Lower Bound Methods for Sign-rank
 Communication Complexity and Applications III

Hamed Hatami
McGill University, School of Computer Science

Joint work with

- Pooya Hatami, William Pires, Ran Tao, Rosie Zhao, Lower Bound Methods for Sign-rank and their Limitations.

- Work in progress with Kaave Hosseini and Xiang Meng.

Sign Matrices as Binary Concept Classes

Matrix $A_{\mathcal{X} \times \mathcal{Y}}$ with ± 1 entries. Entry $A_{x y}$ can represent:

- Person x likes/dislikes movie y.

Sign Matrices as Binary Concept Classes

Matrix $A_{\mathcal{X} \times \mathcal{Y}}$ with ± 1 entries. Entry $A_{x y}$ can represent:

- Person x likes/dislikes movie y.

- Image x represents an object y. (Muffin, Chihuahua?)

Sign Matrices as Binary Concept Classes

Matrix $A_{\mathcal{X} \times \mathcal{Y}}$ with ± 1 entries. Entry $A_{x y}$ can represent:

- Person x likes/dislikes movie y.

(3)

- Image x represents an object y. (Muffin, Chihuahua?)

- For person x, email y is spam/non-spam.

Geometric Representations

- $\mathcal{Y}=\{$ all restaurents $\}$, modeled by $($ food quality, service quality, price $)=\left(y_{1}, y_{2}, y_{3}\right)$.

Geometric Representations

- $\mathcal{Y}=\{$ all restaurents $\}$, modeled by (food quality, service quality, price) $=\left(y_{1}, y_{2}, y_{3}\right)$.
- $\mathcal{X}=\{$ people $\}$, modeled by numerical features

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Geometric Representations

- $\mathcal{Y}=\{$ all restaurents $\}$, modeled by $($ food quality, service quality, price $)=\left(y_{1}, y_{2}, y_{3}\right)$.
- $\mathcal{X}=\{$ people $\}$, modeled by numerical features

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

- x likes y if

$$
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}>x_{4} .
$$

Geometric Representations

- $\mathcal{Y}=\{$ all restaurents $\}$, modeled by (food quality, service quality, price) $=\left(y_{1}, y_{2}, y_{3}\right)$.
- $\mathcal{X}=\{$ people $\}$, modeled by numerical features

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

- x likes y if

$$
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}>x_{4} .
$$

Representation of this concept in \mathbb{R}^{4} :

$$
A_{x y}=\operatorname{sgn}\left\langle\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3},-1\right)\right\rangle .
$$

Sign-rank

Let \mathbf{S}^{d-1} denote the unit sphere in \mathbb{R}^{d}.

Sign-rank

Let \mathbf{S}^{d-1} denote the unit sphere in \mathbb{R}^{d}.

Definition (Sign-rank)

Sign-rank of a sign-matrix $A_{\mathcal{X} \times \mathcal{Y}}$ is the smallest d such that there are $\phi: \mathcal{X} \rightarrow \mathbf{S}^{d-1}$ and $\psi: \mathcal{Y} \rightarrow \mathbf{S}^{d-1}$ with

$$
A_{x y}=\operatorname{sgn}\langle\phi(x), \psi(y)\rangle .
$$

$$
A_{x y}=1 \Longleftrightarrow \psi(y) \in\{z \mid\langle z, \phi(x)\rangle>0\} .
$$

Margin

Margin

Definition (Margin)

- Margin of such a representation:

$$
\inf _{x, y}|\langle\phi(x), \psi(y)\rangle|
$$

- Margin of A denoted by $m(A)$: Largest possible margin over all representations in all dimensions.

Learning Theory: Low complexity concept classes

- Bounded VC-dimension (PAC learnable).
- Bounded Sign-rank (Linearization/Kernel Trick, low dimensional).
- Margin bounded away from zero (amenable to algorithms such as perceptron, Support vector machines).

Sign-rank Lower Bounds: What do we know?

Known Lower-bound Techniques

- Counting argument [AFR86, AMR16]: For $d \leq \frac{n}{2}$, there are only $2^{d n \log (n)}$ matrices of sign-rank d (out of all $2^{n^{2}}$ sign matrices).

Known Lower-bound Techniques

- Counting argument [AFR86, AMR16]: For $d \leq \frac{n}{2}$, there are only $2^{d n \log (n)}$ matrices of sign-rank d (out of all $2^{n^{2}}$ sign matrices).
- Hence, most sign matrices have large sign-rank.

Known Lower-bound Techniques

- Counting argument [AFR86, AMR16]: For $d \leq \frac{n}{2}$, there are only $2^{d n \log (n)}$ matrices of sign-rank d (out of all $2^{n^{2}}$ sign matrices).
- Hence, most sign matrices have large sign-rank.
- Based of works of Milnor, Thom, Warren in 1960's on the number of connected components of real algebraic varieties.

VC dimension

Theorem (VC dimension [Paturi-Simon 85])

$$
\mathrm{rk}_{ \pm}(A) \geq \mathrm{VC}(A) .
$$

Average Margin

- Forster based methods: "Small sign-rank \Longrightarrow Large average margin"

$$
\frac{1}{m^{\operatorname{avg}}(A)} \leq \mathrm{rk}_{ \pm}(A)
$$

(Refinements of Forster's original bound were later developed by Linial, Shraibman, Sherstov, Razbrov, etc).

Average Margin

- Forster based methods: "Small sign-rank \Longrightarrow Large average margin"

$$
\frac{1}{\mathrm{~m}^{\operatorname{avg}}(A)} \leq \mathrm{rk}_{ \pm}(A)
$$

(Refinements of Forster's original bound were later developed by Linial, Shraibman, Sherstov, Razbrov, etc).

- All these refinements prove upper-bounds on $\mathrm{m}^{\mathrm{avg}}(A)$.

Large Monochromatic rectangles

Theorem (Monochromatic rectangle [APPRRS 2005])
If $\mathrm{rk}_{ \pm}(A)=d$, then $A_{n \times n}$ contains an $\frac{n}{2^{d+1}} \times \frac{n}{2^{d+1}}$ monochromatic rectangle.

Large Monochromatic rectangles

Theorem (Monochromatic rectangle [APPRRS 2005])

If $\mathrm{rk}_{ \pm}(A)=d$, then $A_{n \times n}$ contains an $\frac{n}{2^{d+1}} \times \frac{n}{2^{d+1}}$ monochromatic rectangle.

By looking at all submatrices of A, and the size of the largest monochromatic rectangles in them, we define rect(A), and get

$$
\log _{2}(\operatorname{rect}(A)) \lesssim \mathrm{rk}_{ \pm}(A) .
$$

A comparison

Known lower bound techniques: $\mathrm{rk}_{ \pm}(A)$ is (essentially) at least

$$
\operatorname{VC}(A), \quad \mathrm{m}^{\operatorname{avg}}(A)^{-1}, \quad \log _{2}(\operatorname{rect}(A))
$$

A comparison

Known lower bound techniques: $\mathrm{rk}_{ \pm}(A)$ is (essentially) at least

$$
\operatorname{VC}(A), \quad \mathrm{m}^{\operatorname{avg}}(A)^{-1}, \quad \log _{2}(\operatorname{rect}(A))
$$

Theorem (HH,Hatami,Pires, Tao,Zhao'22)

$$
\sqrt{\mathrm{VC}(A)} \leq \mathrm{m}^{\operatorname{avg}}(A)^{-1} \leq \operatorname{rect}(A)
$$

A comparison

Known lower bound techniques: $\mathrm{rk}_{ \pm}(A)$ is (essentially) at least

$$
\operatorname{VC}(A), \quad \mathrm{m}^{\operatorname{avg}}(A)^{-1}, \quad \log _{2}(\operatorname{rect}(A))
$$

Theorem (HH,Hatami,Pires, Tao,Zhao'22)

$$
\sqrt{\mathrm{VC}(A)} \leq \mathrm{m}^{\operatorname{avg}}(A)^{-1} \leq \operatorname{rect}(A)
$$

If the monochromatic rectangle ratio cannot provide a super-constant lower bound for the sign-rank of a matrix, then the other two methods will fail as well.

A comparison

Known lower bound techniques: $\mathrm{rk}_{ \pm}(A)$ is (essentially) at least

$$
\operatorname{VC}(A), \quad \mathrm{m}^{\operatorname{avg}}(A)^{-1}, \quad \log _{2}(\operatorname{rect}(A))
$$

Theorem (HH,Hatami,Pires, Tao,Zhao'22)

$$
\sqrt{\mathrm{VC}(A)} \leq \mathrm{m}^{\operatorname{avg}}(A)^{-1} \leq \operatorname{rect}(A)
$$

- There exist $n \times n$ sign-matrices with $\operatorname{rect}(A)=O(1)$ and $\mathrm{rk}_{ \pm}(A) \geq n^{\Omega(1)}$.

If the monochromatic rectangle ratio cannot provide a super-constant lower bound for the sign-rank of a matrix, then the other two methods will fail as well.

Theorem (HH,Hatami,Pires, Tao,Zhao'22 (recall))
There exist $n \times n$ sign-matrices with $\operatorname{rect}(A)=O(1)$ and $\mathrm{rk}_{ \pm}(A) \geq n^{\Omega(1)}$.

The proof is by a counting argument (construct a large family of matrices with $\operatorname{rect}(A)=O(1))$.

Theorem (HH,Hatami,Pires, Tao,Zhao'22 (recall))
There exist $n \times n$ sign-matrices with $\operatorname{rect}(A)=O(1)$ and $\mathrm{rk}_{ \pm}(A) \geq n^{\Omega(1)}$.

The proof is by a counting argument (construct a large family of matrices with $\operatorname{rect}(A)=O(1))$.

Problem

Construct an explicit sequence of sign-matrices A_{n} with

$$
\operatorname{rect}\left(A_{n}\right)=O(1) \quad \text { and } \quad \lim _{n} \operatorname{rk}_{ \pm}\left(A_{n}\right)=\infty
$$

Two open problems

Problem I: Semi-algebraic matrices

Semi-algebraic matrices

Definition (Semi-algebraic matrix of complexity d)

- Row and column sets \mathcal{X} and \mathcal{Y} are subsets of \mathbb{R}^{d}.

Semi-algebraic matrices

Definition (Semi-algebraic matrix of complexity d)

- Row and column sets \mathcal{X} and \mathcal{Y} are subsets of \mathbb{R}^{d}.
- The entries are defined by at most d polynomial equality/inequalities in coordinates of x and y.

Semi-algebraic matrices

Definition (Semi-algebraic matrix of complexity d)

- Row and column sets \mathcal{X} and \mathcal{Y} are subsets of \mathbb{R}^{d}.
- The entries are defined by at most d polynomial equality/inequalities in coordinates of x and y.
- Each polynomial is of degree at most d.

Semi-algebraic matrices

Definition (Semi-algebraic matrix of complexity d)

- Row and column sets \mathcal{X} and \mathcal{Y} are subsets of \mathbb{R}^{d}.
- The entries are defined by at most d polynomial equality/inequalities in coordinates of x and y.
- Each polynomial is of degree at most d.

Matrices of sign-rank d are semi-algebraic: $\sum_{i=1}^{d} x_{i} y_{i}>0$.

- Most natural geometric graphs are semi-algebraic: Interval graphs, unit distance graphs, Intersecting segments, disks, and regions.
- Most natural geometric graphs are semi-algebraic: Interval graphs, unit distance graphs, Intersecting segments, disks, and regions.
- Works of Alon, Pach, Fox, Suk,... Breakthrough of Guth and Katz on Erdös Distance Problem....
- Tools: Generalization of properties of low sign-rank matrices to semi-algebraic settings (e.g. large monochromatic rectangles, strong regularity lemmas) + tools from algebraic geometry.
- Most natural geometric graphs are semi-algebraic: Interval graphs, unit distance graphs, Intersecting segments, disks, and regions.
- Works of Alon, Pach, Fox, Suk,... Breakthrough of Guth and Katz on Erdös Distance Problem....
- Tools: Generalization of properties of low sign-rank matrices to semi-algebraic settings (e.g. large monochromatic rectangles, strong regularity lemmas) + tools from algebraic geometry.

Recall: Matrices of sign-rank d are semi-algebraic.

- Most natural geometric graphs are semi-algebraic: Interval graphs, unit distance graphs, Intersecting segments, disks, and regions.
- Works of Alon, Pach, Fox, Suk,... Breakthrough of Guth and Katz on Erdös Distance Problem....
- Tools: Generalization of properties of low sign-rank matrices to semi-algebraic settings (e.g. large monochromatic rectangles, strong regularity lemmas) + tools from algebraic geometry.

Recall: Matrices of sign-rank d are semi-algebraic.

Problem

$$
\text { Semi-algebraic } \equiv \text { Bounded Sign-Rank? }
$$

A Simple Reformulation

Problem (Reformulation of Sign-rank \equiv ? Semi-algebraic)

Is it true that for every d, there is $c_{d} \in \mathbb{N}$ such that

$$
\mathrm{rk}_{ \pm}(A), \mathrm{rk}_{ \pm}(B) \leq d \Longrightarrow \mathrm{rk}_{ \pm}(A \wedge B) \leq c_{d} ?
$$

A Simple Reformulation

Problem (Reformulation of Sign-rank \equiv ? Semi-algebraic)

Is it true that for every d, there is $c_{d} \in \mathbb{N}$ such that

$$
\mathrm{rk}_{ \pm}(A), \operatorname{rk}_{ \pm}(B) \leq d \Longrightarrow \operatorname{rk}_{ \pm}(A \wedge B) \leq c_{d} ?
$$

- Non-trivial for $d=2$.

A Simple Reformulation

Problem (Reformulation of Sign-rank \equiv ? Semi-algebraic)

Is it true that for every d, there is $c_{d} \in \mathbb{N}$ such that

$$
\mathrm{rk}_{ \pm}(A), \mathrm{rk}_{ \pm}(B) \leq d \Longrightarrow \mathrm{rk}_{ \pm}(A \wedge B) \leq c_{d} ?
$$

- Non-trivial for $d=2$.
- Open for $d \geq 3$.

A Simple Reformulation

Problem (Reformulation of Sign-rank \equiv ? Semi-algebraic)

Is it true that for every d, there is $c_{d} \in \mathbb{N}$ such that

$$
\mathrm{rk}_{ \pm}(A), \mathrm{rk}_{ \pm}(B) \leq d \Longrightarrow \mathrm{rk}_{ \pm}(A \wedge B) \leq c_{d} ?
$$

- Non-trivial for $d=2$.
- Open for $d \geq 3$.
- Using Forster's method [Bun, Mande, Thaler'19]:

$$
c_{d} \geq 2^{\log ^{2}(d)}
$$

Second Reformulation

Definition (Intersection of Two Half-spaces)

For $\left[x_{1}, x_{2}\right] \in \mathcal{X} \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$ and $y \in \mathcal{Y} \subset \mathbb{R}^{d}$, define

$$
\mathcal{I}_{d}\left(\left[x_{1}, x_{2}\right], y\right)= \begin{cases}1 & y \in H_{x_{1}} \cap H_{x_{2}} \\ -1 & \text { otherwise }\end{cases}
$$

where

$$
H_{x}=\left\{z \in \mathbb{R}^{d} \mid\langle z, x\rangle>0\right\} .
$$

Second Reformulation

Definition (Intersection of Two Half-spaces)
For $\left[x_{1}, x_{2}\right] \in \mathcal{X} \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$ and $y \in \mathcal{Y} \subset \mathbb{R}^{d}$, define

$$
\mathcal{I}_{d}\left(\left[x_{1}, x_{2}\right], y\right)= \begin{cases}1 & y \in H_{x_{1}} \cap H_{x_{2}} \\ -1 & \text { otherwise }\end{cases}
$$

where

$$
H_{x}=\left\{z \in \mathbb{R}^{d} \mid\langle z, x\rangle>0\right\} .
$$

Problem (Reformulation of Sign-rank \equiv ? Semi-algebraic)
There is c_{d} such that for every finite \mathcal{X} and \mathcal{Y},

$$
\mathrm{rk}_{ \pm}\left(\mathcal{I}_{d}\right)<c_{d} ?
$$

Second Reformulation

Definition (Intersection of Two Half-spaces)
For $\left[x_{1}, x_{2}\right] \in \mathcal{X} \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$ and $y \in \mathcal{Y} \subset \mathbb{R}^{d}$, define

$$
\mathcal{I}_{d}\left(\left[x_{1}, x_{2}\right], y\right)= \begin{cases}1 & y \in H_{x_{1}} \cap H_{x_{2}} \\ -1 & \text { otherwise }\end{cases}
$$

where

$$
H_{x}=\left\{z \in \mathbb{R}^{d} \mid\langle z, x\rangle>0\right\} .
$$

Problem (Reformulation of Sign-rank \equiv ? Semi-algebraic)
There is c_{d} such that for every finite \mathcal{X} and \mathcal{Y},

$$
\mathrm{rk}_{ \pm}\left(\mathcal{I}_{d}\right)<c_{d} ?
$$

Open for $d \geq 4$.

Problem II: Large Margin \Rightarrow Low Sign-rank?

Problem ([Linial, Mendelson, Schechtman, Shraibman 07])

Does "large margin" imply bounded sign-rank:

$$
\mathrm{m}(A)=\Omega(1) \Longrightarrow \mathrm{rk}_{ \pm}(A)=O(1) ?
$$

Problem ([Linial, Mendelson, Schechtman, Shraibman'07])

Does "large margin" imply bounded sign-rank:

$$
\mathrm{m}(A)=\Omega(1) \Longrightarrow \mathrm{rk}_{ \pm}(A)=O(1) ?
$$

[Linial and Shraibman'09]: $\quad \operatorname{Disc}(A) \leq \mathrm{m}(A) \leq 8 \operatorname{Disc}(A)$.

Problem ([Linial, Mendelson, Schechtman, Shraibman 07])

Does "large margin" imply bounded sign-rank:

$$
\mathrm{m}(A)=\Omega(1) \Longrightarrow \operatorname{rk}_{ \pm}(A)=O(1) ?
$$

[Linial and Shraibman'09]: $\quad \operatorname{Disc}(A) \leq m(A) \leq 8 \operatorname{Disc}(A)$.

Equivalent formulations of LMSS:

$$
\begin{gathered}
\mathrm{m}(A), \operatorname{Disc}(A)=\Omega(1) \\
\mathrm{R}(A),\|A\|_{\gamma_{2}, \epsilon}=O(1)
\end{gathered} \Longrightarrow \begin{gathered}
\mathrm{rk}_{ \pm}(A)=O(1) \\
\operatorname{UPP}(A)=O(1)
\end{gathered} ?
$$

Problem ([Linial, Mendelson, Schechtman, Shraibman'07])

Does "large margin" imply bounded sign-rank:

$$
\mathrm{m}(A)=\Omega(1) \Longrightarrow \operatorname{rk}_{ \pm}(A)=O(1) ?
$$

[Linial and Shraibman'09]: $\quad \operatorname{Disc}(A) \leq \mathrm{m}(A) \leq 8 \operatorname{Disc}(A)$.

Equivalent formulations of LMSS:

$$
\begin{gathered}
\mathrm{m}(A), \operatorname{Disc}(A)=\Omega(1) \\
\mathrm{R}(A),\|A\|_{\gamma_{2}, \epsilon}=O(1)
\end{gathered} \Longrightarrow \begin{gathered}
\mathrm{rk}_{ \pm}(A)=O(1) \\
\operatorname{UPP}(A)=O(1)
\end{gathered}
$$

Problem (The CC formulation)

$$
\mathrm{R}(A)=O(1) \Longrightarrow \operatorname{UPP}(A)=O(1) ?
$$

Conjecture (Towards a negative answer to LMSS)

Let $Q_{d}:\{0,1\}^{d} \times\{0,1\}^{d} \rightarrow\{-1,1\}$ be the (sign) adjacency matrix of the d-dimensional hypercube:

$$
Q_{d}(x, y)=-1 \Longleftrightarrow\|x-y\|_{1}=1
$$

Is it true

$$
\lim _{d \rightarrow \infty} \operatorname{rk}_{ \pm}\left(Q_{d}\right)=\infty ?
$$

Conjecture (Towards a negative answer to LMSS)

Let $Q_{d}:\{0,1\}^{d} \times\{0,1\}^{d} \rightarrow\{-1,1\}$ be the (sign) adjacency matrix of the d-dimensional hypercube:

$$
Q_{d}(x, y)=-1 \Longleftrightarrow\|x-y\|_{1}=1
$$

Is it true

$$
\lim _{d \rightarrow \infty} \operatorname{rk}_{ \pm}\left(Q_{d}\right)=\infty ?
$$

- We know

$$
R\left(Q_{d}\right)=O(1)
$$

Conjecture (Towards a negative answer to LMSS)

Let $Q_{d}:\{0,1\}^{d} \times\{0,1\}^{d} \rightarrow\{-1,1\}$ be the (sign) adjacency matrix of the d-dimensional hypercube:

$$
Q_{d}(x, y)=-1 \Longleftrightarrow\|x-y\|_{1}=1
$$

Is it true

$$
\lim _{d \rightarrow \infty} \mathrm{rk}_{ \pm}\left(Q_{d}\right)=\infty ?
$$

- We know

$$
R\left(Q_{d}\right)=O(1)
$$

- If the above Conj is true, then

$$
\mathrm{m}(A)=\Omega(1) \nRightarrow \mathrm{rk}_{ \pm}(A)=O(1)
$$

Summary

Problem (Intersection of Half-spaces)

Is it true that

$$
\mathrm{rk}_{ \pm}\left(\mathcal{I}_{d}\right)<c_{d} ?
$$

Problem (Hypercubes)

Let Q_{d} be the (sign) adjacency matrix of the d-dimensional hypercube. We have

$$
\lim _{d \rightarrow \infty} \mathrm{rk}_{ \pm}\left(Q_{d}\right)=\infty ?
$$

Beyond the reach of discussed lower bound techniques! We have $\operatorname{rect}\left(\mathcal{I}_{d}\right)=O(1)$ and $\operatorname{rect}\left(Q_{d}\right)=O(1)$.

A separation of Margin vs Sign-rank for partial functions (Joint work with Kaave and Xiang)

The statement for Partial Functions

Problem

Are there partial matrices A with

- $\mathrm{m}(A)=\Omega(1)$ but $\mathrm{rk}_{ \pm}(A)=\omega(1)$?
- $\mathrm{R}(A)=O(1)$ but $\operatorname{UPP}(A)=\omega(1)$?

The statement for Partial Functions

Problem

Are there partial matrices A with

- $\mathrm{m}(A)=\Omega(1)$ but $\mathrm{rk}_{ \pm}(A)=\omega(1)$?
- $\mathrm{R}(A)=O(1)$ but $\operatorname{UPP}(A)=\omega(1)$?
- Not known for total functions (hypercube is a candidate).

The statement for Partial Functions

Problem

Are there partial matrices A with

- $\mathrm{m}(A)=\Omega(1)$ but $\mathrm{rk}_{ \pm}(A)=\omega(1)$?
- $\mathrm{R}(A)=O(1)$ but $\operatorname{UPP}(A)=\omega(1)$?
- Not known for total functions (hypercube is a candidate).
- Partial functions: Canonical candidate

$$
\begin{aligned}
& f: \mathbf{S}^{d-1} \times \mathbf{S}^{d-1} \rightarrow\{-1,1, *\} \\
& f(x, y)= \begin{cases}1 & \langle x, y\rangle \geq \epsilon \\
-1 & \langle x, y\rangle \leq-\epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f: \mathbf{S}^{d-1} \times \mathbf{S}^{d-1} \rightarrow\{-1,1, *\} \\
& f(x, y)= \begin{cases}1 & \langle x, y\rangle \geq \epsilon \\
-1 & \langle x, y\rangle \leq-\epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f: \mathbf{S}^{d-1} \times \mathbf{S}^{d-1} \rightarrow\{-1,1, *\} \\
& f(x, y)= \begin{cases}1 & \langle x, y\rangle \geq \epsilon \\
-1 & \langle x, y\rangle \leq-\epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (HH,Hosseini,Meng'22++)
For $\epsilon<1$, every completion of f has sign-rank at least d.

$$
\begin{aligned}
& f: \mathbf{S}^{d-1} \times \mathbf{S}^{d-1} \rightarrow\{-1,1, *\} \\
& f(x, y)= \begin{cases}1 & \langle x, y\rangle \geq \epsilon \\
-1 & \langle x, y\rangle \leq-\epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (HH,Hosseini,Meng'22++)

For $\epsilon<1$, every completion of f has sign-rank at least d.

- Sharpness: $g(x, y):=\operatorname{sgn}\langle x, y\rangle$ has sign-rank d.

$$
\begin{aligned}
& f: \mathbf{S}^{d-1} \times \mathbf{S}^{d-1} \rightarrow\{-1,1, *\} \\
& f(x, y)= \begin{cases}1 & \langle x, y\rangle \geq \epsilon \\
-1 & \langle x, y\rangle \leq-\epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (HH,Hosseini,Meng'22++)

For $\epsilon<1$, every completion of f has sign-rank at least d.

- Sharpness: $g(x, y):=\operatorname{sgn}\langle x, y\rangle$ has sign-rank d.
- Note $\mathrm{R}(f)=O(1)$ and $\operatorname{UPP}(f)=\log _{2}(d) \pm O(1)$.

$$
\begin{aligned}
& f: \mathbf{S}^{d-1} \times \mathbf{S}^{d-1} \rightarrow\{-1,1, *\} \\
& f(x, y)= \begin{cases}1 & \langle x, y\rangle \geq \epsilon \\
-1 & \langle x, y\rangle \leq-\epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (HH,Hosseini,Meng'22++)

For $\epsilon<1$, every completion of f has sign-rank at least d.

- Sharpness: $g(x, y):=\operatorname{sgn}\langle x, y\rangle$ has sign-rank d.
- Note $R(f)=O(1)$ and $\operatorname{UPP}(f)=\log _{2}(d) \pm O(1)$.
- The proof is short but uses Borsuk-Ulam: Every continuous $\phi: \mathbf{S}^{d-1} \rightarrow \mathbb{R}^{d-1}$ satisfies $\phi(x)=\phi(-x)$ for some x.

A related problem

$$
\begin{aligned}
& f: \mathbf{S}^{d-1} \times \mathbf{S}^{d-1} \rightarrow\{-1,1, *\} \\
& f(x, y)= \begin{cases}1 & \langle x, y\rangle \geq \epsilon \\
-1 & \langle x, y\rangle \leq-\epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Conjecture ([Alon, Hanneke, Holzman, Moran'21])

Every completion of f to a total function have VC dimension $\geq c_{d}$ with $\lim _{d \rightarrow \infty} c_{d}=\infty$.

Discretization: Large-Gap-Hamming Distance

$$
\begin{aligned}
& G:\{0,1\}^{d} \times\{0,1\}^{d} \rightarrow\{-1,1, *\} \\
& G(x, y)= \begin{cases}1 & \langle x, y\rangle \geq d \epsilon \\
-1 & \langle x, y\rangle \leq-d \epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (HH,Hosseini,Meng'22)
Sign-rank of G is $\Omega\left(d / \log ^{2} d\right)$.

Discretization: Large-Gap-Hamming Distance

$$
\begin{aligned}
& G:\{0,1\}^{d} \times\{0,1\}^{d} \rightarrow\{-1,1, *\} \\
& G(x, y)= \begin{cases}1 & \langle x, y\rangle \geq d \epsilon \\
-1 & \langle x, y\rangle \leq-d \epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (HH,Hosseini,Meng'22)

Sign-rank of G is $\Omega\left(d / \log ^{2} d\right)$.

- The (public-coin) randomized CC of G is $O(1)$.

Discretization: Large-Gap-Hamming Distance

$$
\begin{aligned}
& G:\{0,1\}^{d} \times\{0,1\}^{d} \rightarrow\{-1,1, *\} \\
& G(x, y)= \begin{cases}1 & \langle x, y\rangle \geq d \epsilon \\
-1 & \langle x, y\rangle \leq-d \epsilon \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (HH,Hosseini,Meng'22)

Sign-rank of G is $\Omega\left(d / \log ^{2} d\right)$.

- The (public-coin) randomized CC of G is $O(1)$.
- The unbounded-error randomized CC of G is $\Omega(\log (d))$ (Sharp by Newman's lemma).

Conclusion: More Open Problems

Open Problems

- Recall the conjecture (hypercubes):

$$
\mathrm{m}(A)=\Omega(1), \quad\|A\|_{\gamma_{2}, \epsilon}=O(1) \nRightarrow \mathrm{rk}_{ \pm}(A)=O(1)
$$

Open Problems

- Recall the conjecture (hypercubes):

$$
\mathrm{m}(A)=\Omega(1), \quad\|A\|_{\gamma_{2}, \epsilon}=O(1) \nRightarrow \mathrm{rk}_{ \pm}(A)=O(1)
$$

- What about with the stronger assumption $\|A\|_{\gamma_{2}}=O(1)$?

Open Problems

- Recall the conjecture (hypercubes):

$$
\mathrm{m}(A)=\Omega(1), \quad\|A\|_{\gamma_{2}, \epsilon}=O(1) \nRightarrow \mathrm{rk}_{ \pm}(A)=O(1)
$$

- What about with the stronger assumption $\|A\|_{\gamma_{2}}=O(1)$?

Conjecture ([Hambardzumyan, HH,Hatami'21])

$$
\|A\|_{\gamma_{2}}=O(1) \Longleftrightarrow \mathrm{D}^{\mathrm{EQ}}(A)=O(1)
$$

Open Problems

- Recall the conjecture (hypercubes):

$$
\mathrm{m}(A)=\Omega(1), \quad\|A\|_{\gamma_{2}, \epsilon}=O(1) \nRightarrow \mathrm{rk}_{ \pm}(A)=O(1)
$$

- What about with the stronger assumption $\|A\|_{\gamma_{2}}=O(1)$?

Conjecture ([Hambardzumyan, HH,Hatami'21])

$$
\|A\|_{\gamma_{2}}=O(1) \Longleftrightarrow \mathrm{D}^{\mathrm{EQ}}(A)=O(1)
$$

Theorem ([HH,Hatami,Pires, Tao,Zhao'22])
We have

$$
\mathrm{rk}_{ \pm}(A) \leq 4^{\mathrm{D}^{\mathrm{EQ}}(A)}
$$

Open Problems

Conjecture ([Hambardzumyan,HH,Hatami'21] (Recall))

$$
\|A\|_{\gamma_{2}}=O(1) \Longleftrightarrow \mathrm{D}^{\mathrm{EQ}}(A)=O(1)
$$

Theorem ([Hambardzumyan,HH,Hatami'21])
The above conjecture is true for XOR-functions.

Open Problems

Conjecture ([Hambardzumyan,HH,Hatami'21] (Recall))

$$
\|A\|_{\gamma_{2}}=O(1) \Longleftrightarrow \mathrm{D}^{\mathrm{EQ}}(A)=O(1)
$$

Theorem ([Hambardzumyan, HH,Hatami'21])
The above conjecture is true for XOR-functions.

- The proof uses Green and Sanders' quantitative version of Cohen's idempotent theorem. If the conj is true, then it characterizes idempotents of the algebra of Schur multipliers.

Thank You For Your Attention!

