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Abstract. The equivariant cohomology ring of a regular semisimple
Hessenberg variety in type A is a free module over the equivariant coho-
mology ring of a point. When equipped with Tymoczko’s dot action, it
becomes a twisted representation of the symmetric group, and the char-
acter of this representation is given by the chromatic quasisymmetric
function of an indifference graph. In this note, we use divided difference
operators to decompose this representation as a direct sum of subrep-
resentations in a way that categorifies the modular relation between
chromatic quasisymmetric functions.

1. Introduction

TODO

2. Notation and computations

2.1. Context. Fix a natural number n. Let Sn be the symmetric group of
order n, viewed as functions from the set {1, 2, . . . , n} to itself, so that

(vw)(i) = v
(
w(i)

)
for v, w ∈ Sn and i = 1, 2, . . . , n. (2.1)

The group Sn is generated by the adjacent transpositions,

si = (i ↔ i + 1) for i = 1, 2, . . . , n − 1, (2.2)

which satisfy the relations

s2
i = id, sis(i+1)si = s(i+1)sis(i+1),

sisk = sksi for k ̸= i ± 1.
(2.3)

We will sometimes write a permutation in one-line notation, as

w = [w(1), w(2), . . . , w(n)]. (2.4)

The overarching context for all that follows will be the ring of functions

H = Fun(Sn,C[t1, . . . , tn]), (2.5)

whose elements can be seen as Sn-indexed tuples of multivariate polyno-
mials, or as certain complex-valued functions on Sn × Cn, with pointwise
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addition and multiplication. The ring H is equipped with two Sn-actions:
on the left, Tymoczko’s dot action, defined for v ∈ Sn and f ∈ H by

(v · f)(w, t1, . . . , tn) = f(v−1w, tv(1), . . . , tv(n)), (2.6)
and on the right, the star action, defined by

(f ∗ v)(w, t1, . . . , tn) = f(wv−1, t1, . . . , tn) (2.7)
The left action and the right action commute, so that
(uv) · f = u · (v · f), (u · f) ∗ v = u · (f ∗ v), (f ∗ u) ∗ v = f ∗ (uv). (2.8)

The elements fixed by the star action are those which satisfy
f(w, t1, . . . , tn) = f(id, t1, . . . , tn) for all w ∈ Sn. (2.9)

As a subring, we identify them with the elements of C[t1, . . . , tn], since they
are generated by the algebraically independent elements

(w, t1, . . . , tn) 7→ ti for i = 1, 2, . . . , n. (2.10)
The elements fixed by the dot action are those which satisfy

f(w, t1, . . . , tn) = f(id, tw(1), . . . , tw(n)) for all w ∈ Sn. (2.11)
As a subring, they are generated by the algebraically independent elements

ri(w, t1, . . . , tn) = tw(i) for i = 1, 2, . . . , n, (2.12)
so we will write this subring as C[r1, . . . , rn]. For w ∈ Sn, we have

w · ti = tw(i) ti ∗ w = ti

w · ri = ri ri ∗ w = rw−1(i)
(2.13)

The intersection of C[t1, . . . , tn] and C[r1, . . . , rn] consists of the symmet-
ric polynomials (in either set of variables), and the subring they generate
together is

C[t1, . . . , tn, r1, . . . , rn]〈
ei(t1, . . . , tn) − ei(r1, . . . , rn)

〉n

i=1
, (2.14)

where ei is the ith elementary symmetric polynomial in n variables.

2.2. Divisibility conditions. For an element f ∈ H and a transposition
γ = (i ↔ k) ∈ Sn, we will say that f satisfies condition γ if

f ∗ (1 − γ) is a multiple of (ri − rk). (2.15)
Note that, in particular, any multiple of (ri − rk) satisfies condition γ:(

(ri − rk)f
)

∗ (1 − γ) = (ri − rk)
(
f ∗ (1 + γ)

)
. (2.16)

The set of elements which satisfy condition γ is closed under addition and
multiplication, so they form a subring of H, which we call Hγ . More gener-
ally, for a set of transpositions C ⊆ Sn, we write

HC =
⋂

γ∈C Hγ (2.17)
for the subring of elements which satisfy all conditions in C. If C is the
empty set, then HC is the entire ring H. If C is the set of all transpositions
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in Sn, then HC is the subring (2.14), generated by t1, . . . , tn, r1, . . . , rn. In
particular, the elements t1, . . . , tn and r1, . . . , rn satisfy all divisibility con-
ditions. If w ∈ Sn and f satisfies condition γ, then

w · f satisfies condition γ, and
f ∗ w satisfies condition w−1γw,

(2.18)

so each HC is closed under the dot action, but usually not the star action.

2.3. Divided differences. For i = 1, 2, . . . , n−1, we define the ith divided
difference operator ∂i : Hsi → H by

∂i(f) = f ∗ (1 − si)
ri − r(i+1)

. (2.19)

Since ri − r(i+1) is not a zero divisor in H, the quotient involved in this
definition is unique if it exists, and the definition of Hsi is that this quotient
does exist. We record here some of the convenient computational properties
of divided differences which follow directly from the definition.

Lemma 1. For f, g ∈ Hsi and w ∈ Sn, we have:

1. ∂i(f + g) = ∂i(f) + ∂i(g),
2. ∂i(fg) = ∂i(f) g + (f ∗ si) ∂i(g),
3. ∂i(fg) = f ∂i(g) when ∂i(f) = 0,
4. ∂i(w · f) = w · ∂i(f),
5. ∂i(f ∗ si) = −∂i(f),
6. ∂i(f) ∗ si = ∂i(f),
7. ∂i(f) ∗ w = ∂k(f ∗ w) when w(k) = i and w(k + 1) = i + 1,
8. ∂i(tk) = 0,
9. ∂i is C[t1, . . . , tn]-linear,

10. ∂i(ri) = 1,
11. ∂i

(
r(i+1)

)
= −1,

12. ∂i(rk) = 0 when k /∈ {i, i + 1}.

Proof. By direct computation. □

Furthermore, the divided difference operators satisfy the relations

∂2
i = 0, ∂i∂(i+1)∂i = ∂(i+1)∂i∂(i+1),

∂i∂k = ∂k∂i for k ̸= i ± 1
(2.20)
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on the appropriate domains, since

∂i∂(i+1)∂i(f) = ∂(i+1)∂i∂(i+1)(f)

=
f ∗

(
1 − si − s(i+1) + sis(i+1) + s(i+1)si − sis(i+1)si

)(
ri − r(i+1)

)(
ri − r(i+2)

)(
r(i+1) − r(i+2)

) (2.21)

and

∂i∂k(f) = ∂k∂i(f) =
f ∗

(
1 − si − sk + sisk

)(
ri − r(i+1)

)(
rk − r(k+1)

) . (2.22)

2.4. Stability. The divided difference operators aren’t defined on all of H,
and don’t preserve the subrings HC in general. But, motivated by the
following lemma, we will say that a set of conditions C is si-stable if

si ∈ C and siCsi = C. (2.23)

Lemma 2. If C is si-stable, then ∂i is defined on HC , and ∂i(HC) ⊆ HC .

Proof. Since si ∈ C, it’s immediate ∂i is defined on HC . To show that
∂i(HC) ⊆ HC , we will reduce to the case of three specific sets C, each of
which can be checked on a small C[t1, . . . , tn]-linear subspace of HC , and
provide an explicit basis for this subspace.

As a first reduction, it suffices to check that ∂i(HC) ⊆ HC for the minimal
si-stable sets C, which are of the form

C(i, γ) = {si, γ, siγsi} for a transposition γ ∈ Sn, (2.24)
because for a general si-stable set C, we have

HC =
⋂

γ∈C HC(i,γ). (2.25)
As a second reduction, it suffices to check the three specific s1-stable sets

C(1, s1) = {(1 ↔ 2)}
C(1, s2) = {(1 ↔ 2), (1 ↔ 3), (2 ↔ 3)}
C(1, s3) = {(1 ↔ 2), (3 ↔ 4)},

(2.26)

because each C(i, γ) can be reduced to one of them, depending on the case:
Case si = γ: Let w ∈ Sn be a permutation with

w(i) = 1, w(i + 1) = 2. (2.27)
Then, we have

∂i
(
HC(i,γ)

)
= ∂i

(
HC(1,s1) ∗ w

)
= ∂1

(
HC(1,s1)

)
∗ w

⊆? HC(1,s1) ∗ w = HC(i,γ).
(2.28)

Case si ̸= γ and γ ̸= siγsi: In this case, γ and siγsi must be of the form
(i ↔ k) and (i + 1 ↔ k), in some order, for some k /∈ {i, i + 1}. Let
w ∈ Sn be a permutation with

w(i) = 1, w(i + 1) = 2, w(k) = 3. (2.29)
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Then, we have
∂i

(
HC(i,γ)

)
= ∂i

(
HC(1,s2) ∗ w

)
= ∂1

(
HC(1,s2)

)
∗ w

⊆? HC(1,s2) ∗ w = HC(i,γ)
(2.30)

Case si ̸= γ and γ = siγsi: In this case, γ must be of the form (j ↔ k) for
some {j, k} disjoint from {i, i + 1}. Take w ∈ Sn such that

w(i) = 1, w(i + 1) = 2, w(j) = 3, w(k) = 4. (2.31)
Then, we have
∂i

(
HC(i,γ)

)
= ∂i

(
HC(1,s3) ∗ w

)
= ∂1

(
HC(1,s3)

)
∗ w

⊆? HC(1,s3) ∗ w = HC(i,γ)
(2.32)

As an independent reduction, it suffices to check that ∂i(HC) ⊆ HC on
a certain C[t1, . . . , tn]-linear subspace of HC . Specifically, let ⟨C⟩ be the
subgroup of Sn generated by C, and let 1⟨C⟩ ∈ HC be defined by

1⟨C⟩(w, t1, . . . , tn) =
{

1 if w ∈ ⟨C⟩
0 otherwise.

(2.33)

Then, 1⟨C⟩HC is the C[t1, . . . , tn]-linear subspace of functions in HC which
are zero outside of ⟨C⟩ × Cn. The unit element in HC decomposes as

1 =
∑

w w · 1⟨C⟩, (2.34)
where the sum is over an arbitrary choice of representatives w for the cosets
w⟨C⟩ ⊆ Sn. For an element f ∈ HC and a permutation w ∈ Sn, let

fw = 1⟨C⟩ (w−1 · f) ∈ 1⟨C⟩HC . (2.35)
Then, the element f can be decomposed as

f =
∑

w w · fw, (2.36)
so that

∂i(f) =
∑

w w · ∂i(fw). (2.37)
Thus, ∂i(HC) ⊆ HC is implied by ∂i

(
1⟨C⟩HC

)
⊆ HC .

Given all of these reductions, the remaining task is to compute ∂1 on a
C[t1, . . . , tn]-linear basis of 1⟨C⟩HC for C in {C(1, s1), C(1, s2), C(1, s3)}.
Case C = C(1, s1): The following two elements form a basis:

1⟨C⟩(r1 − t1), 1⟨C⟩ (2.38)
and the computation of ∂1 on them is illustrated below:

id

s1

0

(t2 − t1)

1

1

0
∂1 ∂1

(2.39)
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Case C = C(1, s2): The following six elements form a basis:
1⟨C⟩(r2 − t1)(r1 − t1)(r1 − t2), 1⟨C⟩(r2 − t1)(r1 − t1),
1⟨C⟩(r1 − t1)(r1 − t2), 1⟨C⟩(t3 − r3),
1⟨C⟩(r1 − t1), 1⟨C⟩,

(2.40)

and the computation of ∂1 on these elements is illustrated below,
using the abbreviation tik = (ti − tk):

id

s1 s2

s1s2 s2s1

s1s2s2

0

0 0

0 0

t21t31t32

0

0 0

t21t31 0

t21t31

0
∂1 ∂1

0

0 0

0 t31t32

t31t32

0

0 t32

t31 t32

t31

0
∂1 ∂1

0

t21 0

t21 t31

t31

1

1 1

1 1

1

0
∂1 ∂1

(2.41)
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Case C = C(1, s3): The following four elements form a basis:
1⟨C⟩(r1 − t1)(r3 − t3), 1⟨C⟩(r3 − t3),
1⟨C⟩(r1 − t1), 1⟨C⟩,

(2.42)

and the computation of ∂1 on these elements is illustrated below,
again using the abbreviation tik = (ti − tk):

id

s1 s3

s1s3

0

0 0

t21t43

0

0 t43

t43

0
∂1 ∂1

0

t21 0

t21

1

1 1

1

0
∂1 ∂1

(2.43)

This completes the proof of Lemma 2. □

2.5. Decompositions. Now that we have a handle on the domain and
range of the divided difference operators, we can use them to obtain de-
composition of some of the subrings HC .

Theorem 3. Let C be an si-stable set of divisibility conditions. Then, we
have the direct sum decomposition

HC = Hsi
C ⊕ (ri − r(i+1))Hsi

C (2.44)
as subgroups of H equipped with the dot action, where

Hsi
C = {f ∈ HC | f ∗ si = f}. (2.45)

Proof. Since C is si-stable, the subgroup {id, si} ⊆ Sn of order two acts on
the right on HC by the star action, and we have the natural decomposition

HC = Hsi
C ⊕ H−si

C , (2.46)
where we write

H−si
C = {f ∈ HC | f ∗ si = −f} (2.47)

for the (−1)-eigenspace of the map f 7→ f ∗ si. We claim that

H−si
C = (ri − r(i+1))Hsi

C , (2.48)
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because we further claim that the maps

H−si
C Hsi

C

∂i

(ri − r(i+1))/2
(2.49)

form a bijection. This follows from the facts that

∂i
(
H−si

C

)
⊆ ∂i(HC) ⊆ Hsi

C ,

(ri − r(i+1))Hsi
C ⊆ H−si

C ,

∂i
(
(ri − r(i+1))f

)
/2 = f ∗ (1 + si)/2 = f when f ∈ Hsi

C ,

(ri − r(i+1))∂i(f)/2 = f ∗ (1 − si)/2 = f when f ∈ H−si
C ,

(2.50)

which can be verified by direct computation. □

The proof of Theorem 3 yields an additional fact:

Corollary 4. The kernel and image of ∂i : HC → HC are equal when C is
si-stable. They consist of those elements f ∈ HC such that f ∗ si = f .

Motivated by the following decomposition, we define the notion of almost-
stability. We will say that a set of divisibility conditions C1 is almost-si-
stable if si ∈ C1 and there is a unique transposition γ such that γ ∈ C1 but
siγsi /∈ C1. If this is the case, note that the sets

C0 = C1 \ {γ}, C2 = C1 ∪ {s1γs1}, (2.51)

obtained from C1 by adding or removing a single element, are si-stable.

Theorem 5. Let C1 be an almost-si-stable set of divisibility conditions, so
that C0 = C1 \ {γ} and C2 = C1 ∪ {siγsi} are si-stable. If γ = (i ↔ k), then
we have the direct sum decomposition

HC1 = Hsi
C2

⊕ (ri − rk)Hsi
C0

(2.52)

as subgroups of H equipped with the dot action. Otherwise, γ = (i + 1 ↔ k)
and we have the direct sum decomposition

HC1 = Hsi
C2

⊕ (rk − r(i+1))Hsi
C0

. (2.53)

Proof. We will assume that γ = (i ↔ k), since the case where γ = (i+1 ↔ k)
follows by using the transformation

HC1 ∗ si = HsiC1si . (2.54)

We claim that the decomposition is given by the following maps:

Hsi
C2 HC1 Hsi

C0

id

∂i ◦ (rk − r(i+1))

∂i

(ri − rk)
(2.55)

To prove this, we need to check that:
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• All four maps land in the stated codomain. Using the inclusions
HC2 ⊆ HC1 ⊆ HC0

(ri − rk)HC0 ⊆ HC1

(rk − r(i+1))HC1 ⊆ HC2 ,

(2.56)

we indeed have that
id(Hsi

C2
) ⊆ HC2 ⊆ HC1

∂i(HC1) ⊆ ∂i(HC0) ⊆ Hsi
C0

∂i
(
(rk − r(i+1))HC1

)
⊆ ∂i(HC2) ⊆ Hsi

C2

(ri − rk)Hsi
C0

⊆ (ri − rk)HC0 ⊆ HC1 .

(2.57)

• The two compositions HC1 → HC1 are complementary idempotents.
Using the computational properties from Lemma 1, we have

∂i
(
(rk − r(i+1))f

)
+ (ri − rk)∂i(f) = f

∂i

(
(rk − r(i+1))∂i

(
(rk − r(i+1))f

))
= ∂i

(
(rk − r(i+1))f

)
(ri − rk)∂i

(
(ri − rk)∂i(f)

)
= (ri − rk)∂i(f)

(2.58)

for every f ∈ HC1 , as required.
• The compositions Hsi

C0
→ Hsi

C0
and Hsi

C2
→ Hsi

C2
are the identity.

Again using Lemma 1, we have
∂i

(
(ri − rk)f

)
= f + (r(i+1) − rk)∂i(f) = f (2.59)

for every f ∈ Hsi
C0

and

∂i
(
(rk − r(i+1))f

)
= f + (ri − rk)∂i(f) = f (2.60)

for every f ∈ Hsi
C2

, as required. □
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Appendix A. Examples for n = 3

To clarify the notation and conventions used in this note, we illustrate
them here for the case n = 3. In everything that follows, we draw the
elements of S3 as six vertices arranged in a hexagon, with the identity per-
mutation at the bottom, the long word w0 = s1s2s1 = s2s1s2 = [321] at the
top, and the other vertices labeled like this:

[123]

s1 = [213] [132] = s2

s1s2 = [231] [312] = s2s1

[321]

(A.1)

Then, an element of H can be represented as a hexagon with a polynomial
in C[t1, t2, t3] attached to each vertex, like this:

0

5t1 1

t2t3 (t1 + t3)

t2
1(t2 − t3)

(A.2)

The star action of S3 on H on the right permutes the polynomials attached
to the vertices. For the three transpositions s1, s2, w0 ∈ S3, the effect is:

∗s1 ∗s2 ∗w0 (A.3)

The three actions above are drawn with different kinds of arrows; each kind
corresponds to a divisibility condition which could be imposed on elements
of H. For the element f ∈ H of (A.2), the element (f ∗ s1) is:

5t1

0 (t1 + t3)

t2
1(t2 − t3) 1

t2t3

(A.4)
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The dot action of S3 on H on the left relabels the variables t1, t2, t3 in
addition to permuting the polynomials attached to the vertices. For the
three transpositions s1, s2, w0 ∈ S3, the effect is:

s1 ·

t1 ↔ t2

s2 ·

t2 ↔ t3

w0 ·

t1 ↔ t3

(A.5)

For the element f ∈ H of (A.2), the element (s1 · f) is:

5t2

0 t1t3

1 t2
2(t1 − t3)

(t2 + t3)

(A.6)

The elements t1, t2, t3, r1, r2, r3 ∈ H, which satisfy all three divisibility con-
ditions, are:

t1

t1 t1

t1 t1

t1

t1

t2

t2 t2

t2 t2

t2

t2

t3

t3 t3

t3 t3

t3

t3

t1

t2 t1

t2 t3

t3

r1

t2

t1 t3

t3 t1

t2

r2

t3

t3 t2

t1 t2

t1

r3

(A.7)

For each Hessenberg function h : {1, 2, 3} → {1, 2, 3}, there is a correspond-
ing set of divisibility conditions C = {(i ↔ k) | i < k ≤ h(i)} ⊆ S3, and a
corresponding subring HC ⊆ H. Below we give a C[t1, t2, t3]-linear basis for
each of these HC . These bases are well-known examples of flow-up bases.
We use the abbreviation tik = (ti − tk), and indicate when ∂1 or ∂2 takes
one basis element to another.
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For h = (1, 2, 3), we have C = ∅, and HC = H has the basis:

0

0 0

1 0

0

0

0 0

0 0

1

0

0 0

0 1

0

0

1 0

0 0

0

1

0 0

0 0

0

0

0 1

0 0

0

(A.8)

For h = (2, 2, 3), we have C = {s1}, and HC has the basis:

0

0 0

1 0

1

0

0 0

0 0

t32

0

0 0

0 t31

0

0

t21 0

0 0

0

1

1 0

0 0

0

0

0 1

0 1

0

∂1

∂1

∂1

(A.9)
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For h = (1, 3, 3), we have C = {s2}, and HC has the basis:

0

0 0

t31 0

0

0

0 0

0 0

t21

0

0 0

0 1

1

0

1 0

1 0

0

1

0 1

0 0

0

0

0 t32

0 0

0

∂2

∂2

∂2

(A.10)

For h = (2, 3, 3), we have C = {s1, s2}, and HC has the basis:

0

0 0

t31 0

t21

0

0 0

0 0

t21t32

0

0 0

0 t31

t32

0

t21 0

t23 0

0

1

1 1

1 1

1

0

0 t32

0 t12

0

∂1 ∂2

(A.11)
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For h = (3, 3, 3), we have C = {s1, s2, w0}, and HC has the basis:

0

0 0

t21t31 0

t21t31

0

0 0

0 0

t21t31t32

0

0 0

0 t31t32

t31t32

0

t21 0

t21 t31

t31

1

1 1

1 1

1

0

0 t32

t31 t32

t31

∂1

∂1

∂1

∂2

∂2

∂2

(A.12)
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