \pi_{\mathbf{X} \mid \mathbf{Y}}^{*}\right)\right] & =I\left(\mathbf{X}_{\perp}, \mathbf{Y} \mid \mathbf{X}_{r}\right)+I\left(\mathbf{Y}_{\perp}, \mathbf{X} \mid \mathbf{Y}_{s}\right)-I\left(\mathbf{Y}_{\perp}, \mathbf{Y}_{\perp} \mid \mathbf{Y}_{s}, \mathbf{X}_{r}\right) \\
& \leq \underbrace{I\left(\mathbf{X}_{\perp}, \mathbf{Y} \mid \mathbf{X}_{r}\right)}_{\text {function }\left(U_{\perp}\right)}+\underbrace{I\left(\mathbf{Y}_{\perp}, \mathbf{X} \mid \mathbf{Y}_{s}\right)}_{\text {function }\left(V_{\perp}\right)}
\end{aligned}
$$

Recall: Conditional mutual information (CMI) $I(\mathbf{A}, \mathbf{B} \mid \mathbf{C})=0$ if $\mathbf{A} \Perp \mathbf{B} \mid \mathbf{C}$
Idea: For non-Gaussian π, minimize tractable upper bounds for CMI

Theorem [B, Marzouk, et al., 2021]

If $\pi_{X, Y}$ satisfies a conditional log-Sobolev inequality with constant C_{π},

$$
\begin{aligned}
& I\left(\mathbf{X}_{\perp}, \mathbf{Y} \mid \mathbf{X}_{r}\right) \leq C_{\pi}^{2} \mathbb{E}_{\boldsymbol{\pi}}\left\|\nabla_{\mathbf{y}, \mathbf{x}} \log \pi_{\mathbf{Y} \mid \mathrm{X}}(\mathbf{y} \mid \mathbf{x}) U_{\perp}\right\|_{F}^{2} \\
& I\left(\mathbf{Y}_{\perp}, \mathbf{X} \mid \mathbf{Y}_{s}\right) \leq C_{\pi}^{2} \mathbb{E}_{\boldsymbol{\pi}}\left\|V_{\perp}^{T} \nabla_{\mathbf{y}, \mathbf{x}} \log \pi_{\mathbf{Y} \mid \mathrm{X}}(\mathbf{y} \mid \mathbf{x})\right\|_{F}^{2}
\end{aligned}
$$

Example: subspaces for Gaussian likelihood models

Let $\mathbf{Y}=G(\mathbf{X})+\boldsymbol{\epsilon}$ where $\operatorname{Cov}(\mathbf{X})=I_{d}$ and $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, I_{m}\right)$.

Example: subspaces for Gaussian likelihood models

Let $\mathbf{Y}=G(\mathbf{X})+\boldsymbol{\epsilon}$ where $\operatorname{Cov}(\mathbf{X})=I_{d}$ and $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, I_{m}\right)$.
Informed state space [Cui et al., 2020]

- $U_{r}=\left[u_{1}, \ldots, u_{r}\right]$ where $\left(\lambda \mathrm{x}_{\mathrm{x}}, u_{i}\right)$ are leading eigen-pairs of

$$
H_{\mathbf{x}}=\int \nabla G(\mathbf{x})^{T} \nabla G(\mathbf{x}) \mathrm{d} \pi_{\mathbf{x}}(\mathbf{x})
$$

Informative observations space

- $V_{s}=\left[v_{1}, \ldots, v_{s}\right]$ where $\left(\lambda_{Y}, j, v_{j}\right)$ are leading eigen-pairs of

$$
H_{Y}=\int \nabla G(\mathbf{x}) \nabla G(\mathbf{x})^{T} \mathrm{~d} \pi_{\mathrm{X}}(\mathbf{x})
$$

Example: subspaces for Gaussian likelihood models

Let $\mathbf{Y}=G(\mathbf{X})+\boldsymbol{\epsilon}$ where $\operatorname{Cov}(\mathbf{X})=I_{d}$ and $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, I_{m}\right)$.
Informed state space [Cui et al., 2020]

- $U_{r}=\left[u_{1}, \ldots, u_{r}\right]$ where $\left(\lambda_{\mathrm{x}, i}, u_{i}\right)$ are leading eigen-pairs of

$$
H_{\mathbf{x}}=\int \nabla G(\mathbf{x})^{T} \nabla G(\mathbf{x}) \mathrm{d} \pi_{\mathrm{x}}(\mathbf{x})
$$

Informative observations space

- $V_{s}=\left[v_{1}, \ldots, v_{s}\right]$ where $\left(\lambda_{Y}, j, v_{j}\right)$ are leading eigen-pairs of

$$
H_{\mathbf{Y}}=\int \nabla G(\mathbf{x}) \nabla G(\mathbf{x})^{T} \mathrm{~d} \pi_{\mathbf{X}}(\mathbf{x})
$$

Corollary: Error bound for posterior approximation

$$
\mathbb{E}_{\mathbf{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(\pi_{\mathbf{X} \mid \mathbf{Y}} \| \pi_{\mathbf{X} \mid \mathrm{Y}}^{*}\right)\right] \leq C_{\pi}^{2}\left(\sum_{i>r} \lambda_{\mathbf{X}, i}+\sum_{j>s} \lambda_{\mathbf{Y}, j}\right)
$$

Generalization of linear dimension reduction

$$
\text { Let } \mathbf{Y}=\mathbf{G X}+\boldsymbol{\epsilon} \text { where } \operatorname{Cov}(\mathbf{X})=I_{d} \text { and } \boldsymbol{\epsilon} \sim \mathcal{N}\left(0, I_{m}\right) \text {. }
$$

Diagnostic matrices:

$$
H_{\mathbf{X}}=\mathbf{G}^{\top} \mathbf{G}, \quad H_{\mathbf{Y}}=\mathbf{G G}^{\top}
$$

Proposition

After a rotation, eigenvectors of H_{X} and H_{Y} reduce to solution of canonical correlation analysis (CCA)

$$
\begin{aligned}
& \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) \operatorname{Cov}(\mathbf{Y})^{-1} \operatorname{Cov}(\mathbf{X}, \mathbf{Y})^{T} u_{i}=\lambda_{\mathbf{X}, i} /\left(1+\lambda_{\mathbf{X}, i}\right) u_{i} \\
& \operatorname{Cov}(\mathbf{Y}, \mathbf{X}) \operatorname{Cov}(\mathbf{X})^{-1} \operatorname{Cov}(\mathbf{Y}, \mathbf{X})^{T} v_{j}=\lambda_{\mathbf{Y}, j} /\left(1+\lambda_{\mathbf{Y}, i}\right) v_{j}
\end{aligned}
$$

Takeaway: Gradient-based diagnostic matrices generalize CCA for nonlinear forward models

CMI-based subspaces are more relevant for inference

Conditioned diffusion problem

- Particle follows SDE: $d u_{t}=f\left(u_{t}\right) d t+d X_{t}$ with drift $f(u)=\beta u\left(1-u^{2}\right) /\left(1+u^{2}\right)$ and Brownian motion X
- Infer driving force x given noisy state observations $y_{t_{i}}=u_{t_{i}}+\epsilon_{i}$
- Discretized parameters \mathbf{X} and observations \mathbf{Y} have dimension 100

Sample realizations of y_{t}

$U_{1: 5}$ from PCA

$U_{1: 5}$ from CMI

Takeaway: CMI-based eigenvectors are more relevant for inference

CMI-based subspaces are more relevant for inference

Conditioned diffusion problem

- Particle follows SDE: $d u_{t}=f\left(u_{t}\right) d t+d X_{t}$ with drift $f(u)=\beta u\left(1-u^{2}\right) /\left(1+u^{2}\right)$ and Brownian motion X
- Infer driving force x given noisy state observations $y_{t_{i}}=u_{t_{i}}+\epsilon_{i}$
- Discretized parameters \mathbf{X} and observations \mathbf{Y} have dimension 100

Takeaway: CMI-based subspaces minimize posterior approximation error

Back to turbulent flows

Sequential Bayesian inference:

- States: Biot-Savart dynamics $\pi_{\mathrm{X}_{t} \mid \mathrm{X}_{t-1}}$
- Observations: Poisson equation with additive noise $\pi_{\mathbf{Y}_{t} \mid \mathbf{X}_{t}}$

Goal: Recursively characterize filtering distributions $\pi_{\mathbf{x}_{t} \mid \mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{t}^{*}}$

Back to turbulent flows

Sequential Bayesian inference:

- States: Biot-Savart dynamics $\pi_{\mathrm{X}_{t} \mid \mathrm{X}_{t-1}}$
- Observations: Poisson equation with additive noise $\pi_{\mathbf{Y}_{t} \mid \mathbf{X}_{t}}$

Goal: Recursively characterize filtering distributions $\pi_{\mathbf{X}_{t} \mid \mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{t}^{*}}$
Recursive approach: At each time t

- Use model dynamics to predict state from $\pi_{\mathrm{X}_{t} \mid \mathbf{y}_{1}^{*}, \ldots, \mathrm{y}_{t-1}^{*}}$ (i.e., prior)
- Solve inverse problem for $\pi_{\mathbf{x}_{t} \mid \mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{t}^{*}}$ given observation \mathbf{y}_{t}^{*}

State and observation diagnostic matrices are often low-rank

Spectra and energy of H_{X}, H_{Y}

Adaptive rank algorithm

- Use energy $E_{i}=\sum_{j=1}^{i} \lambda_{j} / \sum_{j} \lambda_{j}$ to select reduced dimensions
- For example, choose r such that $E_{r}>0.99$

Low-rank filter is stable for small ensemble sizes

Observations:

- RMSE is stable for small N for different energy ratios
- Reduced dimensions r, s do not increase over time

Low-rank filter improves pressure estimation

- Estimate flow around the airfoil at 20° angle of attack and $\operatorname{Re}=500$ subject to force actuation mimicking gusts

Low-rank filter improves pressure estimation

- Estimate flow around the airfoil at 20° angle of attack and $\operatorname{Re}=500$ subject to force actuation mimicking gusts

Low-rank filter improves pressure estimation

- Estimate flow around the airfoil at 20° angle of attack and $\operatorname{Re}=500$ subject to force actuation mimicking gusts

Low-rank filter improves pressure estimation

- Estimate flow around the airfoil at 20° angle of attack and $\operatorname{Re}=500$ subject to force actuation mimicking gusts

- Posterior predictive distribution has lower bias and spread at the leading edge

Conclusion and outlook

Conclusion and outlook

Main idea: Dimension reduction of parameters and observations

- Detect subspaces using gradients of the observation model
- Provide error guarantees on posterior approximation
- Stable tracking of turbulent flows with small ensemble sizes

Conclusion and outlook

Main idea: Dimension reduction of parameters and observations

- Detect subspaces using gradients of the observation model
- Provide error guarantees on posterior approximation
- Stable tracking of turbulent flows with small ensemble sizes

Future work

- Gradient-free identification of low-dimensional structure (e.g., using score estimation methods [Song et al., 2019])
- Other sources of structure, e.g., conditional independence

Conclusion and outlook

Main idea: Dimension reduction of parameters and observations

- Detect subspaces using gradients of the observation model
- Provide error guarantees on posterior approximation
- Stable tracking of turbulent flows with small ensemble sizes

Future work

- Gradient-free identification of low-dimensional structure (e.g., using score estimation methods [Song et al., 2019])
- Other sources of structure, e.g., conditional independence

References: arXiv:2203.05120, arXiv:2207.08670

Thank You

Supported by the U.S. Department of Energy

