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1 Overview
The study of Hessenberg varieties and LLT polynomials have been isolated until recently. The workshop
22w5143 brought together researchers in these disparate fields. It was an important opportunity to share
recent results, interesting open problems, and new directions.

Hessenberg varieties. Motivated by Hessenberg matrices and algorithms for efficiently calculating
eigenvalues in numerical analysis, Hessenberg varieties in the flag variety of GLn(C) were first introduced
by De Mari and Shayman [DMS88] and later defined in all Lie types by De Mari, Procesi, and Shay-
man [DMPS92]. Hessenberg varieties are increasingly important examples of varieties whose geometry and
cohomology can be better understood using combinatorial techniques.

Recent results have forged exciting new connections between algebraic combinatorics and the geometry
and topology of regular semisimple Hessenberg varieties. The Stanley–Stembridge conjecture asserts that the
chromatic symmetric function of the incomparability graph of a unit interval order is e-positive. Shareshian
and Wachs [SW16] conjectured a link between the Stanley–Stembridge conjecture to Hessenberg varieties via
the dot action, a symmetric group representation on the cohomology ring of a regular semisimple Hessenberg
variety defined by Tymoczko [Tym08]. This conjecture was proved in 2015 by Brosnan and Chow [BC18a]
and independently by Guay-Paquet [GP16a]. The work referenced above establishes the following research
problem which is recognized as a major question in this area: use the properties of Hessenberg varieties to
prove the StanleyStembridge conjecture.

LLT polynomials. The LLT polynomials were introduced by Lascoux, Leclerc and Thibon [LLT97]. The
original motivation was to study certain Fock space representations and plethysm coefficients A few years
later, Leclerc and Thibon [LT00] proved that the LLT polynomials are Schur positive, by using representation
theory.

Bylund and Haiman extended the notion of LLT polynomials by using a new combinatorial model. Now,
each LLT polynomial is indexed by a k-tuple of skew shapes, (see [Hag07, p. 92]). Schur positivity for
this extended family was later proved by Grojnowski and Haiman, [GH06], but their proof does not give a
combinatorial interpretation of the coefficients.

LLT polynomials appear in the study of diagonal harmonics. In particular, they play a central role
in the study of the modified Macdonald polynomials, the Shuffle conjecture and the Delta conjecture, see
[HHL05a, HHL05b, HMZ12, Ser17, HRW18]. Guay-Paquet [GP16a] uses a Hopf algebra approach to show

1



2

that (unicellular) LLT polynomials are the graded Frobenius series derived from the equivariant cohomology
rings of regular semisimple Hessenberg varieties—establishing another connection between Hessenberg va-
rieties and algebraic combinatorics. Meanwhile, Carlsson and Mellit [CM17] give a more convenient model
for vertical-strip LLT polynomials, and they prove the Compositional Shuffle conjecture, by introducing the
Dyck path algebra. In Carlsson and Mellit’s work, it becomes evident that LLT polynomials and chromatic
symmetric functions are closely related. In [AP18], several properties and conjectures regarding chromatic
symmetric functions are shown to have an analog in the world of LLT polynomials.

As we see, the family of LLT polynomials can be seen as a building-block in representation-theoretical
settings. Understanding how these expand into Schur polynomials is currently the most central open problem
in this area.

Workshop Topic and Schedule. The work referenced above builds a table of correspondences between
Hessenberg varieties, chromatic quasisymmetric functions, and LLT polynomials. As a result, we are able to
use geometric information about Hessenberg varieties to prove combinatorial statements and vice versa. The
workshop focused on this interplay of ideas and consisted of 42 in-person participants (a mixture of faculty at
various career stages) and 40 remote participants (about half of whom were graduate students and postdocs).

The schedule consisted of a mixture of introductory and research presentations, informal discussion, and
group work. The workshop included 3 introductory and 7 research talks.

• Erik Carlsson: Affine Springer fibers (Introductory talk)

• Laura Escobar: An introduction to Hessenberg varieties (Introductory talk)

• Mathieu Guay-Paquet: Divided Difference Operators for Hessenberg Varieties

• Jennifer Morse: Hey Series, How can you help with symmetric functions?

• Antonio Nigro: Parabolic Lusztig varieties and chromatic symmetric functions

• Greta Panova: Combinatorial identities for CSF of Dyck paths with bounce 2 and 3

• Bruce Sagan: Chromatic symmetric functions and sign-reversing involutions

• Franco Saliola: Chromatic symmetric functions and LLT polynomials (Introductory talk)

• Eric Sommers: Nilpotent Hessenberg varieties and related objects in the setting of general Lie type

• Foster Tom: Horizontal-strip LLT polynomials

Informal discussions served as a jumping-off point for researchers with expertise in particular topics to share
the current status of the field. These discussions topics included the following;

• Schur positivity and crystals (facilitated by Per Alexandersson)

• Failed attempts (facilitated by Laura Colmenarejo)

• The dot action and Hessenberg varieties in all Lie types (facilitated by Martha Precup)

The organizers also hosted virtual discussions on Zoom (one on professional development topics and the
other on research questions) for graduate students participating remotely.

Group discussion played a significant role in the workshop structure. These discussions were fluid, infor-
mal, and engaged. The intended goal was to spark ideas and identify researchers interested in similar projects
from different mathematical fields or perspectives. This appears to have been met! We refrain from detailed
description of the content because of the speculative and open-ended nature of these conversations.

Our survey of workshop participants indicated that they valued the group structure, in some cases more
than they anticipated. Although it was not a goal of the workshop that each group continue to meet and
solve the problem they discussed, we expected the workshop to motivate long-term collaborations between
participants and produce several new publications. Multiple participants noted that the topics discussed had
a direct impact on their research and we are aware of at least three different ongoing collaborations formed at
the workshop.

Feedback from workshop participants include the following sampling of comments.
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• I think the talks were at a reasonable level and my group had an approachable project to which everyone
was able to contribute, which was really great. Given how few hours were actually available for group
work, we did not make much progress, but I think this was fine. I really appreciated the opportunity to
work with my other group members and get to know them better. Most importantly, I learned things!

• The format worked really well in our case. (I was initially very suspicious of the format and in fact
tried to get out of being a group organizer, but am glad now they didn’t let me).

• It went well. We had a very specific problem to deal with, and the group made progress in some special
cases.

• The group discussion was great! We were able to learn very efficiently about some new results straight
from the author, with lots of questions and answers and interactive examples from all the participants.

• Despite my critiques, it was still an amazing experience for me. I learned a lot from the few structured
talks, as well as talking informally with so many experts. And the memories of the food, the pool, the
natural beauty still linger...

• As a postdoc, perhaps the most valuable thing about the workshop was being able to talk informally
with the other participants, and I believe I learned quite a bit from those conversations. I really appre-
ciated all the opportunities to discuss over coffee, meals, etc with so many great researchers and my
experience of the workshop was incredibly positive. Thank you to the organizers for all your work and
excellent planning!

For future workshop organizers, we note that surveyed participants appreciated the open discussions but
would have preferred more structure. If we were to do it again, we would instead ask moderators to provide a
list of topics to prompt discussions, or perhaps a panel discussion with a list of questions from the moderator.

2 Group discussion and scientific progress
During the week, workshop participants were split into seven groups working on six different projects. Four
hours were specifically designated for group discussion, and a number of groups met outside of the other
workshop activities for further work and discussion. Participants were welcome to move between groups
during discussion. This section briefly describes each project and summarize group activities during the
workshop.

Deformations and automorphisms of Hessenberg varieties
Group Leader: Patrick Brosnan; Group Members: Laura Escobar, Jaehyun Hong, Eunjeong Lee, Anton
Mellit, Eric Sommers.

Hessenberg varieties are subvarieties of generalized flag varieties associated to a reductive group G and
two pieces of data: an element X of the Lie algebra g of G and a subset H of the root system Ψ of G. Given
this data, one convention is to write B(X,H) for the associated Hessenberg variety. When X is regular
semisimple, B(X,H) is a smooth subvariety of the variety B of Borel subgroups of G, which inherits many
nice properties from B itself.

In the data defining a Hessenberg variety, the second datum, H , is obviously combinatorial in nature.
In particular, since Ψ itself is finite, there are only finitely many possible Hessenberg data H for a given
reductive group G. On the other hand, X can vary continuously in Zariski dense open subset grs of regular
semisimple elements. In particular, if X,X ′ ∈ grs, then B(X,H) and B(X ′, H) are deformation equivalent.
So, for example, if we work over the complex numbers, B(X,H) and B(X ′, H) are diffeomorphic. This
leads to the following question.

Question 1. Suppose X and X ′ are two regular semisimple elements of g. Are B(X,H) and B(X ′, H)
isomorphic as algebraic varieties?
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Note that if H = Ψ, then B(X,H) is just the complete flag variety B. So, in this case, the answer to
Question 1 is yes. Similarly, if H is empty or is equal to the set of simple positive roots, the answer is yes.

This question was posed by Patrick Brosnan as a potential group problem at the BIRS Workshop. It was
taken up by a group consisting of Brosnan together with Laura Escobar, Jaehyun Hong, Eunjeong Lee, Anton
Mellit and Eric Sommers. Very quickly, Mellit came up with a construction that led to a negative answer. We
work with the case where H contains every root except the highest root θ. Then essentially the trivial cases
are the only cases when the answer to the question is yes.

The members of the group are in the process of writing up the proofs along with the answers to related
questions about automorphisms of the Hessenberg variety B(X,H).

Operators and algorithms for computing chromatic symmetric func-
tions
Group Leaders: Jim Haglund, Alejandro Morales; Group Members: Farid Aliniaeifard, Logan Crew, Mathieu
Guay-Paquet, Megumi Harada, Byung-Hak Hwang, Rosa Orellana, Martha Precup, Franco Saliola, Sophie
Spirkl, Michelle Wachs.

Originally I (Haglund) was assigned to be group leader for a project studying the Schur expansion of the
unicellular LLT polynomial LLTπ(X; q), where π is a Dyck path andX a set of variables. The main idea was
to start with the combinatorial, signed expansion of Alexandersson and Sulzgruber [AS22] of LLTπ(X; q)
into elementary symmetric functions, and figure out how to cancel the negative signs, leaving a positive
expansion. In recent joint work, Anna Pun, my two PhD students Jennifer Wang and Alex Vetter, and I have
figured out how to do this when the shape of the Schur function is an augmented hook. (Most of this work
was done by Alex). We are still struggling with how to do any non-augmented hook shape, in fact even the
shape 33 is giving us trouble.

On seeing the abstract of the project that Alejandro Morales had proposed, I noticed the two projects
had very substantial overlap. At one point I suggested we cancel my project, but the conference organizers
decided against it, and in retrospect I am glad they did. They placed both my group and the Morales group
in the same room, and we quickly decided to “join forces”. One of the main reasons for this is that one of
the people in my group, Byung-Hak Hwang, recently posted a preprint on the arXix [Hwa22] in which he
gives an exciting refinement of the Shareshian-Wachs conjecture (that the coefficients in the expansion of the
chromatic quasisymmetric function corresponding to a Dyck path π, denoted say SWπ(X; q), are nonneg-
ative integers, i.e. the coefficients are in N[q]). Hwang also gives a refinement of an important theorem of
Shaeshian-Wachs [SW16], namely that the Schur coefficients of SWπ(X; q) can be described combinatori-
ally in terms of “P -tableaux”. The function SWπ(X; q) can be represented by a weighted sum over proper
colorings of a certain graph Gπ , while LLTπ(X; q) equals the same weighted sum, except over all colorings
of Gπ . Hwang gave a hour-long presentation to our (combined) group, and we spent most of the first two
group meetings discussing this new angle on the problem. (Trying to understand the combinatorics behind the
positive expansion of SWπ(X; q) into elementary symmetric functions is one of the main motivating factors
behind the conference and continued work on SWπ(X; q).)

The two functions SWπ(X; q) and LLTπ(X; q) are related analytically by a simple plethystic transfor-
mation. This allows one to take any formula for one of them in terms of symmetric function operators and
easily obtain a corresponding formula for the other. Morales gave a half-hour presentation on how to start
with a recent formula for LLTπ(X; q) which occurs in the famous paper of Carlsson and Mellit proving the
Shuffle Conjecture [CM17]), and obtain a very efficient formula for computing SWπ(X; q). I also gave a
half-hour presentation on how to start with the Schur expansion of SWπ(X; q) in terms of P -tableaux, and
get a corresponding formula for the Schur expansion of LLTπ(X; q) involving the special value of Macdon-
ald’s q, t-Kostka matrix when t = q, i.e. Kλ,µ(q, q) in the standard notation. Although there is no known
combinatorial interpretation for Kλ,µ(q, q) for general λ, µ, perhaps a special study of this special t = q
value will lead to one.
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Combinatorial formulas for the character values of the dot action
Group Leader: John Shareshian; Group Members: Erik Carlsson, Maria Gillespie, Antonio Nigro, Bruce
Sagan, Mark Skandera.

John Shareshian led a group which considered connections between type-A trace generating functions,
chromatic symmetric functions, and graded Frobenius characteristics of Hessenberg varieties, and began to
investigate the extent to which these extend to connections between their type-B and type-C analogs.

Summary of type-A results
Let Sn be the symmetric group and Hn(q) the corresponding Hecke algebra. To each permutation w =
w1 · · ·wn ∈ Sn avoiding the pattern 312 we associate several algebraic and combinatorial objects: a certain
element of Hn(q) called the (modified, signless) Kazhdan-Lusztig basis element C̃w(q), the Hessenberg
function m = m(w) = m1 · · ·mn defined by mi = max{w1, . . . , wi}, a certain Hessenberg variety H(m),
the poset P = P (w) on {1, . . . , n} defined by i ≤P j if mi + 1 ≤ j ≤ n, and the incomparability graph
inc(P ). We also associate three symmetric functions to w: the (dual) trace generating function

ωYq(C̃w(q)) :=
∑
λ`n

ηλq (C̃w(q))mλ (1)

where {ηλq |λ ` n} are induced trivial characters of Hn(q) and mλ are monomial symmetric functions, the
chromatic symmetric function

Xinc(P ),q =
∑
λ

∑
κ

a proper
coloring of

type λ

qascinc(P )(κ)mλ, (2)

where each coloring κ takes nonnegative integer values and ascinc(P ) is a statistic on colorings, and the
graded Frobenius characteristic

chq(H
∗(H(m))) :=

∑
j

ch(H2j(H(m)))qj (3)

of a certain dot action of Sn on the cohomology of H(m). By [BC18b, CHSS16, GP16b, SW12], we have
the equalities ωYq(C̃w(q)) = ωXinc(P ) = chq(H

∗(H(m))). By [Lus86] these can be generalized some-
what: if w ∈ Sn is arbitrary and V (w) is the corresponding Lusztig variety, then we have ωYq(C̃w(q)) =
chq(H

∗(V (w))), where the second symmetric function is defined in terms of a certain action of Sn on the
cohomology of V (w).

Extension to types B and C
In types B and C there is one Weyl group: the hyperoctahedral group Bn. Let HBC

n (q) be its Hecke algebra.
Each element w ∈ Bn has long and short one-line notations given by wn · · ·w1w1 · · ·wn and w1 · · ·wn,
where i := −i. The long one-line notation satisfies wi = −wi. Let C̃BC

w (q) be the corresponding Kazhdan-
Lusztig basis element of HBC

n (q). Analogous to the 312-avoiding permutations of Sn are certain type-BC
codominant elements w of Bn, each of which has a Hessenberg functionm = m(w) = mn · · ·m1m1 · · ·mn

defined bymi = max{wn, . . . , wi}. However, the resulting 1
n+2

(
2n+2
n+1

)
functions form a proper subset of the(

2n
n

)
valid Hessenberg functions corresponding to type-B or type-C Hessenberg varieties HB(m), HC(m).

Given BC-codominant w ∈ Bn and its Hessenberg function m = m(w), one may construct an n-element
type-BC unit interval order P = P (w), which is a decorated poset in the sense that a (possibly empty) subset
of its minimal elements are circled: i <P j if mi < j ≤ n for i = 1, . . . , n, with |wi| circled if wi < 0.

It would be nice to define type-BC analogs of the three symmetric functions (1) – (3) with the analog of (2)
providing combinatorial interpretations of type-BC trace evaluations and of a Bn-action on the cohomology
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of the type-B or type-C Hessenberg varieties. A natural type-BC analog of (1) uses type-BC induced trivial
characters [AK94] and type-BC monomial symmetric functions [Mac79],

ωY BC
q (C̃BC

w (q)) :=
∑

(λ,µ)`n

(ηqηq)
λ,µ(C̃BC

w (q))(mm)λ,µ. (4)

Alternatively, one may replace (mm)λ,µ with the plethystic variantmλ[x+y]mµ[x−y] defined in [BRW96].
A natural type-BC analog of (2) uses colorings of vertices of inc(P ) by nonzero integers

XBC
inc(P ),q :=

∑
λ

∑
κ

a proper
coloring of
type (λ,µ)

qascinc(P )(κ)(mm)λ,µ, (5)

where we allow κ(v) > 0 only for vertices of inc(P ) corresponding to elements of P which are not circled.
A natural analog of (3) uses actions of Bn on the cohomology of type-B or type-C Hessenberg varieties

chq(H
∗(HB(m))) :=

∑
j

ch(H2j(HB(m)))qj (6)

chq(H
∗(HC(m))) :=

∑
j

ch(H2j(HC(m)))qj . (7)

By [Ska21] the equalities ωY BC
q (C̃BC

w (q)) = ωXBC
inc(P ),q hold when q = 1. The research team plans to study

the symmetric functions (6) and (7) and to relate these to (4) and (5).

Cell closures for Hessenberg varieties
Group Leader: Julianna Tymoczko; Group Members: Per Alexandersson, Laura Colmenarejo, Sean Griffin,
Greta Panova, Meesue Yoo.

Let GLn(C) be the group of n × n invertible matrices with complex entries and B ⊆ GLn(C) be the
subgroup of upper-triangular matrices. The flag variety is the quotient GLn(C)/B which can be described
equivalently as nested subspaces

V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Cn

where each Vi is an i-dimensional subspace. The correspondence between the cosets gB and nested subspaces
V• is obtained by taking the span of the first i columns of g as the subspace Vi for each i. Using a variation
of Gaussian elimination on the columns, we can also represent each flag uniquely as a permutation matrix w
plus a matrix Nw that is nonzero only in entries that are both above and to the left of ones in the permutation
w. This process chooses a specific representative of each Schubert cell Cw = BwB/B.

Hessenberg varieties are parametrized by two objects: an n × n matrix X and a Hessenberg function
h : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that h is

• nondecreasing: h(i) ≥ h(i− 1) for all i ≥ 2 and

• upper-triangular: h(i) ≥ i for all i.

The Hessenberg variety is defined as

Hess(X,h) = {V• |XVi ⊆ Vh(i) for all i}.

We know a huge amount about the geometry and topology of the closures of Schubert cells including
that their boundary is a union of other Schubert cells, the partial order determined by this closure—called
the Bruhat order—is also characterized combinatorially by whether one permutation appears as a subword
of another, whether the closure of a Schubert cell is singular is determined by whether the corresponding
partition contains certain patterns, and what kind of singularity is also determined by permutation patterns,
and so on.
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In this project, our goal was to generalize these kinds of results in classical Schubert calculus to Hes-
senberg varieties in the case when the Hessenberg function is h(i) = min(i + 1, n), and X is a nilpotent
matrix.

Cells for X nilpotent and h(i) = min(i + 1, n). Hessenberg varieties have a well-known paving by
affines that can be expressed as an intersection with (carefully chosen) Schubert cells [Tym06]. However,
very little is known about the closures or singularities of the pieces of these pavings.

Observation 2. We refer to the pieces of the affine paving as Hessenberg Schubert cells. During the group
sessions, we found a bijection between Hessenberg Schubert cells in the nilpotent case and rook walks in a
multidimensional chess board. More concretely, if the Jordan blocks of X have sizes λ = (λ1, . . . , λ`) then
the cells correspond to rook walks in a λ1 × λ2 × · · · × λ` board. For instance, if we have two Jordan blocks
of the same size, it corresponds to the rook walks enumerated in A051708 in the OEIS.

For 2-row Springer fibers, Goldwasser, Sun, and the fourth author [GST] have draft results showing that
the cells can be described using noncrossing matchings, such that the cell closures correspond to certain
unnestings of the matchings. With other coauthors, they have partially extended this to 3-row Springer fibers.

Our BIRS project group investigated the following question in the particular case when X is nilpotent
and h(i) = min(i+ 1, n).

Question 3. Can we characterize the cell closures for Hessenberg varieties for particular X and h? What
about the intersections of the components? What combinatorial parametrization of the cells are most useful?

Let X be the nilpotent matrix defined by Xei = ei−1 for i /∈ {1, 1 +λ1, . . . , 1 +λ1 + · · ·+λ`(λ)−1} and
Xei = 0 otherwise. We made several observations following some computational experiments. We record
them here:

• The intersection of Schubert cellCw with our Hessenberg varietyHess(X,h) is non-empty if and only
for each i /∈ {1, 1 + λ1, . . . , 1 + λ1 + · · ·+ λ`(λ)}

if w−1(i) < w−1(i− 1) then w−1(i− 1) = w−1(i) + 1.

• In particular, if w is a shuffle of

{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , {1 + λ1 + · · ·+ λ`(λ)−1, . . . , λ1 + · · ·+ λ`},

then Cw intersects the Hessenberg variety.

Irreducible components for the 2-row rectangular nilpotent case. A variety is equidimensional if
all of its irreducible components are the same dimension, which must equal the dimension of the variety.
It is well known [Spa76] that Springer fibers are equidimensional and their irreducible components are in
bijection with standard Young tableaux.

Unlike with Springer fibers, Hessenberg varieties are not always equidimensional. A complete list of
equidimensional Hessenberg varieties or condition for Hessenberg varieties to be equidimensional is not
currently known.

Using a Sagemath computation, we found Hessenberg varieties that are not equidimensional when h(i) =
i+ 1 for i < n and X is nilpotent. Moreover, we checked the following properties ofHess(X,h).

Observation 4. Let X be a nilpotent matrix whose Jordan type is rectangular of shape (k, k) where n = 2k,
and let h(i) = min(i+ 1, n).

1. For k = 2, the irreducible components of Hess(X,h) are dimensions 4 and 3. For k = 3, the
irreducible components are dimensions 7, 6, 6, 6. These are surprising results since they are among the
simplest Hessenberg varieties that are not Springer fibers (which are known to be equidimensional).

2. Nonetheless for k = 2, both irreducible components are Cohen-Macaulay.

The observations above lead us to the following questions.
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Question 5. Are the irreducible components of Hess(X,h) always codimension at most 1 in the case of X
nilpotent of Jordan type (k, k) and Hessenberg function h(i) = min(i+ 1, n)?

Question 6. In the case above, are all irreducible components ofHess(X,h) Cohen-Macaulay?

To elaborate on the case k = 2, both irreducible componentsHess(X,h) intersect the big open subspace
of the flag variety associated with the longest permutation:

Uw0
=




1 0 0 0
x21 1 0 0
x31 x32 1 0
x41 x42 x43 1


 .

On this open subset, the 4-dimensional component satisfies the equations x21x32 − x31 + x42 = 0 and
x21x42 − x41 = 0 while the 3-dimensional component satisfies three equations x21 = x41 = x43 = 0.

Combinatorics of Theta operators
Group Leader: Michele D’Adderio; Group Members: JiSun Huh, Philippe Nadeau, Anne Schilling, George
Seelinger, Andy Wilson.

Background and open problems. The Theta operators Θf (where f is any symmetric function) were
introduced in [DIVW21] and they already proved to be an important ingredient in the theory of plethystic
operators and Macdonald polynomials, e.g. by providing a closed conjectural formula for the Frobenius char-
acteristic of Sn diagonal coinvariants with two sets of commuting variables and two sets of anticommuting
variables [DIVW21], and by enabling a proof of the compositional Delta conjecture [DM22].

A closer study of these operators led to the following conjectural formula [DIL+22]:

∆e1Θen−1
1

e1

∣∣∣
t=1

=
∑

T∈RTT0(1n)

qinv(T )xT (8)

where RTT0(1n) are certain rooted tiered trees. This is in fact a particular case of a more general conjecture:
see [DIL+22]*Conjecture 6.4.

While proving the full (8) might be an ambitious problem, the following consequence might be more
tractable (certainly very intriguing).

Problem 7. Show that the right hand side of (8) is a symmetric function.

Remark 8. 1) Notice that in [DIL+22] a similar formula is proved for Θen−1
1

e1

∣∣∣
t=1

, whose coefficients in
the monomial expansion are known to be Kac polynomials of dandelion quivers.

2) In similar situations (e.g. in the Delta conjecture) the symmetry is proved by showing that the given
formula is a positive sum of known symmetric functions (e.g. LLT in the Delta case). Notice also that the
whole symmetric function seems to be Schur positive, even before the specialization t = 1, leaving the
natural (and possibly related) open problem:

Problem 9. Find a statistic tstat on rooted tiered trees such that

∆e1Θen−1
1

e1 =
∑

T∈RTT0(1n)

qinv(T )ttstat(T )xT .

3) In the remarkable [IR22], the following formula is proved:

∆e1Θen−1
1

e1

∣∣∣
t=1

=
∑

p∈PF∅
(1n)

qarea(p)eη(p). (9)

Again, this is in fact a special case of a much more general result: see [IR22, Theorem 1.1]. It should be also
noticed that before the specialization t = 1 we do not have e-positivity in general, though it seems to hold in
the above case for t = t+ 1.

Despite being just a combination of (8) and (9), it is worth stating the following:
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Problem 10. Prove directly/combinatorially the equality of the right hand side of (8) and the right hand side
of (9).

Summary of group discussion. During the discussion group in Banff, first of all we talked about the
general setting of the problems, with the relevant background. Then we focused our attention to Problem 10.
More specifically, we looked at two special cases: the specialization at q = 0, and the scalar product with en.

For the specialization at q = 0 we first looked at what the right hand side of (9) gives in this case, and
we tried to find a recursion that would prove the expansion in the elementary symmetric functions. Then
we looked at what the right hand side of (8) gives, and we tried to find an expansion in terms of Gessel
fundamental quasisymmetric functions. In this case it seems already problematic to characterize the trees
with zero inversions. In both cases our progress was only partial.

For the scalar product with en, the identity translates into an identity between generating functions of
rooted labelled forests and parking functions. During the discussion group we studied a known result in the
literature providing a bijective proof of this special case, with the idea of trying to extend this known bijection
to get more informations about our problem. Also in this last case our progress was only partial, mainly for
lack of time.

LLT polynomials, generalized Catalan combinatorics, and multiparam-
eter extensions
Group Leader: François Bergeron; Group Members: Timothy Chow, Samantha Dahlberg, Jennifer Morse,
Foster Tom, Alexander Woo.

The plan of our group was to explore the algebraic and geometric interplay between vertical strip LLT-
polynomials and generalized Catalan combinatorics. On the combinatorial side, the objects considered are
sets of partitions contained in a fixed “triangular” partition, as well as their decorated versions (a.k.a. parking
functions). These correspond to the “under any line” paths defined in [BHM+21], occurring in conjunction
with the exploration of Schiffmanns algebra of operators and extensions. We also intend to study multipa-
rameter versions of the resulting enumerations, that involve LLT-polynomials.

During this week, the group first reviewed the problem, including definitions, key examples, and other
foundational material to establish a common vocabulary and understanding. Then the group discussed various
speculative approaches that at this point remain imprecise. The bulk of the rest of our work was an exploration
of whether we could generalize the formulas of Negut [Neg14] so that they hold for many parameters. The
group continues to explore this idea without definitive conclusions (yet).
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