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There is a communication protocol for F of cost O(rankε(F )). [Gál and Syed ‘19]
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∃F

Rcc
ε (F )

Showed F such that Rcc
ε (F ) ≥ 4

√
rankε(F ).

1. Can we get closer?

2. Can we refute Rcc
ε (F ) ≤ log

(
max{rank+ε (F ), rank+ε (¬F )}

)O(1)
?

[Kol Moran Shpilka Yehudayoff ‘14]
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Showing Hardness

1. Work with functions f : {0,1}n → {0,1} that are sums of simple functions
(subcube/subspace indicators).

2. Sanity check: Show that these are hard for randomized parity decision trees.
(Can make linear queries of the form 〈v , x〉 thinking of x ∈ Fn

2.)

3. Show that f ◦ XOR is hard for randomized communication protocols.
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The counterexample
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The input bits of SINK orient the edges of the
complete graph.

SINK(z) = 1 iff there is a sink in the directed
graph Gz .

SINK =
∑

i∈[n] SINKi . Each SINKi is a
subcube.

4



The counterexample

SINK : {0,1}(
m
2) → {0,1}

v1

v2

v3 v4

v5

z1,2

z1,3 z1,4

z1,5

z2,3 z2,4

z2,5

z3,4

z3,5 z4,5

0

0 1

0

0 1

1

1

1 1

The input bits of SINK orient the edges of the
complete graph.

SINK(z) = 1 iff there is a sink in the directed
graph Gz .

SINK =
∑

i∈[n] SINKi . Each SINKi is a
subcube.

4



The counterexample

SINK : {0,1}(
m
2) → {0,1}

v1

v2

v3 v4

v5

z1,2

z1,3 z1,4

z1,5

z2,3 z2,4

z2,5

z3,4

z3,5 z4,5

0

0 1

0

0 1

1

1

1 1

The input bits of SINK orient the edges of the
complete graph.

SINK(z) = 1 iff there is a sink in the directed
graph Gz .

SINK =
∑

i∈[n] SINKi . Each SINKi is a
subcube.

4



The counterexample

SINK : {0,1}(
m
2) → {0,1}

v1

v2

v3 v4

v5

z1,2

z1,3 z1,4

z1,5

z2,3 z2,4

z2,5

z3,4

z3,5 z4,5

0

0 1

0

0 1

1

1

1 1

A subspace/rectangle A that is biased
against vi being a sink must have a slightly
small A|i .

A subspace/rectangle A that is biased
against inputs with sinks must be slightly
small for many A|is.

A subspace/rectangle A that is biased
against inputs with sinks must be very small.
(Shearer’s Lemma)
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Dual Subspace Designs

Subspace Designs [Guruswami Xing ‘12]:

A set of subspaces such that any small subspace intersects only a few of them
non-trivially.

S1,S2, . . . ,Sk ⊂ Fn
2 such that

∀W ⊂ Fn
2 with dim(W ) < a,

W ∩ Si 6= {0} for only h values of i .

Taking the duals:

A set of subspaces such that any large subspace can be biased against only a few them.

Randomized Parity Decision Tree lower bound follows immediately.
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Open Question 1

Can we prove a communication lower bound of Ω(n) against (union of a dual subspace
design)◦XOR?

Efficient subspace designs are known to exist.

Would give F such that Rcc
ε (F ) ≥ 3

√
rankε(F ).

Do subspace designs have an analog of Shearer’s lemma?
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Open Question 1.1

Our Conjecture
If a distribution A over {0,1}n satisfies H(A|T ) ≤ codim(T )− Ω(1)

for many subspaces T from a subspace design,
then H(A) < n − Ω(n).
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A concrete problem: CyclicShift

f : {0,1}n+n → {0,1}

f : (x , y) 7→ 1 iff ∃i ∈ [n] such that x→i = y

(
(a1a2a3a4a5)→2 = (a4a5a1a2a3)

)

Even the randomized parity decision tree complexity of CyclicShift is unknown.

(Function inspired by a function from ‘String Matching: Communication, Circuits, and Learning’, by Golovnev,
Göös, Reichman and Shinkar ‘19)

8



A concrete problem: CyclicShift

f : {0,1}n+n → {0,1}

f : (x , y) 7→ 1 iff ∃i ∈ [n] such that x→i = y

(
(a1a2a3a4a5)→2 = (a4a5a1a2a3)

)
Even the randomized parity decision tree complexity of CyclicShift is unknown.

(Function inspired by a function from ‘String Matching: Communication, Circuits, and Learning’, by Golovnev,
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Approximate Nonnegative Rank
with Arkadev Chattopadhyay



The issue

The function SINK was a sum of simple functions.

¬SINK was not.
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Rectifying it in 3 simple steps

• Partition {0,1}n into two sets so that both parts are unions of a few disjoint subcubes.

• Let f evaluate to 1 on one of the parts and 0 on the other part.

• Realize that any such f has small randomized parity decision tree complexity.

If f−1(0) and f−1(1) can be covered by c monochromatic subcubes, there is a
size-2polylog(c,n) decision tree computing f . [Ehrenfeucht and Haussler ‘89]
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Can subspaces help here?

Can we partition {0,1}n into two sets so that both parts are unions of few disjoint
subspaces, while the resulting f remains hard for randomized parity decision trees?

Negation:
For any partition of {0,1}n into subspaces A1,A2, . . . ,Ak , there is an efficient randomized
parity decision tree that computes x 7→ i s.t. x ∈ Ai .

Conjecture:
For any partition of {0,1}n into subspaces, there is a tree-like partition of {0,1}n that
refines it without having too many more parts.
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Thank you. I am now open to questions. The questions are now open to you.
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