Strong XOR Lemma for Communication with Bounded
Rounds

Huacheng Yu

Princeton University



n-fold XOR function

For function f : Z — {0,1}, its n-fold XOR f®" : Z" — {0, 1} is:

FONZy, ... Zn) =f(Z1) @ @ F(Zp)



n-fold XOR function

For function f : Z — {0,1}, its n-fold XOR f®" : Z" — {0, 1} is:

FONZy, ... Zn) =f(Z1) @ @ F(Zp)

This talk: “CC of f" vs “CC of ™
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Suppose f can be computed using resource C w.p. 2/3
Compute n copies independently and output their XOR
Use n - C resource in total, and succeed w.p. 1/2 + exp(—©(n))

If this is the best possible, then

e moderately hard Boolean-valued f = very hard Boolean-valued f®"
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“fON cannot be computed much better than solving all instances independently”

Previous XOR lemmas:
e query complexity [Dru'12, BKLS'20]
e w/o n times more resource: circuit complexity [Yao'82], streaming alg [AN'21]
e w/o exponentially small adv: information complexity [BBCR'10]

e communication complexity & functions with small discrepancy [Shaltiel'03]
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Main result

A strong XOR lemma for bounded-round communication...

r-round communication for f(X, Y):
e input pair (X, Y), public random bits R
e Alice speaks in odd rounds, Bob speaks in even rounds
e M determines the output
e cost: maxy ;_, |Mj

Alice (X1,...,Xn)

n-fold XOR function:
f@”(Xl,...,X,,, Yi,---, Yn) T
XL Y2) @ © F(X, Vi) ?

Bob (Y1,...,Yn)
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Let Rgr)(f) be the min communication cost to compute f in r rounds with prob g.

Theorem
For any f and r, we must have
(r)

R/

o o(F57) = n- (r‘o(’) RY,(F) - 1) .

Remarks:

2 (FO") = Q(n - (RE4(F) — 0(1))
e “—O(1)" is needed: f(Xj, Yj) = Xi1@ Yi1 (XOR of 1st bit)

e for constant r: R(r)
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A strong XOR lemma for bounded-round communication

Let Rg')(f) be the min communication cost to compute f in r rounds with prob g.

Theorem

For any f and r, we must have

RY, ., (F") = n- (r 00RO (F) - 1).

[BBCR'10]: XOR lemma for info complexity <= starting point of our proof
(with const adv instead of 27")

[BR'11]: for const r, information = communication

Imply: for const r, Rgr/)3(f@”) >Q(n- (Rgr/),j(f) =)



Distributional strong XOR lemma
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We also prove a strong XOR lemma w.r.t. a fixed input distribution u:

Theorem

If every r-round C-bit comm. protocol computes f under input dist. ;1 w.p. at most
1/2+4 /2,
then every r-round o(r ' nC)-bit protocol computes f®" under ;1" w.p. at most
1/2 4+ oM /2,
where o < r=#(") and C > w(log(1/)).

distributional strong XOR lemma + Yao's minimax + repetition => main theorem



Rest of the talk, focus on distributional strong XOR lemma:

e alternative view of the XOR lemma for information complexity [BBCR'10]

e obtaining exponentially small advantage
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Information complexity

input distribution 1 + protocol defines a joint distribution 7 over (X, Y, R, M)...

Bob | Y |

(internal) information cost of m: I(X;M | Y,R)+ I(Y;M | X, R)

e 1st term: “amt of info M reveals about X conditioned on everything Bob knows"

information complexity of f under p: min information cost to compute f



XOR lemma for information complexity [BBCR’10]

[BBCR'10]: if info complexity of f&" under pu" is < |,
then info complexity of f under pis < //n+ O(1)

(assuming success probability 1 for now)

10
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fix 7 for £ with info cost /; Protocol 7 for f(x,y):

1. sample i € [n]; set X; = x, Y =y

2. publicly sample X5 ; and Y.;

3. Alice privately samples X_; cond. on Y.;; Bob priv. samples Y5 ; cond. on X ;

4. Alice and Bob run 7; Alice sends f&'~1(X_;, Y.;); Bob sends f“"~/(X.;, Y-;)
T computes f(x,y) : F(X;, Y;) = fO"(X, Y) @ FE (X, Yei) @ FE(Xsi, Ysi).
info cost (1st term): Ejc[q [/(Xi;M | X5i, Y, R)| 4 O(1) = LI(X;M | Y, R)+ 0(1)

sum up both terms: 7 computes f with info cost //n+ O(1)

11



XOR lemma for information complexity [BBCR’10]

[BBCR'10]: if info complexity of f" under pu" is < I,
then info complexity of f under pis < //n+ O(1)
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XOR lemma for information complexity [BBCR’10]

[BBCR'10]: if info complexity of f" under pu" is < I,
then info complexity of f under pis < //n+ O(1)

an alternative view of their proof:
o fix m for F" with info cost /

e “decompose”’ 7 into 7, for f and info cost /; and
Ten for f&7~1 with info cost /
such that 1 + L =1+ O(1)

12
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Y<n Yo

Input: 1 pair

Protocol 7
e view input as X, and Y,
e publicly sample Y.,
e Alice priv. samples X, cond. on Y.,
e run 7 and A. sends FO"Y(X_,, Y<,)

Cost: (XM | Y, R)+1 (1st term)
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Decomposition of 7
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14 14
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Input: 1 pair
Protocol 7,:

Input: n— 1 pairs
Protocol 7 :

e view input as X, and Y,

e view input as X, and Y.,
e publicly sample Y.,

e publicly sample X,
e Alice priv. samples X, cond. on Y.,

e run 7 and A. sends FO"Y(X_,, Y<,)

Cost: (XM | Y, R)+1 (1st term)

e Bob privately samples Y, cond. on X,
e run 7 and Bob sends (X,, Y;)
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Input: 1 pair

Protocol 7,:

view input as X, and Y,

publicly sample Y.,

Alice priv. samples X, cond. on Y.,
run 7 and A. sends FO"1(X_,, Y.,)

Cost: (XM | Y, R)+1 (1st term)

Input: n— 1 pairs

Protocol 7 :

view input as X., and Y.,

publicly sample X,

Bob privately samples Y, cond. on X,
run m and Bob sends f( X, Y,)

Cost: [(X<p;M | Xp, Y, R) (1st term)

1st terms in costs sum up to /(X;M | Y, R) + 1 by chain rule

2nd term is similar; info costs of 7, and 7, sum up to [ + O(1) 13



Decomposition of 7

X<n Xn
M M
¥1 {4

Input: 1 pair

Protocol 7,

Input: n— 1 pairs
Protocol 7,

iteratively decomposing 7w, gives n protocols for f

e j-th last: the original protocol when it embeds input into (Xj, Y;)

14



Another view of decomposition of =

for the same underlying distribution of (X, Y, R, M), we view different parts of it as
inputs, public randomness, transcript (private randomness not important)

e 7 inputs (X, Y), public randomness R, transcript M
e 7, inputs (X,, Y,), public rand. (R, Y,), transcript (M, f"Y(X_, Y_,))
e 7wp: inputs (X, Y-,), public randomness (R, X,), transcript (M. f(X,, Y,))

15



Exponentially small advantage

given a protocol computing f®" w.p. 2/3 under p" with cost o(nC)

then there is a protocol computing f w.p. 2/3 under p with cost < C

16



Exponentially small advantage

To prove strong XOR lemma, need to show:
given a protocol computing f&" w.p. 1/2 + .°(") /2 under pu" with cost o(nC)

then there is a protocol computing f w.p. 1/2 + «/2 under pu with cost < C

16



Exponentially small advantage

To prove strong XOR lemma, need to show:
given a protocol computing f&" w.p. 1/2 + .°(") /2 under pu" with cost o(nC)

then there is a protocol computing f w.p. 1/2 + «/2 under pu with cost < C

Main challenge: design a decomposition that increases the advantage

16



Benefit of the alternative view

let adv(f | W) := |2Pr[f =1 | W] — 1| € [0, 1] be the advantage for f cond. on W
e given W, one can predict f w.p. 1/2 + adv(f | W)/2
o adv(by @ by) = adv(br) - adv(b2)
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Benefit of the alternative view

| X<n X<n Xn

Yo

B input, [l public B input, [l public
adv(f(Xn, Ya) | Xn, Y<n, R, M) adv(FO"Y(Xop, Y<n) | Xa, Y<n, R, M)

Key obs: f(X,, Y,) and f®"=1(X_,, Y.,) are independent cond. on (X,, Y<,, R, M)
Since FO"(X,Y) = fE"Y(X_p,, Yor) @ F(Xn, Ya),
adv(f(Xa, Ya) | Xn, Y<n, R,M) - adv(fP" Y X_p, Yen) | Xns Yen, R, M)
= adv(FE"(X, Y) | X, Yen, R,M)

17



Pointwise equality for advantage

let adv(f | W) := |2Pr[f =1 | W] — 1| € [0, 1] be the advantage for f cond. on W

adv(f(Xn, Yn) | Xa, Y<n, R, M) - adv(FO" Y (X, Yei) | Xn, Yen, R, M)
= adv(f9"(X,Y) | Xn, Yen, R, M)
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Relate adv of 7, and adv of 7, to adv of 7

If 7, does not have “high success prob”, then adv of 7w, is larger than adv of 7 by a
factor

e decomposition increases the advantage
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High-level proof strategy

Proof strategy:
1. given 7 for f°", decompose into 7, for f and 7w, for F¥71

2. prove:

2.1 if m, has “high cost”: w—, has much “lower cost” than 7
2.2 if m, has “low succ prob”: 7w, has much “higher adv" than 7
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High-level proof strategy

Proof strategy:
1. given 7 for f°", decompose into 7, for f and 7w, for F¥71

2. prove:

2.1 if m, has “high cost”: w—, has much “lower cost” than 7
2.2 if m, has “low succ prob”: 7w, has much “higher adv" than 7

0.W. T, is good

3. if 7 has “low cost” and non-trivial adv: iterative decomposition gives a good
protocol for f
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“Exponential version” of info cost

Strong XOR lemma is false for info complexity

e compute " exactly w.p. 1/n; output random bit w.p. 1 —1/n

Information cost is an average measure: it lower-bounds the expected communication
m(X|M,Y,R
o (Ist term) I(X;M | Y,R) =E [Iog <w>}

We work with the “exponential version” y?-cost:
(X |M,Y,R)
(X | Y,R)
e instead of proving info cost < I, we prove x2-cost < 2°0():
provide strong concentration on log (%)

e a pointwise version of chain-rule holds

20



Open problems

Given a protocol © computing f®" with const prob

e obtain a protocol computing f w.p. 1 — O(1/n)?
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Given a protocol © computing f®" with const prob

e obtain a protocol computing f w.p. 1 — O(1/n)?
General communication without round restrictions?
More applications of x?-costs

e strong concentration on log (%) —> small overhead when doing

information-compression

Understand the relation between y?-costs and communication?

Thank you for listening!
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