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Introduction
Optimisation using Subsets

(Non linear) inverse problems of the form

yobs = A(x) + e

Typically solved as a (regularised) optimisation problem

x∗ = argmin
x

[
D(yobs,A(x)) + λR(x)

]
≡ − log

(
e−D(yobs,A(x))︸ ︷︷ ︸

Likelihood

e−R(x)λ︸ ︷︷ ︸
Prior

)
In general iterative methods are required e.g

xn = xn−1 − αn
(
∇D(yobs,A(xn−1)) + λ∇R(xn−1)

)
or proximal methods

xn = proxαnλ,R
[
xn−1 − αn

(
∇D(yobs,A(xn−1))

)]
In discrete setting A : RN → RM where M is size of the data. In the case of
medical imaging, M maybe large e.g. O(106 − 108) which leads to
computationally demanding reconstruction times.
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Introduction
Ordered Subsets

Consider a partition S = {S1, . . . ,SNs} of the set [M], i.e. a collection of
(sub)sets such that ∅ ≠ St ⊂ [M];St1 ∩ St2 = 0 for t1 ̸= t2 and ∪Ns

t=1St = [M].
Given the partition S we can subdivide the log likelihood term
F (x) = D(yobs,A(x)) into

F (x) =
NS∑
t=1

FSt (x) with FSt (x) =
∑

m∈St

D(yobs
m ,Am(x))

In Ordered Subset Methods, the partition S is carefully chosen in order to
optimise the accucracy and convergence of the iterative algorithm1. For
example in Positron Emission Tomography (PET) partitions are based on
projections at different angles ordered so as to be as nearly "orthogonal" as
possible2 (the ’OSEM’ algorithm).

1H.M. Hudson and R Larkin, IEEE Trans Med Im, 1994.
2G. T. Herman and L. B. Meyer, IEEE Trans Med Im, 1993
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Introduction
Stochastic Optimisation

Alternatively, subsets can be chosen stochastically, which is the basis for
Stochastic Gradient Descent (SGD).
These methods have risen to prominence for training Neural Networks
algorithms, where the objective is referred to as a Loss Function, e.g.

F =
1

Ntrain

Ntrain∑
i=1

L(y (i), fθ(x (i)))

representing the empiral mean estimate of the error in predicting a mapping
fθ between pairs of data in spaces X and Y . use of subsets in this context is
referred to as minibatching.
Variance reduction methods for accelearating SGD have been extensively
investigated (SAGA3, SVRG4 ) in these applications.
in this talk we consider the use of SGD for some nonlinear inverse problems
where the data is naturally considered as a set with an arbitrary random
partitioning.

3A. Defazio, F Bach, and S. Lacoste-Julien, NIPS 27, 2014
4R Johnson and T Zhang, NIPS 26, 2013
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Introduction
Imaging from Coupled Physics (ICP)

High Resolution Imaging Modalities (CT, MRI, Ultrasound) are well
established.
Reconstruction algorithms (usually) simple ⇔ Inverse Problem
well posed (or "mildly ill-posed")
Contrast often low, precisely because objects of interest do not
"interfere with" probing wave or radiation

Novel Imaging Modalities (EIT, DOT, Microwave Imaging etc.)
provide contrast in novel parameters (conductivity, permitivity,
optical absorption etc.).
Reconstruction algorithms (usually) complex ⇔ Inverse Problem
strongly ill-posed (and usually non-linear)
Contrast high, because objects of interest do "interfere with"
probing wave
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Introduction
Imaging from Coupled Physics (ICP)

ICP methods seek to probe with
one "wave" and readout with
another.

Contrast from first wave is
readout (high resolution) with the
second.

Not the same as Multimodality

Partial List

Photo-Acoustic Imaging

Thermo-Acoustic Imaging

Acousto-Optic Imaging

Acoustic-Modulated EIT

MR-EIT

Current density EIT

MR-Elastography

Ultrasound Elastography
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Introduction : PhotoAcoustic Tomography
Motivation

Optical Imaging : Pros
High intrinsic contrast based upon optical absorption and scattering
Spectroscopic specificity – chemical information
Functional imaging of physiological parameters – blood oxygenation

Optical Imaging : Cons
Imaging depth/spatial resolution limited by strong optical scattering

Ultrasound Imaging : Pros
Images of soft tissue anatomy
High spatial resolution: scalable with depth 100’s µm →∼ mm
Large penetration depth: ∼ 10cm
Physiological information via measurement of blood flow

Ultrasound Imaging : Cons
Weak contrast provided by certain important targets – e.g. the
microvasculature
Limited specificity: weak sensitivity to chemical differences
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PhotoAcoustic Tomography
PhotoAcoustic Signal Generation

[slide courtesy of Ben Cox]

Naturally occuring contrast agents
(chromphores) give rise to optical
absorption in the medium.

The absorption and scattering
coefficients µa and µs determine the
fluence distribution Φ,

µaΦ 7→ H (deposited energy).

ΓH 7→ p0 (pressure distribution) via
thermalisation,

p0 propagates as an acoustic pulse
(elasticity of tissue).

Sensor detects PA time series p(t).

Cox, A. Laufer, Beard, 2012.
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Introduction : PhotoAcoustic Tomography
Some PAT systems
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Introduction
Ultrasound Modulated Optical Tomography

Figure: Schematic showing propagation of highly scattered photons through a
biological tissue in the presence of a focused ultrasound beam. The resulting speckle
pattern at the output face is illustrated together with the modulation in intensity of a
single speckle grain. From : [Elson et.al., Interface Focus, 2011]
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Modelling in Optical Tomography
Physical Models of Light Propagation

The Radiative Transfer Equation (RTE) is a natural description of light
considered as photons. It represents a balance equation where photons in a
constant refractive index medium, in the absence of scattering, are
propagated along rays l := r0 + l ŝ

ŝ · ∇ϕ+ µaϕ = 0 ≡ Tµaϕ = 0 (1)

whose solution

ϕ = ϕ0 exp

[
−
∫

l
µa(r0 + l ŝ)dl

]
(2)

is the basis for the definition of the Ray Transform

gŝ(p) := − ln

[
ϕ

ϕ0

]
=

∫ ∞

−∞
µa(pŝ⊥ + l ŝ)dl ≡ gŝ = Rŝµa (3)
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Modelling in Optical Tomography
The Radiative Transfer Equation

In the presence of scattering, and with source terms q, eq.(1) becomes

(ŝ · ∇+ µa(r) + µs(r))ϕ(r , ŝ) = µs

∫
Sn−1

Θ(ŝ, ŝ′
)ϕ(r , ŝ′

)d ŝ′
+ q(r , ŝ)

≡ [Tµtr − µsS]︸ ︷︷ ︸
L

ϕ = q (4)

µtr = µs + µa is the attenuation coefficent
S is the scattering operator, (local, non propagating).
Method of successive approximation (Sobolev 1963) :

ϕ =
[
T −1
µtr

+ T −1
µtr

µsST −1
µtr

+ . . .
(
T −1
µtr

µsS
)k T −1

µtr
. . .

]
q (5)

The first term may be found from the Ray Transform, giving an alternative
equation for the collided flux

[Tµtr − µsS]ϕcollided = µsS T −1
µtr

q︸ ︷︷ ︸
uncollided

(6)
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Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling in Optical Tomography
RTE solutions

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 17 / 62



Modelling of Light
The Monte Carlo Approach
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Deterministic Reconstruction based on RTE
Setup for Quantitative Photoacoustic Tomography

Medium

Acoustic wave

Acoustic Sensor/ Transducer

Optical source
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Deterministic Reconstruction based on RTE
QPAT case

In QPAT the internal pressure distribution is related to the spatial distribution
of absorbed optical energy, h, where ( omitting the Grüneisen parameter)

h(r) = µa(r)Φ(r), (7)

and where Φ is the optical fluence given by the angular integral of the
radiance,

Φ(r) =
∫
S2

ϕ(r , ŝ)d ŝ . (8)

Assuming that we can recover the absorbed optical energy (through PAT)), h,
the QPAT problem is to find the distribution of µa(r) within the medium [Cox
2012, Saratoon2013].
Restating our cost function in terms of the QPAT data function, h, we have

F QPAT =
1
2

∫
Ω

(hobs − h)2dr =
1
2
〈
hobs − h,hobs − h

〉
L2(Ω)

. (9)

then the Fréchet derivative of F QPAT is

DF QPAT = −
〈
hobs − h,Dhµδ

a

〉
L2(Ω)

, (10)

where µδ
a is a small change in absorption.
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Deterministic Reconstruction based on RTE
QPAT case

Writing the Fréchet derivative of h as

Dh = Φ+ µa · DΦ , (11)

and defining Φδ = DΦµδ
a , we arrive at

DF QPAT = −
〈
Φ(hobs − h), µδ

a

〉
L2(Ω)

−
〈
µa(hobs − h),Φδ

〉
L2(Ω)

. (12)

Next, we define the adjoint radiance, ϕ∗, as the solution to

L∗ϕ∗ = µa(hobs − h) (13)

where the right hand side describes the “adjoint source” which is isotropic in
ˆ⃗s. We then substitute the above into eq. 12 to give

DF QPAT = −
〈
Φ(hobs − h), µδ

a

〉
L2(Ω)

−
〈
L∗ϕ∗, ϕδ

〉
L2(Ω×Sn−1)

(14)

where we exploited the fact that the right hand side of eq. 13 does not
depend on direction. Using the definition of the adjoint operator, and the fact
that the change in radiance is zero on the boundary ∂Ω yields

DF QPAT = −
〈
Φ(hobs − h), µδ

a

〉
L2(Ω)

−
〈
ϕ∗,Lϕδ

〉
L2(Ω×Sn−1)

. (15)
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Deterministic Reconstruction based on RTE
QPAT case

Consider a change to eq. 4 where µa → µa + µδ
a , µs → µs + µδ

s , for the same
source Q, which results in a change in radiance ϕ → ϕ+ ϕδ. This implies(

Tµa+µδ
a ,µs+µδ

s
− Sµs+µδ

s

) (
ϕ+ ϕδ

)
= (Tµa,µs − Sµs)ϕ

⇒ (Tµa,µs − Sµs)ϕ
δ = −(µδ

a + µδ
s + Sµδ

s
)ϕ (16)

Lµa,µsϕ
δ = − (µδ

a + µδ
s + Sµδ

s
)︸ ︷︷ ︸

Lδ

µδ
a ,µδ

s

ϕ . (17)

Neglecting scattering, this gives

DF QPAT = −
〈
Φ(hobs − h), µδ

a

〉
L2(Ω)

+
〈
ϕ∗ϕ, µδ

a

〉
L2(Ω×Sn−1)

, (18)

allowing us to define the (absorption) gradient

∂F QPAT

∂µa
= ∇F QPAT = −Φ(hobs − h) +

∫
Sn−1
ϕ∗ϕ dŝ (19)
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Quantitative PhotoAcoustic Tomography
RTE-based Inversions

Fixed-point iteration, known scattering (Yao, Sun, Jiang 2009)

Use separated unscattered, singly-scattered and multiply scattered
components (Bal, Jollivet, Jugnon 2010)

Gauss-Newton inversions with TV regularization (Cox, Tarvainen, A.,
2011; Tarvainen, Cox, Kaipio, A. 2012)

Gradient-based inversions with Tikhonov reg. (Saratoon, Tarvainen,
Cox, A., 2013)
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Quantitative PhotoAcoustic Tomography
RTE-based Inversions (Gauss-Newton)

Using 4 images from 4
illumination directions
(Tarvainen, Cox.,
Kaipio, A. 2012)
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Quantitative PhotoAcoustic Tomography
SVD comparison

SVD of Hessian reveals different information content
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Quantitative PhotoAcoustic Tomography
Matrix Free method

Explicit construction of Jacobians is too expensive ⇒ use matrix free method
based on adjoint fields
Limited memory BFGS optimisation

Using 4 images from 4 illumination directions, Tikhonov regularisation
(Saratoon, Tarvainen, Cox, A., 2013)
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Deterministic Reconstruction based on RTE
Setup for Ultrasound-Modulated Optical Tomography in the transmission geometry

Medium

Optical source

Ultrasound source

Ultrasound focus

Optical Detector
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Deterministic Reconstruction based on RTE
UMOT case

In UMOT we have an optical light source Qq incident on a medium, as well as
an optical detector Jm. In addition, an ultrasound source is incident on the
medium, where the focus η(r) is scanned through the sample 5. Assuming for
simplicity an ideal (delta-function) ultrasound focus, the data of interest in this
case is found to be of the form6

b(r) = η(r)Φq(r)Φm(r), (20)

where Φq is the fluence resulting from the optical source Qq , and Φm is the
resulting fluence from a virtual source Qm which is reciprocal to the detector
Jm From this point we proceed in similar fashion as for QPAT, where now our
data fitting error is given by

F UMOT =
1
2

∫
Ω

(bobs − b)2dr =
1
2
〈
bobs − b,bobs − b

〉
L2(Ω)

(21)

5Ammari 2014, Chung 2017]
6[Powell ,A, Leung, 2015]
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Deterministic Reconstruction based on RTE
UMOT case

To get the Fréchet derivative

DF UMOT = −
〈
bobs − b,Dbµδ

a

〉
L2(Ω)

(22)

In this case the Fréchet derivative of b becomes

Db = ηΦq · DΦm + ηΦm · DΦq (23)

leading to

DF UMOT = −
〈
ηΦq(bobs − b),Φδ

m
〉

L2(Ω)
−
〈
ηΦm(hobs − h),Φδ

q
〉

L2(Ω)
. (24)

Here we need to define two adjoint radiances, ϕ∗,1, ϕ∗,2, as the solution to

L∗ϕ∗,1 = ηΦq(bobs − b) (25)

L∗ϕ∗,2 = ηΦm(bobs − b) (26)

and substituting into eq. 24 to give

DF UMOT = −
〈
L∗ϕ∗,1, ϕδ

m
〉

L2(Ω×Sn−1)
−
〈
L∗ϕ∗,2, ϕδ

q
〉

L2(Ω×Sn−1)
(27)
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Deterministic Reconstruction based on RTE
UMOT case

by the same arguments as for QPAT we get

DF UMOT = −
〈
ϕ∗,1,Lϕδ

m
〉

L2(Ω×Sn−1)
−
〈
ϕ∗,2,Lϕδ

q
〉

L2(Ω×Sn−1)
. (28)

Again using the perturbation expression eq. 17 we have

DF UMOT =
〈
ϕ∗,1ϕm, µ

δ
a

〉
L2(Ω×Sn−1)

+
〈
ϕ∗,2ϕq , µ

δ
a

〉
L2(Ω×Sn−1)

. (29)

allowing us to define the (absorption) gradient as

∂F UMOT

∂µa
= ∇F UMOT =

∫
Sn−1

(
ϕ∗,1ϕm + ϕ∗,2ϕq

)
dŝ (30)
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Deterministic Reconstruction UMOT
UMOT fields

Figure: Pictorial description of eq.30. From left to right: ϕq , ϕ∗,2, ϕ∗,1, ϕm,
ϕ1 × ϕ∗,2, ϕm × ϕ∗,1 . Red inwards arrows indicates real source positions, blue
inwards arrows indicate adjoint source positions. White dots indicates
ultrasound field focal point. The colour scale varies between plots.
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Deterministic Reconstruction UMOT
UMOT sensitivities

Figure: A set of CMDFs in µa (top) and µs (bottom) for all optical
source-detector pairs one (left) to six (right). Red arrows indicate source
locations, blue arrows indicate detector locations, white dots indicate the focal
point of the acoustic field. Red regions indicate that increases in
perturbations cause reductions in the measured data, blue regions indicate
the converse. The colour scale vary between plots.
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Deterministic Reconstruction UMOT
UMOT reconstruction (2D)

Figure: Target (left), reconstruction (middle) and percentage error (right)
images of µa (top) and µs (bottom) for two-dimensional reconstruction.
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Fully Stochastic Reconstruction (FSR)
FSR : Introduction

Solving quantitative coupled optical imaging requires an accurate
forward model

Deterministic RTE is computationally expensive and needs adapting to
problem domain

Stochastic Monte Carlo modelling is "arbitrarily accurate" in expectation
but not a operator between Banach spaces

One possible approach is to run forward and adjoint MC to "sufficient"
accuracy and use as a proxy for deterministic RTE [Hochuli, Powell, A,
Cox 2016]

New idea : use few-photons MC as approximate (inaccurate) model and
leverage methods from Adaptive Stochastic Gradient Descent (ASGD)
[Bollapragada, Byrd, Nocedal 2018].
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FSR : Introduction
Stochastic Gradient Descent

Deterministic model : gradient descent method ("Batch Gradient
Descent"), with step size αn ("training rate")

xn = xn−1 − αn∇F (xn−1) ,
Converges if limn→∞ F (xn) = 0.

Stochastic setting : true cost F and gradient ∇F not directly available
⇒ use (unbaised) estimates of the cost function and gradient

E[FSn(xn)] = F (xn) , E[∇FSn(xn)] = ∇F (xn) ,

Here Sn denotes the nth “sample” used in the computation.

In Monte Carlo modelling of radiative transport, the sample refers to the
set of virtual photons (and their associated random number seeds) that
are initiated in the simulation to represent an optical source, which are
subsequently used to estimate F (xn) and ∇F (xn).
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FSR : Introduction
Stochastic Gradient Descent

The stochastic version of Gradient Descent (SGD) thus attempts to
minimize a sampled objective function, FSn , by updating the previous
iterate with a scaled sampled gradient,

xn = xn−1 − αn∇FSn(xn−1) .

If αn is fixed for all n, eventually there will come a point where the next
update of the estimate (with the term αn∇FSn(xn−1)) will reliably “undo”
the work of the prior step, which will effectively halt the descent. The
point at which this occurs depends on the variance of ∇FSn . We can see
this by re-writing the sampled stochastic gradient estimate as,

∇FSn(xn) = ∇F (xn) + ϵSn(xn) ,

where ϵ is a random vector with E[ϵSn(xn)] = 0 for all n.
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FSR : Introduction
Stochastic Gradient Descent

To prevent iteration gradient steps becoming comparable to a random
walk, we may:

i) reduce the step size at each iteration such that we can avoid
“backtracking” in the descent, or

ii) gradually improve the accuracy of our sampled gradient such that
the variance of the sampled gradient remains below some
threshold value compared to the norm of the true gradient ∇F .

Second point tries to ensure the inequality

norm test V 2
tot(xn) :=

E
[
|ϵSn(xn)|2

]
|∇F (xn)|2

≤ γ2
tot , γtot > 0.

where γtot is a positive coefficient describing the acceptable threshold.

Alternatively restrict the component of variance in the sampled gradient
parallel to the true gradient ∇F ,

inner product test V 2
∥ (xn) :=

E
[
⟨ϵSn(xn),∇F (xn)⟩2

]
|∇F (xn)|4

≤ γ2
∥ , γ∥ > 0.
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FSR : Introduction
Adaptive Sample Size

Increasing the sample size in the event where the inner product and/or
norm tests fail can be done in a number of ways. A simple method is to
scale the current sample size by some factor κ(n), to increase the
number of photons used in the next iteration,

|Sn+1| = κ(n) |Sn|

One option for κ(n) is to use the same factor by which the variance
exceeds our imposed limit at a given point in the descent. For instance,
upon failure of the inner product test for a chosen value of γ∥, we can
increase the sample size on the next iteration using κ(n) = V 2

∥ (xn)/γ
2
∥ .

However, we also investigate other forms of κ(n) in the results, which
better cope with statistical variations that can lead to over-estimating the
required sample size increase.
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FSR : Introduction
Adaptive Step Size

If we are bounding the error in the sampled gradient, e.g. by increasing
the sample size, then fixed step SGD may converge so long as the
following is satisfied for all n [Bollapragada, Byrd, Nocedal 2018].

αn ≤ 1
(1 + γ2

tot)L
,

where L is the Lipschitz constant for F . This has to be estimated for a
stochastic forward model such as Monte Carlo

As intuition indicates, when the sample size (e.g number of simulated
photons) increases towards the maximum number of samples
|Sn| → |Smax| (|Smax| = ∞ in the case of Monte Carlo RTE simulations),
the expected error in the sampled gradient approaches zero, |ϵSn | → 0,
as do the measures of variance in the sampled gradients (V 2

tot → 0,
V 2
∥ → 0), as defined in eq. 39 and eq. 39. In other words, as the

stochasticity in the problem reduces to zero, we approach the classical
step size of the deterministic problem given by α = 1

L [Nesterov 2013].
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FSR : Introduction
Gradient Descent
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FSR : Introduction
Stochastic Gradient Descent
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FSR : Introduction
Adaptive Stochastic Gradient Descent
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FSR : Testing
Inverse MC algorithm
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FSR : Testing
Setup for Quantitative Photoacoustic Tomography

Medium

Acoustic wave

Acoustic Sensor/ Transducer

Optical source
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FSR : Testing
QPAT algorithm
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FSR : Testing

Strategy Step Size, αn Sample Size, |Sn+1| = κ(n)|Sn|

1 1
(1+γ2

tot)L
|Sn+1| = V 2

tot
γ2

tot
|Sn|

2 1
(1+V 2

tot)L
|Sn+1| =

V 2
∥

γ2
∥
|Sn|

3 1
(1+Vtot)L |Sn+1| =

V∥
γ∥
|Sn|

Table: Table showing the different inversion strategies used. Strategy 1 has a
constant step size, with adaptive sample size. Strategies 2 & 3 both have
adaptive step sizes, and adaptive sample sizes. Note that in accordance with
Algorithm 1 the sample size is only increased upon a failure of the relevant
test. If the test passes, then |Sn+1| = |Sn|.
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FSR : Results
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Strategy 1,  = 4

Strategy 2,  = 20

Strategy 3,  = 10
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Measured data ,  
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Strategy 2,  = 20

Strategy 3,  = 10

Figure: QPAT inversion: (a) - Ground truth absorption distribution, µtrue
a , and

estimated absorption distribution µa at the point where the photon budget is
expended, using each of the three strategies with the stated values of γtot or
γ∥. (b) - Associated measured data from ground truth medium, and simulated
forward data at the end of the inversion using each strategy.
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FSR : Results
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Figure: QPAT inversion: (a) - Sampled cost function, FSn , as a function of
iteration, n. (b) - Error in absorption estimate, Fµa , as a function of iteration, n.
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FSR : Results
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Figure: QPAT inversion: (a) - Step sizes, αn, as a function of iteration, n. (b) -
Adaptive sample size, |Sn|, as a function of iteration.
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FSR : Results
Test QPrecon movies
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FSR : Results
FSR : QPAT Results

Figure: Final outcomes of QPAT inversions with various medium optical properties
and starting values of µa. Values of FSn and Fµa are the final values at the end of each
inversion after the stated number of iterations. In each case Strategy 3 was employed,
with a starting sample size of |S1| = 200 photons per iteration, and a total photon
budget of Nph = 2 × 106 photons. Slab thickness is 2cm in all cases, with the same
ground truth µtrue

a distribution as shown in Fig. 5(a).
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FSR : Testing
Setup for Ultrasound-Modulated Optical Tomography in the transmission geometry

Medium

Optical source

Ultrasound source

Ultrasound focus

Optical Detector
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FSR : Testing
UMOT algorithm
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FSR : Testing
FSR : UMOT Results
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Figure: UMOT inversion: (a) - Ground truth absorption distribution, µtrue
a , and

recovered absorption distribution µa using each of the three strategies with
the stated values of γtot or γ∥. (b) - Associated measured data from ground
truth medium, and simulated forward data at the end of the inversion using
each strategy.
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FSR : Testing
FSR : UMOT Results
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Figure: UMOT inversion: (a) - Sampled cost function, FSn , as a function of
iteration, n. (b) - Error in absorption estimate, Fµa , as a function of iteration, n.
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FSR : Testing
FSR : UMOT Results
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Figure: UMOT inversion: (a) - Step sizes, αn, as a function of iteration, n. (b) -
Adaptive sample size, |Sn|, as a function of iteration.

S.Arridge (University College London) FSR-QPAT-UMOT Banff 24th Oct 2022 58 / 62



FSR : Testing
FSR : UMOT Results

Figure: Final outcomes of UMOT inversions with various medium optical properties
and starting values of µa. Values of FSn and Fµa are the final values at the end of each
inversion after the stated number of iterations. In each case Strategy 3 was employed,
with a starting sample size of |S1| = 4000 photons per iteration, and a total photon
budget of Nph = 4 × 108 photons. Slab thickness is 2cm in all cases, with the same
ground truth µtrue

a distribution as shown in Fig. 9(a).
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Outline

1 Introduction
Optimisation using Subsets
Imaging from Coupled Physics

2 Modelling of Light

3 Deterministic Reconstruction Methods in QPAT and UMOT
Quantitative PhotoAcoustic Tomography
Ultrasound Modulated Optical Tomography
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Conclusions and Outlook
Conclusions

Imaging from Coupled Optics and Acoustics : PAT, UMOT
Several methods for modelling
Combine approximate models with learning
Stochastic models of light propagation combined with stochastic
optimisation : Fully Stochastic Inversion
Topics not mentioned : "one step" reconstruction, multispectral
aspects
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Conclusions and Outlook
Outlook

FSR examples shown were "noise free". Should include explicit
regularisation and/or early stopping
Other noise models for photon counting e.g. Kullback-Leibler,
Wasserstein Distance
Further adaptive subsampling scheme (SAG, SAGA, SARAH etc)
Estimation of Lipschitz coefficient for stochastic forward models
Preconditioning methods
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