Strong XOR Lemma for Communication with Bounded

Rounds

Huacheng Yu

Princeton University

n-fold XOR function

For function $f: \mathcal{Z} \rightarrow\{0,1\}$, its n-fold $\operatorname{XOR} f^{\oplus n}: \mathcal{Z}^{n} \rightarrow\{0,1\}$ is:

$$
f^{\oplus n}\left(Z_{1}, \ldots, Z_{n}\right)=f\left(Z_{1}\right) \oplus \cdots \oplus f\left(Z_{n}\right)
$$

n-fold XOR function

For function $f: \mathcal{Z} \rightarrow\{0,1\}$, its n-fold XOR $f^{\oplus n}: \mathcal{Z}^{n} \rightarrow\{0,1\}$ is:

$$
f^{\oplus n}\left(Z_{1}, \ldots, Z_{n}\right)=f\left(Z_{1}\right) \oplus \cdots \oplus f\left(Z_{n}\right)
$$

This talk: "CC of f " vs "CC of $f \oplus n$ "

Naive algorithm for $f^{\oplus n}$

Suppose f can be computed using resource C w.p. 2/3 Compute n copies independently and output their XOR

Naive algorithm for $f^{\oplus n}$

Suppose f can be computed using resource C w.p. 2/3 Compute n copies independently and output their XOR

Use $n \cdot C$ resource in total, and succeed w.p. $1 / 2+\exp (-\Theta(n))$

Naive algorithm for $f^{\oplus n}$

Suppose f can be computed using resource C w.p. 2/3 Compute n copies independently and output their XOR

Use $n \cdot C$ resource in total, and succeed w.p. $1 / 2+\exp (-\Theta(n))$
If this is the best possible, then

- moderately hard Boolean-valued $f \Longrightarrow$ very hard Boolean-valued $f^{\oplus n}$

Strong XOR lemma

A strong XOR lemma (for a model of computation and a class of functions): " $f \oplus n$ cannot be computed much better than solving all instances independently"

Strong XOR lemma

A strong XOR lemma (for a model of computation and a class of functions):
" $f \oplus n$ cannot be computed much better than solving all instances independently"

Previous XOR lemmas:

- query complexity [Dru'12, BKLS'20]
- w/o n times more resource: circuit complexity [Yao'82], streaming alg [AN'21]
- w/o exponentially small adv: information complexity [BBCR'10]

Strong XOR lemma

A strong XOR lemma (for a model of computation and a class of functions):
" $f \oplus n$ cannot be computed much better than solving all instances independently"

Previous XOR lemmas:

- query complexity [Dru'12, BKLS'20]
- w/o n times more resource: circuit complexity [Yao'82], streaming alg [AN'21]
- w/o exponentially small adv: information complexity [BBCR'10]
- communication complexity \& functions with small discrepancy [Shaltiel'03]
- ...

Main result

A strong XOR lemma for bounded-round communication...

Main result

A strong XOR lemma for bounded-round communication... r-round communication for $f(X, Y)$:

- input pair (X, Y), public random bits R
- Alice speaks in odd rounds, Bob speaks in even rounds
- M determines the output

Main result

A strong XOR lemma for bounded-round communication... r-round communication for $f(X, Y)$:

- input pair (X, Y), public random bits R
- Alice speaks in odd rounds, Bob speaks in even rounds
- M determines the output
- cost: $\max \sum_{i=1}^{r}\left|M_{i}\right|$

Main result

A strong XOR lemma for bounded-round communication...
r-round communication for $f(X, Y)$:

- input pair (X, Y), public random bits R
- Alice speaks in odd rounds, Bob speaks in even rounds
- M determines the output
- cost: $\max \sum_{i=1}^{r}\left|M_{i}\right|$
n-fold XOR function:

$$
\begin{aligned}
& f^{\oplus n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right) \\
& \quad=f\left(X_{1}, Y_{1}\right) \oplus \cdots \oplus f\left(X_{n}, Y_{n}\right)
\end{aligned}
$$

A strong XOR lemma for bounded-round communication

Let $\mathbf{R}_{q}^{(r)}(f)$ be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r, we must have

$$
\mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq n \cdot\left(r^{-O(r)} \cdot \mathbf{R}_{2 / 3}^{(r)}(f)-1\right)
$$

A strong XOR lemma for bounded-round communication

Let $\mathbf{R}_{q}^{(r)}(f)$ be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r, we must have

$$
\mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq n \cdot\left(r^{-O(r)} \cdot \mathbf{R}_{2 / 3}^{(r)}(f)-1\right)
$$

Remarks:

- for constant $r: \mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq \Omega\left(n \cdot\left(\mathbf{R}_{2 / 3}^{(r)}(f)-O(1)\right)\right)$

A strong XOR lemma for bounded-round communication

Let $\mathbf{R}_{q}^{(r)}(f)$ be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r, we must have

$$
\mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq n \cdot\left(r^{-O(r)} \cdot \mathbf{R}_{2 / 3}^{(r)}(f)-1\right)
$$

Remarks:

- for constant $r: \mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq \Omega\left(n \cdot\left(\mathbf{R}_{2 / 3}^{(r)}(f)-O(1)\right)\right)$
- " $-O(1)$ " is needed: $f\left(X_{i}, Y_{i}\right)=X_{i, 1} \oplus Y_{i, 1}$ (XOR of 1st bit)

A strong XOR lemma for bounded-round communication

Let $\mathbf{R}_{q}^{(r)}(f)$ be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r, we must have

$$
\mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq n \cdot\left(r^{-O(r)} \cdot \mathbf{R}_{2 / 3}^{(r)}(f)-1\right)
$$

[BBCR'10]: XOR lemma for info complexity (with const adv instead of 2^{-n})

A strong XOR lemma for bounded-round communication

Let $\mathbf{R}_{q}^{(r)}(f)$ be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r, we must have

$$
\mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq n \cdot\left(r^{-O(r)} \cdot \mathbf{R}_{2 / 3}^{(r)}(f)-1\right)
$$

[BBCR'10]: XOR lemma for info complexity
(with const adv instead of 2^{-n})
[BR'11]: for const r, information \Longrightarrow communication

A strong XOR lemma for bounded-round communication

Let $\mathbf{R}_{q}^{(r)}(f)$ be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r, we must have

$$
\mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq n \cdot\left(r^{-O(r)} \cdot \mathbf{R}_{2 / 3}^{(r)}(f)-1\right)
$$

[BBCR'10]: XOR lemma for info complexity (with const adv instead of 2^{-n})
[BR'11]: for const r, information \Longrightarrow communication
Imply: for const $r, \mathbf{R}_{2 / 3}^{(r)}\left(f^{\oplus n}\right) \geq \Omega\left(n \cdot\left(\mathbf{R}_{2 / 3}^{(r)}(f)-O(1)\right)\right)$

A strong XOR lemma for bounded-round communication

Let $\mathbf{R}_{q}^{(r)}(f)$ be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r, we must have

$$
\mathbf{R}_{1 / 2+2^{-n}}^{(r)}\left(f^{\oplus n}\right) \geq n \cdot\left(r^{-O(r)} \cdot \mathbf{R}_{2 / 3}^{(r)}(f)-1\right)
$$

[BBCR'10]: XOR lemma for info complexity \Longleftarrow starting point of our proof (with const adv instead of 2^{-n})
[BR'11]: for const r, information \Longrightarrow communication
Imply: for const $r, \mathbf{R}_{2 / 3}^{(r)}\left(f^{\oplus n}\right) \geq \Omega\left(n \cdot\left(\mathbf{R}_{2 / 3}^{(r)}(f)-O(1)\right)\right)$

Distributional strong XOR lemma

We also prove a strong XOR lemma w.r.t. a fixed input distribution μ :

Theorem

If every r-round C-bit comm. protocol computes f under input dist. μ w.p. at most

$$
1 / 2+\alpha / 2
$$

then every r-round $o\left(r^{-1} n C\right)$-bit protocol computes $f^{\oplus n}$ under μ^{n} w.p. at most

$$
1 / 2+\alpha^{\Omega(n)} / 2
$$

where $\alpha<r^{-\omega(r)}$ and $C>\omega(\log (1 / \alpha))$.

Distributional strong XOR lemma

We also prove a strong XOR lemma w.r.t. a fixed input distribution μ :

Theorem

If every r-round C-bit comm. protocol computes f under input dist. μ w.p. at most

$$
1 / 2+\alpha / 2,
$$

then every r-round $o\left(r^{-1} n C\right)$-bit protocol computes $f^{\oplus n}$ under μ^{n} w.p. at most

$$
1 / 2+\alpha^{\Omega(n)} / 2
$$

where $\alpha<r^{-\omega(r)}$ and $C>\omega(\log (1 / \alpha))$.
distributional strong XOR lemma + Yao's minimax + repetition \Longrightarrow main theorem

Outline

Rest of the talk, focus on distributional strong XOR lemma:

- alternative view of the XOR lemma for information complexity [BBCR'10]
- obtaining exponentially small advantage

Information complexity

input distribution $\mu+$ protocol defines a joint distribution $\pi \operatorname{over}(X, Y, R, \mathbf{M})$...

Information complexity

input distribution $\mu+$ protocol defines a joint distribution π over $(X, Y, R, \mathbf{M}) \ldots$

(internal) information cost of $\pi: I(X ; \mathbf{M} \mid Y, R)+I(Y ; \mathbf{M} \mid X, R)$

- 1st term: "amt of info \mathbf{M} reveals about X conditioned on everything Bob knows"

Information complexity

input distribution $\mu+$ protocol defines a joint distribution $\pi \operatorname{over}(X, Y, R, \mathbf{M}) \ldots$

(internal) information cost of $\pi: I(X ; \mathbf{M} \mid Y, R)+I(Y ; \mathbf{M} \mid X, R)$

- 1st term: "amt of info \mathbf{M} reveals about X conditioned on everything Bob knows"
information complexity of f under μ : min information cost to compute f

XOR lemma for information complexity [BBCR'10]

[BBCR'10]: if info complexity of $f^{\oplus n}$ under μ^{n} is $\leq I$, then info complexity of f under μ is $\leq I / n+O$ (1)
(assuming success probability 1 for now)

fix π for $f^{\oplus n}$ with info cost I; Protocol τ for $f(x, y)$:

1. sample $i \in[n]$; set $X_{i}=x, Y_{i}=y$

fix π for $f^{\oplus n}$ with info cost $I ; \underline{\text { Protocol }} \tau$ for $f(x, y)$:
2. sample $i \in[n] ;$ set $X_{i}=x, Y_{i}=y$
3. publicly sample $X_{>i}$ and $Y_{<i}$
4. Alice privately samples $X_{<i}$ cond. on $Y_{<i}$; Bob priv. samples $Y_{>i}$ cond. on $X_{>i}$

fix π for $f^{\oplus n}$ with info cost I; Protocol τ for $f(x, y)$:
5. sample $i \in[n]$; set $X_{i}=x, Y_{i}=y$
6. publicly sample $X_{>i}$ and $Y_{<i}$
7. Alice privately samples $X_{<i}$ cond. on $Y_{<i}$; Bob priv. samples $Y_{>i}$ cond. on $X_{>i}$
8. Alice and Bob run π;

fix π for $f^{\oplus n}$ with info cost I; Protocol τ for $f(x, y)$:
9. sample $i \in[n]$; set $X_{i}=x, Y_{i}=y$
10. publicly sample $X_{>i}$ and $Y_{<i}$
11. Alice privately samples $X_{<i}$ cond. on $Y_{<i}$; Bob priv. samples $Y_{>i}$ cond. on $X_{>i}$
12. Alice and Bob run π; Alice sends $f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right)$; Bob sends $f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$

fix π for $f^{\oplus n}$ with info cost I; Protocol τ for $f(x, y)$:
13. sample $i \in[n]$; set $X_{i}=x, Y_{i}=y$
14. publicly sample $X_{>i}$ and $Y_{<i}$
15. Alice privately samples $X_{<i}$ cond. on $Y_{<i}$; Bob priv. samples $Y_{>i}$ cond. on $X_{>i}$
16. Alice and Bob run π; Alice sends $f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right)$; Bob sends $f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$
τ computes $f(x, y): f\left(X_{i}, Y_{i}\right)=f^{\oplus n}(X, Y) \oplus f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right) \oplus f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$.

fix π for $f^{\oplus n}$ with info cost I; Protocol τ for $f(x, y)$:
17. sample $i \in[n]$; set $X_{i}=x, Y_{i}=y$
18. publicly sample $X_{>i}$ and $Y_{<i}$
19. Alice privately samples $X_{<i}$ cond. on $Y_{<i}$; Bob priv. samples $Y_{>i}$ cond. on $X_{>i}$
20. Alice and Bob run π; Alice sends $f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right)$; Bob sends $f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$
τ computes $f(x, y): f\left(X_{i}, Y_{i}\right)=f^{\oplus n}(X, Y) \oplus f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right) \oplus f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$. info cost (1st term): $\mathbb{E}_{i \in[n]}\left[I\left(X_{i} ; \mathbf{M} \mid X_{>i}, Y, R\right)\right]+O(1)$

fix π for $f^{\oplus n}$ with info cost I; Protocol τ for $f(x, y)$:
21. sample $i \in[n]$; set $X_{i}=x, Y_{i}=y$
22. publicly sample $X_{>i}$ and $Y_{<i}$
23. Alice privately samples $X_{<i}$ cond. on $Y_{<i}$; Bob priv. samples $Y_{>i}$ cond. on $X_{>i}$
24. Alice and Bob run π; Alice sends $f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right)$; Bob sends $f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$
τ computes $f(x, y): f\left(X_{i}, Y_{i}\right)=f^{\oplus n}(X, Y) \oplus f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right) \oplus f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$.
info cost (1st term): $\mathbb{E}_{i \in[n]}\left[I\left(X_{i} ; \mathbf{M} \mid X_{>i}, Y, R\right)\right]+O(1)=\frac{1}{n} I(X ; \mathbf{M} \mid Y, R)+O(1)$

fix π for $f^{\oplus n}$ with info cost I; Protocol τ for $f(x, y)$:
25. sample $i \in[n]$; set $X_{i}=x, Y_{i}=y$
26. publicly sample $X_{>i}$ and $Y_{<i}$
27. Alice privately samples $X_{<i}$ cond. on $Y_{<i}$; Bob priv. samples $Y_{>i}$ cond. on $X_{>i}$
28. Alice and Bob run π; Alice sends $f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right)$; Bob sends $f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$
τ computes $f(x, y): f\left(X_{i}, Y_{i}\right)=f^{\oplus n}(X, Y) \oplus f^{\oplus i-1}\left(X_{<i}, Y_{<i}\right) \oplus f^{\oplus n-i}\left(X_{>i}, Y_{>i}\right)$.
info cost (1st term): $\mathbb{E}_{i \in[n]}\left[I\left(X_{i} ; \mathbf{M} \mid X_{>i}, Y, R\right)\right]+O(1)=\frac{1}{n} I(X ; \mathbf{M} \mid Y, R)+O(1)$
sum up both terms: τ computes f with info cost $I / n+O(1)$

XOR lemma for information complexity [BBCR'10]

[BBCR'10]: if info complexity of $f^{\oplus n}$ under μ^{n} is $\leq I$, then info complexity of f under μ is $\leq I / n+O(1)$

XOR lemma for information complexity [BBCR'10]

[BBCR'10]: if info complexity of $f^{\oplus n}$ under μ^{n} is $\leq I$, then info complexity of f under μ is $\leq I / n+O(1)$
an alternative view of their proof:

- fix π for $f^{\oplus n}$ with info cost $/$
- "decompose" π into π_{n} for f and info cost I_{1} and $\pi_{<n}$ for $f^{\oplus n-1}$ with info cost I_{2}
such that $I_{1}+I_{2}=I+O(1)$

Decomposition of π

Input: 1 pair
Protocol π_{n} :

- view input as X_{n} and Y_{n}
- publicly sample $Y_{<n}$
- Alice priv. samples $X_{<n}$ cond. on $Y_{<n}$

Decomposition of π

Input: 1 pair
Protocol π_{n} :

- view input as X_{n} and Y_{n}
- publicly sample $Y_{<n}$
- Alice priv. samples $X_{<n}$ cond. on $Y_{<n}$
- run π and A. sends $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$

Decomposition of π

Input: 1 pair
Protocol π_{n} :

- view input as X_{n} and Y_{n}
- publicly sample $Y_{<n}$
- Alice priv. samples $X_{<n}$ cond. on $Y_{<n}$
- run π and A. sends $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$

Cost: $I\left(X_{n} ; \mathbf{M} \mid Y, R\right)+1$ (1st term)

Decomposition of π

Input: 1 pair
Protocol π_{n} :

- view input as X_{n} and Y_{n}
- publicly sample $Y_{<n}$
- Alice priv. samples $X_{<n}$ cond. on $Y_{<n}$
- run π and A. sends $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$

Input: $n-1$ pairs
Protocol $\pi_{<n}$:

- view input as $X_{<n}$ and $Y_{<n}$
- publicly sample X_{n}
- Bob privately samples Y_{n} cond. on X_{n}
- run π and Bob sends $f\left(X_{n}, Y_{n}\right)$

Cost: $I\left(X_{n} ; \mathbf{M} \mid Y, R\right)+1$ (1st term)

Decomposition of π

Input: 1 pair
Protocol π_{n} :

- view input as X_{n} and Y_{n}
- publicly sample $Y_{<n}$
- Alice priv. samples $X_{<n}$ cond. on $Y_{<n}$
- run π and A. sends $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$

Cost: $I\left(X_{n} ; \mathbf{M} \mid Y, R\right)+1$ (1st term)

Input: $n-1$ pairs
Protocol $\pi_{<n}$:

- view input as $X_{<n}$ and $Y_{<n}$
- publicly sample X_{n}
- Bob privately samples Y_{n} cond. on X_{n}
- run π and Bob sends $f\left(X_{n}, Y_{n}\right)$

Cost: $I\left(X_{<n} ; \mathbf{M} \mid X_{n}, Y, R\right)(1$ st term $)$

Decomposition of π

Input: 1 pair
Protocol π_{n} :

- view input as X_{n} and Y_{n}
- publicly sample $Y_{<n}$
- Alice priv. samples $X_{<n}$ cond. on $Y_{<n}$
- run π and A. sends $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$

Cost: $I\left(X_{n} ; \mathbf{M} \mid Y, R\right)+1$ (1st term)

Input: $n-1$ pairs
Protocol $\pi_{<n}$:

- view input as $X_{<n}$ and $Y_{<n}$
- publicly sample X_{n}
- Bob privately samples Y_{n} cond. on X_{n}
- run π and Bob sends $f\left(X_{n}, Y_{n}\right)$

Cost: $I\left(X_{<n} ; \mathbf{M} \mid X_{n}, Y, R\right)(1 s t$ term)

1st terms in costs sum up to $I(X ; \mathbf{M} \mid Y, R)+1$ by chain rule

Decomposition of π

Input: 1 pair
Protocol π_{n} :

- view input as X_{n} and Y_{n}
- publicly sample $Y_{<n}$
- Alice priv. samples $X_{<n}$ cond. on $Y_{<n}$
- run π and A. sends $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$

Cost: $I\left(X_{n} ; \mathbf{M} \mid Y, R\right)+1$ (1st term)

Input: $n-1$ pairs
Protocol $\pi_{<n}$:

- view input as $X_{<n}$ and $Y_{<n}$
- publicly sample X_{n}
- Bob privately samples Y_{n} cond. on X_{n}
- run π and Bob sends $f\left(X_{n}, Y_{n}\right)$

Cost: $I\left(X_{<n} ; \mathbf{M} \mid X_{n}, Y, R\right)(1$ st term $)$

1st terms in costs sum up to $I(X ; \mathbf{M} \mid Y, R)+1$ by chain rule 2nd term is similar; info costs of $\pi_{<n}$ and π_{n} sum up to $I+O(1)$

Decomposition of π

Input: 1 pair
Protocol π_{n}

Input: $n-1$ pairs
Protocol $\pi_{<n}$
iteratively decomposing $\pi_{<n}$ gives n protocols for f

- i-th last: the original protocol when it embeds input into $\left(X_{i}, Y_{i}\right)$

Another view of decomposition of π

for the same underlying distribution of (X, Y, R, M), we view different parts of it as inputs, public randomness, transcript (private randomness not important)

- π : inputs (X, Y), public randomness R, transcript M
- π_{n} : inputs $\left(X_{n}, Y_{n}\right)$, public rand. $\left(R, Y_{<n}\right)$, transcript $\left(M, f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)\right)$
- $\pi_{<n}$: inputs $\left(X_{<n}, Y_{<n}\right)$, public randomness $\left(R, X_{n}\right)$, transcript $\left(\mathbb{M}, f\left(X_{n}, Y_{n}\right)\right)$

Exponentially small advantage

given a protocol computing $f^{\oplus n}$ w.p. $2 / 3$ under μ^{n} with cost $o(n C)$ then there is a protocol computing f w.p. $2 / 3$ under μ with cost $\leq C$

Exponentially small advantage

To prove strong XOR lemma, need to show:
given a protocol computing $f^{\oplus n}$ w.p. $1 / 2+\alpha^{o(n)} / 2$ under μ^{n} with cost $o(n C)$ then there is a protocol computing f w.p. $1 / 2+\alpha / 2$ under μ with cost $\leq C$

Exponentially small advantage

To prove strong XOR lemma, need to show:
given a protocol computing $f^{\oplus n}$ w.p. $1 / 2+\alpha^{o(n)} / 2$ under μ^{n} with cost $o(n C)$ then there is a protocol computing f w.p. $1 / 2+\alpha / 2$ under μ with cost $\leq C$

Main challenge: design a decomposition that increases the advantage

Benefit of the alternative view

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

- given \mathbf{W}, one can predict f w.p. $1 / 2+\operatorname{adv}(f \mid \mathbf{W}) / 2$
- $\operatorname{adv}\left(b_{1} \oplus b_{2}\right)=\operatorname{adv}\left(b_{1}\right) \cdot \operatorname{adv}\left(b_{2}\right)$

Benefit of the alternative view

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

- given \mathbf{W}, one can predict f w.p. $1 / 2+\operatorname{adv}(f \mid \mathbf{W}) / 2$
- $\operatorname{adv}\left(b_{1} \oplus b_{2}\right)=\operatorname{adv}\left(b_{1}\right) \cdot \operatorname{adv}\left(b_{2}\right)$

End of π_{n}, Alice knows $\left(X_{n}, Y_{<n}, R, \mathbf{M}\right)$

$X_{<n}$	X_{n}

\square
\square : input, \square : public $\operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)$

Benefit of the alternative view

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

- given \mathbf{W}, one can predict f w.p. $1 / 2+\operatorname{adv}(f \mid \mathbf{W}) / 2$
- $\operatorname{adv}\left(b_{1} \oplus b_{2}\right)=\operatorname{adv}\left(b_{1}\right) \cdot \operatorname{adv}\left(b_{2}\right)$

End of π_{n}, Alice knows $\left(X_{n}, Y_{<n}, R, \mathrm{M}\right)$

\square : input, \square : public $\operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)$

End of $\pi_{<n}$, Bob knows $\left(X_{n}, Y_{<n}, R, M\right)$

input, \square : public $\operatorname{adv}\left(f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)$

Benefit of the alternative view

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

- given \mathbf{W}, one can predict f w.p. $1 / 2+\operatorname{adv}(f \mid \mathbf{W}) / 2$
- $\operatorname{adv}\left(b_{1} \oplus b_{2}\right)=\operatorname{adv}\left(b_{1}\right) \cdot \operatorname{adv}\left(b_{2}\right)$

End of π_{n}, Alice knows $\left(X_{n}, Y_{<n}, R, M\right)$

\square : input, \square : public $\operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)$

End of $\pi_{<n}$, Bob knows $\left(X_{n}, Y_{<n}, R, M\right)$

input, \square : public
$\operatorname{adv}\left(f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)$

Key obs: $f\left(X_{n}, Y_{n}\right)$ and $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$ are independent cond. on $\left(X_{n}, Y_{<n}, R, \mathbf{M}\right)$

Benefit of the alternative view

Key obs: $f\left(X_{n}, Y_{n}\right)$ and $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$ are independent cond. on $\left(X_{n}, Y_{<n}, R, M\right)$

Benefit of the alternative view

Key obs: $f\left(X_{n}, Y_{n}\right)$ and $f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right)$ are independent cond. on ($\left.X_{n}, Y_{<n}, R, M\right)$ Since $f^{\oplus n}(X, Y)=f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \oplus f\left(X_{n}, Y_{n}\right)$,

$$
\begin{aligned}
& \operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \cdot \operatorname{adv}\left(f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \\
& \quad=\operatorname{adv}\left(f^{\oplus n}(X, Y) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)
\end{aligned}
$$

Pointwise equality for advantage

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

$$
\begin{aligned}
& \operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \cdot \operatorname{adv}\left(f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \\
& \quad=\operatorname{adv}\left(f^{\oplus n}(X, Y) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)
\end{aligned}
$$

Pointwise equality for advantage

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

$$
\begin{aligned}
& \operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \cdot \operatorname{adv}\left(f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \\
& \quad=\operatorname{adv}\left(f^{\oplus n}(X, Y) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)
\end{aligned}
$$

Relate adv of π_{n} and adv of $\pi_{<n}$ to adv of π

Pointwise equality for advantage

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

$$
\begin{aligned}
& \operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \cdot \operatorname{adv}\left(f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \\
& \quad=\operatorname{adv}\left(f^{\oplus n}(X, Y) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)
\end{aligned}
$$

Relate adv of π_{n} and adv of $\pi_{<n}$ to adv of π
If π_{n} does not have "high success prob", then adv of $\pi_{<n}$ is larger than adv of π by a factor

Pointwise equality for advantage

let $\operatorname{adv}(f \mid \mathbf{W}):=|2 \operatorname{Pr}[f=1 \mid \mathbf{W}]-1| \in[0,1]$ be the advantage for f cond. on \mathbf{W}

$$
\begin{aligned}
& \operatorname{adv}\left(f\left(X_{n}, Y_{n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \cdot \operatorname{adv}\left(f^{\oplus n-1}\left(X_{<n}, Y_{<n}\right) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right) \\
& \quad=\operatorname{adv}\left(f^{\oplus n}(X, Y) \mid X_{n}, Y_{<n}, R, \mathbf{M}\right)
\end{aligned}
$$

Relate adv of π_{n} and adv of $\pi_{<n}$ to adv of π
If π_{n} does not have "high success prob", then adv of $\pi_{<n}$ is larger than adv of π by a factor

- decomposition increases the advantage

High-level proof strategy

Proof strategy:

1. given π for $f^{\oplus n}$, decompose into π_{n} for f and $\pi_{<n}$ for $f^{\oplus n-1}$
2. prove:
2.1 if π_{n} has "high cost": $\pi_{<n}$ has much "lower cost" than π
2.2 if π_{n} has "low succ prob": $\pi_{<n}$ has much "higher adv" than π

High-level proof strategy

Proof strategy:

1. given π for $f^{\oplus n}$, decompose into π_{n} for f and $\pi_{<n}$ for $f^{\oplus n-1}$
2. prove:
2.1 if π_{n} has "high cost": $\pi_{<n}$ has much "lower cost" than π
2.2 if π_{n} has "low succ prob": $\pi_{<n}$ has much "higher adv" than π o.W. π_{n} is good

High-level proof strategy

Proof strategy:

1. given π for $f^{\oplus n}$, decompose into π_{n} for f and $\pi_{<n}$ for $f^{\oplus n-1}$
2. prove:
2.1 if π_{n} has "high cost": $\pi_{<n}$ has much "lower cost" than π
2.2 if π_{n} has "low succ prob": $\pi_{<n}$ has much "higher adv" than π
o.W. π_{n} is good
3. if π has "low cost" and non-trivial adv: iterative decomposition gives a good protocol for f

"Exponential version" of info cost

Strong XOR lemma is false for info complexity

- compute $f^{\oplus n}$ exactly w.p. $1 / n$; output random bit w.p. $1-1 / n$

"Exponential version" of info cost

Strong XOR lemma is false for info complexity

- compute $f^{\oplus n}$ exactly w.p. $1 / n$; output random bit w.p. $1-1 / n$

Information cost is an average measure: it lower-bounds the expected communication

- (1st term) $I_{\pi}(X ; \mathbf{M} \mid Y, R)=\mathbb{E}\left[\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right)\right]$

"Exponential version" of info cost

Strong XOR lemma is false for info complexity

- compute $f^{\oplus n}$ exactly w.p. $1 / n$; output random bit w.p. $1-1 / n$

Information cost is an average measure: it lower-bounds the expected communication

- (1st term) $I_{\pi}(X ; \mathbf{M} \mid Y, R)=\mathbb{E}\left[\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right)\right]$

We work with the "exponential version" χ^{2}-cost:

$$
\mathbb{E}\left[\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right]
$$

Strong XOR lemma is false for info complexity

- compute $f^{\oplus n}$ exactly w.p. $1 / n$; output random bit w.p. $1-1 / n$

Information cost is an average measure: it lower-bounds the expected communication

- (1st term) $I_{\pi}(X ; \mathbf{M} \mid Y, R)=\mathbb{E}\left[\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right)\right]$

We work with the "exponential version" χ^{2}-cost:

$$
\mathbb{E}\left[\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right]
$$

 provide strong concentration on $\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right)$

Strong XOR lemma is false for info complexity

- compute $f^{\oplus n}$ exactly w.p. $1 / n$; output random bit w.p. $1-1 / n$

Information cost is an average measure: it lower-bounds the expected communication

- (1st term) $I_{\pi}(X ; \mathbf{M} \mid Y, R)=\mathbb{E}\left[\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right)\right]$

We work with the "exponential version" χ^{2}-cost:

$$
\mathbb{E}\left[\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right]
$$

 provide strong concentration on $\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right)$

- a pointwise version of chain-rule holds

Open problems

Given a protocol π computing $f^{\oplus n}$ with const prob

- obtain a protocol computing f w.p. $1-O(1 / n)$?

Open problems

Given a protocol π computing $f^{\oplus n}$ with const prob

- obtain a protocol computing f w.p. $1-O(1 / n)$?

General communication without round restrictions?

Open problems

Given a protocol π computing $f^{\oplus n}$ with const prob

- obtain a protocol computing f w.p. $1-O(1 / n)$?

General communication without round restrictions?
More applications of χ^{2}-costs

- strong concentration on $\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right) \Longrightarrow$ small overhead when doing information-compression

Open problems

Given a protocol π computing $f^{\oplus n}$ with const prob

- obtain a protocol computing f w.p. $1-O(1 / n)$?

General communication without round restrictions?
More applications of χ^{2}-costs

- strong concentration on $\log \left(\frac{\pi(X \mid \mathbf{M}, Y, R)}{\pi(X \mid Y, R)}\right) \Longrightarrow$ small overhead when doing information-compression

Understand the relation between χ^{2}-costs and communication?

Open problems

Given a protocol π computing $f^{\oplus n}$ with const prob

- obtain a protocol computing f w.p. $1-O(1 / n)$?

General communication without round restrictions?
More applications of χ^{2}-costs

- strong concentration on $\log \left(\frac{\pi(X \mid M, Y, R)}{\pi(X \mid Y, R)}\right) \Longrightarrow$ small overhead when doing information-compression

Understand the relation between χ^{2}-costs and communication?
Thank you for listening!

