On Some Open Questions Related to the Log-Approximate-Rank Conjecture

Suhail Sherif

Vector Institute, Toronto

$$
\mathrm{R}_{\epsilon}^{\mathrm{cc}}(F)
$$

Background: The Log-Approximate-Rank Conjecture

$$
\begin{array}{cc}
\forall F \\
\log \operatorname{rank}_{\epsilon}(F) \quad \mathrm{R}_{\epsilon}^{\mathrm{cc}}(F) \quad \operatorname{rank}_{\epsilon}(F)
\end{array}
$$

Background: The Log-Approximate-Rank Conjecture

$\forall F$
$\log \operatorname{rank}_{\epsilon}(F) \quad \mathrm{R}_{\epsilon}^{\mathrm{cc}}(F) \quad \operatorname{rank}_{\epsilon}(F)$

Communication protocol for F of cost $k \Longrightarrow$ Rank- 2^{k} decomposition of matrix approximating F. [Krause '96]

Background: The Log-Approximate-Rank Conjecture

$\forall F$	
$\log \operatorname{rank}_{\epsilon}(F) \quad$	$\mathrm{R}_{\epsilon}^{\mathrm{cc}}(F)$

Communication protocol for F of cost $k \Longrightarrow$ Rank-2 ${ }^{k}$ decomposition of matrix approximating F. [Krause '96]
There is a communication protocol for F of cost $O\left(\operatorname{rank}_{\epsilon}(F)\right)$. [Gál and Syed '19]

The Log-Approximate-Rank Conjecture

$$
\begin{array}{lcc}
& \forall F \\
\log ^{\operatorname{rank}_{\epsilon}(F)} \quad \mathrm{R}_{\epsilon}^{\mathrm{cc}(F)} & \operatorname{rank}_{\epsilon}(F)
\end{array}
$$

Refuting The Log-Approximate-Rank Conjecture

[Chattopadhyay Mande S '19]
$\exists F$
$\log \operatorname{rank}_{\epsilon}(F)$
$\mathrm{R}_{\epsilon}^{\mathrm{cc}}(F) \quad \operatorname{rank}_{\epsilon}(F)$

Refuting The Log-Approximate-Rank Conjecture

[Chattopadhyay Mande S '19]
$\exists F$
$\log \operatorname{rank}_{\epsilon}(F)$
$\mathrm{R}_{\epsilon}^{\mathrm{cc}}(F) \quad \operatorname{rank}_{\epsilon}(F)$

Showed F such that $\mathrm{R}_{\epsilon}^{\mathrm{cc}}(F) \geq \sqrt[4]{\operatorname{rank}_{\epsilon}(F)}$.

Refuting The Log-Approximate-Rank Conjecture

[Chattopadhyay Mande S '19]
$\exists F$
$\log \operatorname{rank}_{\epsilon}(F)$
$\mathrm{R}_{\epsilon}^{\mathrm{cc}}(F) \quad \operatorname{rank}_{\epsilon}(F)$

Showed F such that $\mathrm{R}_{\epsilon}^{c c}(F) \geq \sqrt[4]{\operatorname{rank}_{\epsilon}(F)}$.

1. Can we get closer?

Refuting The Log-Approximate-Rank Conjecture

[Chattopadhyay Mande S '19]

$$
\exists F
$$

```
log rank
R
    Showed F such that }\mp@subsup{\textrm{R}}{\epsilon}{cc}(F)\geq\sqrt{4}{\mp@subsup{\operatorname{rank}}{\epsilon}{}(F)}\mathrm{ .
    1. Can we get closer?
2. Can we refute R}\mp@subsup{\textrm{R}}{\epsilon}{cc}(F)\leq\operatorname{log}(\operatorname{max}{\mp@subsup{\mathrm{ rank}}{\epsilon}{+}(F),\mp@subsup{\operatorname{rank}}{\epsilon}{+}(\negF)}\mp@subsup{)}{}{O(1)}\mathrm{ ?
    [Kol Moran Shpilka Yehudayoff '14]
```


Functions with small Approximate Rank

Universe (or input space)

Functions with small Approximate Rank

Functions with small Approximate Rank

Functions with small Approximate Rank

Functions with small Approximate Rank

Rank is subadditive, so
approximate rank of f is \approx approximate rank of g_{i} times t.

$$
\begin{aligned}
f(x) & :=\bigvee_{i \in[t]} g_{i}(x) \\
f(x) & :=\sum_{i \in[t]} g_{i}(x)
\end{aligned}
$$

Functions with small Approximate Rank

Rank is subadditive, so
approximate rank of f is \approx approximate rank of g_{i} times t.

Log-Approximate-Rank Conjecture implies cost of computing f is poly $(\log t$, cost of computing $g)$.

$$
\begin{aligned}
f(x) & :=\bigvee_{i \in[t]} g_{i}(x) \\
f(x) & :=\sum_{i \in[t]} g_{i}(x)
\end{aligned}
$$

Functions with small Approximate Rank

Rank is subadditive, so
approximate rank of f is \approx approximate rank of g_{i} times t.

Log-Approximate-Rank Conjecture implies cost of computing f is poly $(\log t$, cost of computing $g)$.

Can't we be forced to compute each g_{i}, resulting in $\Omega(t)$ cost?

$$
\begin{aligned}
f(x) & :=\bigvee_{i \in[t]} g_{i}(x) \\
f(x) & :=\sum_{i \in[t]} g_{i}(x)
\end{aligned}
$$

Functions with small Approximate Rank

Showing Hardness

1. Work with functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that are sums of simple functions (subcube/subspace indicators).

Showing Hardness

1. Work with functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that are sums of simple functions (subcube/subspace indicators).
2. Sanity check: Show that these are hard for randomized parity decision trees. (Can make linear queries of the form $\langle v, x\rangle$ thinking of $x \in \mathbb{F}_{2}^{n}$.)

Showing Hardness

1. Work with functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that are sums of simple functions (subcube/subspace indicators).
2. Sanity check: Show that these are hard for randomized parity decision trees. (Can make linear queries of the form $\langle v, x\rangle$ thinking of $x \in \mathbb{F}_{2}^{n}$.)
3. Show that $f \circ$ XOR is hard for randomized communication protocols.

The counterexample

$$
\text { SINK : }\{0,1\}^{\binom{m}{2}} \rightarrow\{0,1\}
$$

The input bits of SINK orient the edges of the complete graph.
$\operatorname{SINK}(z)=1$ iff there is a sink in the directed graph G_{z}.

The counterexample

$$
\text { SINK : }\{0,1\}^{\binom{m}{2}} \rightarrow\{0,1\}
$$

The input bits of SINK orient the edges of the complete graph.
$\operatorname{SINK}(z)=1$ iff there is a sink in the directed graph G_{z}.

The counterexample

$$
\text { SINK : }\{0,1\}^{\binom{m}{2}} \rightarrow\{0,1\}
$$

The input bits of SINK orient the edges of the complete graph.
$\operatorname{SINK}(z)=1$ iff there is a sink in the directed graph G_{z}.
$\operatorname{SINK}=\sum_{i \in[n]} \mathrm{SINK}_{i}$. Each SINK_{i} is a subcube.

The counterexample

SINK : $\{0,1\} \begin{gathered}\binom{m}{2}\end{gathered} \rightarrow\{0,1\}$

A subspace/rectangle A that is biased against v_{i} being a sink must have a slightly small $\left.A\right|_{i}$.

A subspace/rectangle A that is biased against inputs with sinks must be slightly small for many $\left.A\right|_{i}$ s.

A subspace/rectangle A that is biased against inputs with sinks must be very small. (Shearer's Lemma)

Doing Better Than $\sqrt[4]{\text { rank }_{\epsilon}(F)}$

with Arkadev Chattopadhyay and Ankit Garg

Dual Subspace Designs

Subspace Designs [Guruswami Xing '12]:

A set of subspaces such that any small subspace intersects only a few of them non-trivially.

$$
\begin{gathered}
S_{1}, S_{2}, \ldots, S_{k} \subset \mathbb{F}_{2}^{n} \text { such that } \\
\forall W \subset \mathbb{F}_{2}^{n} \text { with } \operatorname{dim}(W)<a, \\
W \cap S_{i} \neq\{0\} \text { for only } h \text { values of } i .
\end{gathered}
$$

Dual Subspace Designs

Subspace Designs [Guruswami Xing '12]:

A set of subspaces such that any small subspace intersects only a few of them non-trivially.

Taking the duals:
A set of subspaces such that any large subspace can be biased against only a few them.

$$
\begin{aligned}
& S_{1}, S_{2}, \ldots, S_{k} \subset \mathbb{F}_{2}^{n} \text { such that } \\
& \forall W \subset \mathbb{F}_{2}^{n} \text { with codim }(W)<a, \\
& \frac{\left|W \cap S_{i}\right|}{|W|} \neq \frac{\left|\left.\right|_{i j}\right|}{2^{n}} \text { for only } h \text { values of } i .
\end{aligned}
$$

Dual Subspace Designs

Subspace Designs [Guruswami Xing '12]:

A set of subspaces such that any small subspace intersects only a few of them non-trivially.

Taking the duals:
A set of subspaces such that any large subspace can be biased against only a few them.

Randomized Parity Decision Tree lower bound follows immediately.

Open Question 1

Can we prove a communication lower bound of $\Omega(n)$ against (union of a dual subspace design)॰XOR?

Open Question 1

Can we prove a communication lower bound of $\Omega(n)$ against (union of a dual subspace design)॰XOR?

Efficient subspace designs are known to exist.

Open Question 1

Can we prove a communication lower bound of $\Omega(n)$ against (union of a dual subspace design)॰XOR?

Efficient subspace designs are known to exist.
Would give F such that $\mathrm{R}_{\epsilon}^{c c}(F) \geq \sqrt[3]{\operatorname{rank}_{\epsilon}(F)}$.

Open Question 1

Can we prove a communication lower bound of $\Omega(n)$ against (union of a dual subspace design)॰XOR?

Efficient subspace designs are known to exist.
Would give F such that $\mathrm{R}_{\epsilon}^{c c}(F) \geq \sqrt[3]{\operatorname{rank}_{\epsilon}(F)}$.
Do subspace designs have an analog of Shearer's lemma?

Open Question 1.1

Our Conjecture

If a distribution A over $\{0,1\}^{n}$ satisfies $H\left(\left.A\right|_{T}\right) \leq \operatorname{codim}(T)-\Omega(1)$ for many subspaces T from a subspace design, then $H(A)<n-\Omega(n)$.

A concrete problem: CyclicShift

$$
\begin{gathered}
f:\{0,1\}^{n+n} \rightarrow\{0,1\} \\
f:(x, y) \mapsto 1 \text { iff } \exists i \in[n] \text { such that } x_{\rightarrow i}=y \\
\left(\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)_{\rightarrow 2}=\left(a_{4} a_{5} a_{1} a_{2} a_{3}\right)\right)
\end{gathered}
$$

A concrete problem: CyclicShift

$$
\begin{gathered}
f:\{0,1\}^{n+n} \rightarrow\{0,1\} \\
f:(x, y) \mapsto 1 \text { iff } \exists i \in[n] \text { such that } x_{\rightarrow i}=y \\
\left(\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)_{\rightarrow 2}=\left(a_{4} a_{5} a_{1} a_{2} a_{3}\right)\right)
\end{gathered}
$$

Even the randomized parity decision tree complexity of CyclicShift is unknown.

A concrete problem: CyclicShift

$$
\begin{gathered}
f:\{0,1\}^{n+n} \rightarrow\{0,1\} \\
f:(x, y) \mapsto 1 \text { iff } \exists i \in[n] \text { such that } x_{\rightarrow i}=y \\
\left(\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)_{\rightarrow 2}=\left(a_{4} a_{5} a_{1} a_{2} a_{3}\right)\right)
\end{gathered}
$$

Even the randomized parity decision tree complexity of CyclicShift is unknown.
(Function inspired by a function from 'String Matching: Communication, Circuits, and Learning', by Golovnev, Göös, Reichman and Shinkar '19)

Approximate Nonnegative Rank

with Arkadev Chattopadhyay

The issue

The function SINK was a sum of simple functions.
\neg SINK was not.

Rectifying it in 3 simple steps

- Partition $\{0,1\}^{n}$ into two sets so that both parts are unions of a few disjoint subcubes.

Rectifying it in 3 simple steps

- Partition $\{0,1\}^{n}$ into two sets so that both parts are unions of a few disjoint subcubes.
- Let f evaluate to 1 on one of the parts and 0 on the other part.

Rectifying it in 3 simple steps

- Partition $\{0,1\}^{n}$ into two sets so that both parts are unions of a few disjoint subcubes.
- Let f evaluate to 1 on one of the parts and 0 on the other part.
- Realize that any such f has small randomized parity decision tree complexity.

Rectifying it in 3 simple steps

- Partition $\{0,1\}^{n}$ into two sets so that both parts are unions of a few disjoint subcubes.
- Let f evaluate to 1 on one of the parts and 0 on the other part.
- Realize that any such f has small randomized parity decision tree complexity. If $f^{-1}(0)$ and $f^{-1}(1)$ can be covered by c monochromatic subcubes, there is a size-2 ${ }^{\text {polylog }(c, n)}$ decision tree computing f. [Ehrenfeucht and Haussler '89]

Can subspaces help here?

Can we partition $\{0,1\}^{n}$ into two sets so that both parts are unions of few disjoint subspaces, while the resulting f remains hard for randomized parity decision trees?

Can subspaces help here?

Can we partition $\{0,1\}^{n}$ into two sets so that both parts are unions of few disjoint subspaces, while the resulting f remains hard for randomized parity decision trees?

Negation:
For any partition of $\{0,1\}^{n}$ into subspaces $A_{1}, A_{2}, \ldots, A_{k}$, there is an efficient randomized parity decision tree that computes $x \mapsto i$ s.t. $x \in A_{i}$.

Can subspaces help here?

Can we partition $\{0,1\}^{n}$ into two sets so that both parts are unions of few disjoint subspaces, while the resulting f remains hard for randomized parity decision trees?

Negation:
For any partition of $\{0,1\}^{n}$ into subspaces $A_{1}, A_{2}, \ldots, A_{k}$, there is an efficient randomized parity decision tree that computes $x \mapsto i$ s.t. $x \in A_{i}$.

Conjecture:
For any partition of $\{0,1\}^{n}$ into subspaces, there is a tree-like partition of $\{0,1\}^{n}$ that refines it without having too many more parts.

Thank you. Iam now open to questions. The questions are now open to you.

