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n-fold XOR function

For function f : Z → {0, 1}, its n-fold XOR f ⊕n : Zn → {0, 1} is:

f ⊕n(Z1, . . . ,Zn) = f (Z1)⊕ · · · ⊕ f (Zn)

This talk: “CC of f ” vs “CC of f ⊕n”
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Naive algorithm for f ⊕n

Suppose f can be computed using resource C w.p. 2/3

Compute n copies independently and output their XOR

Use n · C resource in total, and succeed w.p. 1/2 + exp(−Θ(n))

If this is the best possible, then

• moderately hard Boolean-valued f =⇒ very hard Boolean-valued f ⊕n
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Strong XOR lemma

A strong XOR lemma (for a model of computation and a class of functions):

“f ⊕n cannot be computed much better than solving all instances independently”

Previous XOR lemmas:

• query complexity [Dru’12, BKLS’20]

• w/o n times more resource: circuit complexity [Yao’82], streaming alg [AN’21]

• w/o exponentially small adv: information complexity [BBCR’10]

• communication complexity & functions with small discrepancy [Shaltiel’03]

• . . .
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Main result

A strong XOR lemma for bounded-round communication...

r -round communication for f (X ,Y ):

• input pair (X ,Y ), public random bits R

• Alice speaks in odd rounds, Bob speaks in even rounds

• M determines the output

• cost: max
∑r

i=1 |Mi |

n-fold XOR function:

f ⊕n(X1, . . . ,Xn,Y1, . . . ,Yn)

= f (X1,Y1)⊕ · · · ⊕ f (Xn,Yn)

Y

(Y1, . . . ,Yn)

X

(X1, . . . ,Xn)

Alice

Bob

R M1 M3M2 M4 · · · Mr

M
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A strong XOR lemma for bounded-round communication

Let R
(r)
q (f ) be the min communication cost to compute f in r rounds with prob q.

Theorem

For any f and r , we must have

R
(r)
1/2+2−n(f

⊕n) ≥ n ·
(
r−O(r) · R(r)

2/3(f )− 1
)
.

Remarks:

• for constant r : R
(r)
1/2+2−n(f

⊕n) ≥ Ω(n · (R(r)
2/3(f )− O(1)))

• “−O(1)” is needed: f (Xi ,Yi ) = Xi ,1 ⊕ Yi ,1 (XOR of 1st bit)
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[BBCR’10]: XOR lemma for info complexity

⇐= starting point of our proof

(with const adv instead of 2−n)

[BR’11]: for const r , information =⇒ communication
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Distributional strong XOR lemma

We also prove a strong XOR lemma w.r.t. a fixed input distribution µ:

Theorem

If every r -round C -bit comm. protocol computes f under input dist. µ w.p. at most

1/2 + α/2,

then every r -round o(r−1nC )-bit protocol computes f ⊕n under µn w.p. at most

1/2 + αΩ(n)/2,

where α < r−ω(r) and C > ω(log(1/α)).

distributional strong XOR lemma + Yao’s minimax + repetition =⇒ main theorem
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Outline

Rest of the talk, focus on distributional strong XOR lemma:

• alternative view of the XOR lemma for information complexity [BBCR’10]

• obtaining exponentially small advantage
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Information complexity

input distribution µ + protocol defines a joint distribution π over (X ,Y ,R,M)...

Y

XAlice

Bob

R M1 M3M2 M4 · · · Mr M

(internal) information cost of π: I (X ;M | Y ,R) + I (Y ;M | X ,R)

• 1st term: “amt of info M reveals about X conditioned on everything Bob knows”

information complexity of f under µ: min information cost to compute f
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XOR lemma for information complexity [BBCR’10]

[BBCR’10]: if info complexity of f ⊕n under µn is ≤ I ,

then info complexity of f under µ is ≤ I/n + O(1)

(assuming success probability 1 for now)
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Xi

YiY<i Y>i

X<i X>i

M

fix π for f ⊕n with info cost I ; Protocol τ for f (x , y):

1. sample i ∈ [n]; set Xi = x , Yi = y

2. publicly sample X>i and Y<i

3. Alice privately samples X<i cond. on Y<i ; Bob priv. samples Y>i cond. on X>i

4. Alice and Bob run π; Alice sends f ⊕i−1(X<i ,Y<i ); Bob sends f ⊕n−i (X>i ,Y>i )

τ computes f (x , y) : f (Xi ,Yi ) = f ⊕n(X ,Y )⊕ f ⊕i−1(X<i ,Y<i )⊕ f ⊕n−i (X>i ,Y>i ).

info cost (1st term): Ei∈[n] [I (Xi ;M | X>i ,Y ,R)] + O(1) = 1
n I (X ;M | Y ,R) + O(1)

sum up both terms: τ computes f with info cost I/n + O(1)
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XOR lemma for information complexity [BBCR’10]

[BBCR’10]: if info complexity of f ⊕n under µn is ≤ I ,

then info complexity of f under µ is ≤ I/n + O(1)

an alternative view of their proof:

• fix π for f ⊕n with info cost I

• “decompose” π into πn for f and info cost I1 and

π<n for f ⊕n−1 with info cost I2

such that I1 + I2 = I + O(1)
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Decomposition of π

Xn

YnY<n

X<n

M

Input: 1 pair

Protocol πn:

• view input as Xn and Yn

• publicly sample Y<n

• Alice priv. samples X<n cond. on Y<n

• run π and A. sends f ⊕n−1(X<n,Y<n)

Cost: I (Xn;M | Y ,R) + 1 (1st term)

1st terms in costs sum up to I (X ;M | Y ,R) + 1 by chain rule

2nd term is similar; info costs of π<n and πn sum up to I + O(1)
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• run π and Bob sends f (Xn,Yn)

Cost: I (X<n;M | Xn,Y ,R) (1st term)

1st terms in costs sum up to I (X ;M | Y ,R) + 1 by chain rule

2nd term is similar; info costs of π<n and πn sum up to I + O(1)
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Decomposition of π

Xn

YnY<n

X<n

M

Input: 1 pair

Protocol πn

X<n

Y<n

Xn

Yn

M

Input: n − 1 pairs

Protocol π<n

iteratively decomposing π<n gives n protocols for f

• i-th last: the original protocol when it embeds input into (Xi ,Yi )
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Another view of decomposition of π

for the same underlying distribution of (X ,Y ,R,M), we view different parts of it as

inputs, public randomness, transcript (private randomness not important)

• π: inputs (X ,Y ), public randomness R, transcript M

• πn: inputs (Xn,Yn), public rand. (R,Y<n), transcript (M, f ⊕n−1(X<n,Y<n))

• π<n: inputs (X<n,Y<n), public randomness (R,Xn), transcript (M, f (Xn,Yn))

15



Exponentially small advantage

To prove strong XOR lemma, need to show:

given a protocol computing f ⊕n w.p. 2/3 under µn with cost o(nC )

then there is a protocol computing f w.p. 2/3 under µ with cost ≤ C

Main challenge: design a decomposition that increases the advantage

16
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To prove strong XOR lemma, need to show:

given a protocol computing f ⊕n w.p. 1/2 + αo(n)/2 under µn with cost o(nC )
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Benefit of the alternative view

let adv(f | W) := |2Pr[f = 1 | W]− 1| ∈ [0, 1] be the advantage for f cond. on W

• given W, one can predict f w.p. 1/2 + adv(f | W)/2

• adv(b1 ⊕ b2) = adv(b1) · adv(b2)

End of πn, Alice knows (Xn,Y<n,R,M)

X<n

Y<n

Xn

Yn

: input, : public

adv(f (Xn,Yn) | Xn,Y<n,R,M)

End of π<n, Bob knows (Xn,Y<n,R,M)

X<n

Y<n

Xn

Yn

: input, : public

adv(f ⊕n−1(X<n,Y<n) | Xn,Y<n,R,M)

Key obs: f (Xn,Yn) and f ⊕n−1(X<n,Y<n) are independent cond. on (Xn,Y<n,R,M)

Since f ⊕n(X ,Y ) = f ⊕n−1(X<n,Y<n)⊕ f (Xn,Yn),

adv(f (Xn,Yn) | Xn,Y<n,R,M) · adv(f ⊕n−1(X<n,Y<n) | Xn,Y<n,R,M)

= adv(f ⊕n(X ,Y ) | Xn,Y<n,R,M)
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Pointwise equality for advantage

let adv(f | W) := |2Pr[f = 1 | W]− 1| ∈ [0, 1] be the advantage for f cond. on W

adv(f (Xn,Yn) | Xn,Y<n,R,M) · adv(f ⊕n−1(X<n,Y<n) | Xn,Y<n,R,M)

= adv(f ⊕n(X ,Y ) | Xn,Y<n,R,M)

Relate adv of πn and adv of π<n to adv of π

If πn does not have “high success prob”, then adv of π<n is larger than adv of π by a

factor

• decomposition increases the advantage

18
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High-level proof strategy

Proof strategy:

1. given π for f ⊕n, decompose into πn for f and π<n for f ⊕n−1

2. prove:

2.1 if πn has “high cost”: π<n has much “lower cost” than π

2.2 if πn has “low succ prob”: π<n has much “higher adv” than π

o.w. πn is good

3. if π has “low cost” and non-trivial adv: iterative decomposition gives a good

protocol for f

19
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“Exponential version” of info cost

Strong XOR lemma is false for info complexity

• compute f ⊕n exactly w.p. 1/n; output random bit w.p. 1− 1/n

Information cost is an average measure: it lower-bounds the expected communication

• (1st term) Iπ(X ;M | Y ,R) = E
[
log

(
π(X |M,Y ,R)
π(X |Y ,R)

)]
We work with the “exponential version” χ2-cost:

E
[
π(X | M,Y ,R)

π(X | Y ,R)

]
• instead of proving info cost ≤ I , we prove χ2-cost ≤ 2O(I ):

provide strong concentration on log
(
π(X |M,Y ,R)
π(X |Y ,R)

)
• a pointwise version of chain-rule holds

20
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Open problems

Given a protocol π computing f ⊕n with const prob

• obtain a protocol computing f w.p. 1− O(1/n)?

General communication without round restrictions?

More applications of χ2-costs

• strong concentration on log
(
π(X |M,Y ,R)
π(X |Y ,R)

)
=⇒ small overhead when doing

information-compression

Understand the relation between χ2-costs and communication?

Thank you for listening!

21
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