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Outline

The problem with Full Waveform Inversion (FWI) (or least-squares): cycle-skipping!

Simple problem setup and motivation

Introduction of source extended objective function (ESI) and why it helps.

Noise estimation algorithm

Numerical examples:
1 Noise level fixed
2 Noise level updated: coherent noise
3 Noise level updated: random noise
4 Noise level updated: no noise

Conclusions
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Motivation Behind Extended Objective Functions

Full Waveform Inversion (FWI) is now well-established as a useful tool for estimating
parameters in the earth.

Unfortunately, the FWI objective function is not convex. FWI stagnates at
geologically uninformative earth models (local minima).

Schematic of cycle-skipping artifacts in FWI. Solid black line is seismogram of period T.
Upper dashed line is seismogram with a time delay greater than T/2. Bottom example,
has time delay less than T/2.1

1 Virieux, J., and S. Operto, 2009, “An overview of full-waveform inversion in exploration geophysics”, Geophysics, 74, WCC1–WCC26.
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Motivation Behind Extended Objective Functions

Extended inversion is one of the many ideas that have been advanced to overcome
cycle-skipping. We will focus on “source extension”.

“Extended” signifies that additional degrees of freedom are provided to the modeling
process.

These extended degrees of freedom should be suppressed in the eventual solution
since they are not physical.

In the case of a very simple model problem, all computations can be done
analytically. Results can be theoretically justified.

Simple problem illustrates the same cycle skipping issues one encounters in FWI for
more realistic problems.
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Simple Experimental Setup

Left: single-trace experimental setup. Right top: the source wavelet (a 20 Hz Ricker).
Right bottom: data.
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Mathematical Background

Assume small amplitude constant-density, acoustic wave propagation in 3D:

m2 ∂2P(x,t;xs )
∂t2 −∇2P(x , t; xs) = δ(x − xs)w(t)

where w is wavelet, m is slowness.

The pressure trace recorded at the receiver position is given by:

F [m]w(t) = 1
4πr w(t −mr)

where F [m] is the operator of convolution with acoustic 3D Green’s function and r
is the distance between the source and receiver.

Inverse Problem : Given target noise level etar , maximum lag 2 λ > 0, find the
slowness m and wavelet w so that:

w(t) = 0 if |t| > λ

||F [m]w−d||
||d|| < etar

2Spiking deconvolution and other processing implies w(t) is negligible for |t| > λ.
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The challenge with full waveform inversion: cycle skipping

The FWI objective function is defined as:

JFWI [m,w ] = 1
2 ||F [m]w − d ||2,

We solve for slowness m and wavelet w, for maximum lag λ.

Left: Data produced by adding to the noise-free data a shifted, scaled multiple of itself.
Right: the FWI objective function plotted as function of slowness, for fixed w.

There are entire intervals of local minimizers far from the global minimizer m∗.
Initial guess for slowness m must be within 2λ/r of the global minimizer m∗, or we
fail to solve the inverse problem.3 “cycle-skipping”!!

3Symes, W. W., 2022, “Error bounds for extended source inversion applied to an acoustic transmission inverse problem”, Inverse Problems, 38, 115002.
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Extended Source Inversion

Add degrees of freedom to F to avoid local minima.

By including the source wavelet as one of the modeling parameters and dropping the
support constraint on w , we extend space of possible solutions.

Define the extended source inversion for the minimization over {m,w} as

JαESI [m,w ; d ] = 1
2

 ||F [m]w − d ||2

||d ||2︸ ︷︷ ︸
= e2

+α2||Aw ||2

||d ||2

 ,

A is an annihilator to penalize energy away from t = 0:
Aw(t) = tw(t).

The value of JαESI will be small at the minimizer of JFWI .

The Variable Projection Method (VPM) produces a reduced objective function of m
alone:

JαVPM [m; d ] = inf
w

JαESI [m,w ; d ]
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Extended Inversion vs FWI: Data with Coherent Noise

ESI objective hard to minimize for both m and w simultaneously.
Use Variable Projection Method4 with inner minimization over w then an outer
minimization over m.
In this case, wavelet solution given analytically by the normal equations.

Left: Data with coherent noise. Right: The VPM (red curve, with α = 1) and FWI
(blue curve) objective functions plotted as functions of slowness.

4 Golub, G., and V. Pereyra, 2003, “Separable nonlinear least squares: the variable projection method and its applications”, Inverse Problems, 19,
R1-R26.
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VPM objective functions with different values of α

α has a big impact on the rate of convergence of the algorithm5.
If α can increase dynamically during run we see improved performance of the algorithm.

VPM objective functions plotted with different
values of α for the data with coherent noise.

As α goes to 0, the VPM objective
function goes to 0, and the error
also goes to 0.

As α increases, the region of
convexity gets smaller, and the
resolution of the slowness m gets
better.
The error increases as α increases.

5W. W. Symes, H. Chen, and S. E. Minkoff, 2022, “Solution of an Acoustic Transmission Inverse Problem by Extended Inversion”, Inverse Problems,
38, 115002.
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Motivation behind the noise estimation algorithm

We define “noise” as the unmodeled signal, which is the minimum of the FWI
objective function over physical models (that is, the wavelets w with maximum lag
constraint).

We have to select α to use the ESI/VPM approach to estimate slowness.

The error increases monotonically with α for the VPM solution, which is equivalent
to selecting target noise level etar and updating error (by updating α) until it’s near
etar .

If the difference between the estimated noise level eest and the target noise level etar
is too big, then we can replace etar by eest , repeat the calculation, and obtain a
better α hence a better estimate of m, which in turn gives a better eest . If eest is
about the same as etar , the process stops.6

6H. Chen, W. W. Symes, and S. E. Minkoff, “Use of extended source inversion for estimating the noise level in seismic data,” Proceedings of the
Second International Meeting for Applied Geoscience & Energy, Houston, TX., pp 887-891, 2022.
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Noise estimation algorithm

The noise level as estimated in the algorithm is computed by the following formula:

eest = min
w

||F [m]w − d ||
||d ||

.

Note that there is maximum lag constraint on w .
Start with arbitrary m, α = 0, γ < 1, δ > 0, gradient tolerance β. Initialize the assumed
target noise level etar > 0 and a range of minimum and maximum allowable errors
0 < (1− γ)etar < (1 + γ)etar .

Do:

Start discrepancy algorithm:7

first fix m, update α so that (1− γ)etar ≤ e ≤ (1 + γ)etar

then fix α, update m so that |∇JαVPM | < β (use local descent method)

repeat until (1− γ)etar ≤ e ≤ (1 + γ)etar AND |∇JVPM | < β

End discrepancy algorithm
compute minimum value eest of e over physical source vector w , with the updated medium
parameter m;

if |etar − eest| > δeest then etar = eest, repeat, else terminate.
7 L. Fu and W. W. Symes, 2017, “A discrepancy-based penalty method for extended waveform inversion”, Geophysics, 82, no. 5, R287-R298.
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Experiment 1: data with 30% coherent noise, no noise level update

noise-to-signal ratio of 30%
initial m = 0.343. Initial α = 0.

initial noise level: estimated noise level: penalty weight: estimated slowness:
etar eest α m (s/km)
0.1 0.285395 0.626626 0.403532
0.2 0.287649 1.253252 0.400797
0.3 0.287910 1.409909 0.400575
0.4 0.959087 5.013009 0.498857
0.5 0.961294 7.832827 0.499765
0.6 0.963973 11.279270 0.499937

Table: Noise estimation algorithm with initial target noise levels ranging from 0.1 to 0.6.

Best eest = 0.287253, which is computed by

ebest = min
w

||F [m∗]w − d ||
||d ||

,

where m∗ = 0.4 s/km is the true slowness.
Note: local minimum near m = 0.5 s/km which we find when target noise level is too large.
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Experiment 2: noise estimation for data with coherent noise

noise-to-signal ratio of 30%
initial m = 0.343. Initial α = 0.

initial noise level: estimated noise level: penalty weight: estimated slowness:
etar eest α m (s/km)
0.1 0.287253 3.878713 0.400021
0.2 0.287253 4.167532 0.400017
0.3 0.287253 2.136271 0.400156
0.4 0.287253 4.118976 0.400017
0.5 0.287253 4.118293 0.400017
0.6 0.287253 4.118268 0.400017

Table: Noise estimation algorithm starting with initial target noise levels ranging from 0.1 to 0.6.

All estimates eest of data noise level are close to the best estimate 0.287253, which is
computed by

ebest = min
w

||F [m∗]w − d ||
||d ||

,

where m∗ = 0.4 s/km is the true slowness.
All estimated slownesses m are close to the true slowness of 0.4 s/km.
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VPM objective functions for the α selected by the noise estimation
algorithm

Regardless of the values of the initial noise level, the penalty weights α from the noise
estimation algorithm can help to convexify the VPM objective function.
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Experiment 3: noise estimation for data with random noise

Data for experiment 3 which contains 30% random filtered noise.

Susan E. Minkoff (UTD) FWI via Source Extension BIRS 2022 16 / 20



Experiment 3: noise estimation for data with random noise

initial noise level: estimated noise level: penalty weight: estimated slowness:
etar eest α m (s/km)
0.1 0.256468 1.246196 0.400486
0.2 0.256468 1.245998 0.400492
0.3 0.256468 1.245833 0.400489
0.4 0.256468 1.246121 0.400488
0.5 0.256526 1.749055 0.400507
0.6 0.256468 1.246053 0.400489

Table: Noise estimation algorithm with initial target noise levels ranging from 0.1 to 0.6.

All estimates eest of data noise level are close to the best estimate 0.256468.

All estimated slownesses m are close to the true slowness of 0.4 s/km.
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VPM objective functions for the α selected by the noise estimation
algorithm

Regardless of the values of the initial noise level, the penalty weights α from the noise
estimation algorithm can help to convexify the VPM objective function.
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Experiment 4: noise estimation for noise-free data

initial noise level: estimated noise level: penalty weight: estimated slowness:
etar eest α m (s/km)
0.1 0.000000 3.854345 0.400000
0.2 0.000000 5.139127 0.400000
0.3 0.000000 8.672277 0.400000
0.4 0.000000 15.417382 0.400000
0.5 0.000000 24.089659 0.400000
0.6 0.000000 34.689109 0.400000

Table: Noise estimation algorithm with initial target noise levels ranging from 0.1 to 0.6.

All estimates eest of data noise level are close to the best estimate of 0.0.

All estimated slownesses m are close to the true slowness of 0.4 s/km.
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Conclusions

Even this very simple single-trace transmission problem exhibits cycle skipping, so
FWI can fail without a good enough initial guess.

The ESI objective function can be efficiently solved using the Discrepancy Algorithm
which maintains the data misfit within a reasonable range while also increasing the
penalty parameter.

ESI avoids cycle-skipping, allowing us to solve the inverse problem using standard
local optimization.

The discrepancy algorithm dynamically updates the penalty parameter α to more
efficiently solve the inverse problem, but it requires an estimate of the data noise
level.

We can simultaneously update our estimate of the noise level in the data while
solving the inverse problem.

Goal is to test how noise estimation combined with ESI works on more realistic
problems.
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