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Communication protocol for F of cost k = Rank-2% decomposition of matrix approximating F.
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There is a communication protocol for F of cost O(rank.(F)). [Gal and Syed ‘19]
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IF

log rank.(F) Re(F) rank.(F)

Showed F such that R%(F) > {/rank.(F).

1. Can we get closer?

2. Can we refute R%(F) < log (max{rank/ (F),rank (-=F)})
[Kol Moran Shpilka Yehudayoff ‘14]
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Functions with small Approximate Rank

Rank is subadditive, so
approximate rank of f is ~ approximate rank of g; times t.

Log-Approximate-Rank Conjecture implies cost of computing f is
poly(log t, cost of computing g).

Can't we be forced to compute each g;, resulting in Q(t) cost?

f(X) == Ve 9i(x)
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Showing Hardness

1. Work with functions f : {0,1}" — {0, 1} that are sums of simple functions
(subcube/subspace indicators).

2. Sanity check: Show that these are hard for randomized parity decision trees.
(Can make linear queries of the form (v, x) thinking of x € F7.)

3. Show that f o XOR is hard for randomized communication protocols.
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The counterexample

m
2

SINK : {0,1}(2) - 10,1}

The input bits of SINK orient the edges of the
complete graph.

SINK(z) = 1 iff there is a sink in the directed
graph G;.

SINK = Z,e[n] SINK;. Each SINK; is a
subcube.




The counterexample

m
2

SINK : {0,1}(2) - 10,1}

A subspace/rectangle A that is biased
against v; being a sink must have a slightly
small Al;.

A subspace/rectangle A that is biased
against inputs with sinks must be slightly
small for many Aj;s.

A subspace/rectangle A that is biased
against inputs with sinks must be very small.
(Shearer's Lemma)
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Dual Subspace Designs

Subspace Designs [Guruswami Xing ‘12]:

A set of subspaces such that any small subspace intersects only a few of them
non-trivially.

Taking the duals:

A set of subspaces such that any large subspace can be biased against only a few them.

Randomized Parity Decision Tree lower bound follows immediately.
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Open Question 1

Can we prove a communication lower bound of Q(n) against (union of a dual subspace
design)oXOR?

Efficient subspace designs are known to exist.
Would give F such that R%(F) > ¥/rank.(F).

Do subspace designs have an analog of Shearer’s lemma?



Open Question 1.1

If a distribution A over {0, 1}" satisfies H(A|r) < codim(T) — (1)
for subspaces T from a subspace design,
then H(A) < n—Q(n).
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A concrete problem: CyclicShift

f:{0,1}"*" — {0,1}
f:(x,y)— 1iff 3i € [n] suchthat x_,; =y

((31 & a838485) 0 = (sasay azas)>

Even the randomized parity decision tree complexity of CyclicShift is unknown.

(Function inspired by a function from ‘String Matching: Communication, Circuits, and Learning’, by Golovneyv,
Go66s, Reichman and Shinkar ‘19)
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The function SINK was a sum of simple functions.

-SINK was not.
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Rectifying it in 3 simple steps

+ Partition {0, 1}"” into two sets so that both parts are unions of a few disjoint subcubes.
* Let f evaluate to 1 on one of the parts and 0 on the other part.
» Realize that any such f has small randomized parity decision tree complexity.

If f~1(0) and f~'(1) can be covered by ¢ monochromatic subcubes, there is a
size-2rohvlog(e.n) decision tree computing f. [Ehrenfeucht and Haussler ‘89]
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Can we partition {0, 1}" into two sets so that both parts are unions of few disjoint
subspaces, while the resulting f remains hard for randomized parity decision trees?

Negation:
For any partition of {0,1}" into subspaces Ay, Ay, ..., Ak, there is an efficient randomized
parity decision tree that computes x — i s.t. x € A;.

Conjecture:
For any partition of {0,1}"” into subspaces, there is a tree-like partition of {0, 1}"” that
refines it without having too many more parts.



Thank you. +am-new-opento-gquestions: The questions are now open to you.



	Doing Better Than [4]rank(F) with Arkadev Chattopadhyay and Ankit Garg
	Approximate Nonnegative Rank with Arkadev Chattopadhyay

