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Definition (Supercritical family)

An update family U is supercritical if a finite set Z ⊂ Z2 of infections
can infect an infinite one.

Theorem (Bollobás–Smith–Uzzell’15)

If U is supercritical, then pc = 0 and τ = p−Θ(1).

Definition (Stable directions)

A direction u ∈ S1 is unstable if there exists U ∈ U contained in

U ⊂ Hu = {x ∈ Z2 : 〈x , u〉 < 0}.

Theorem (BSU15)

An update family U is supercritical iff there is an open semi-circle of
unstable directions.
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An update family is critical if there is no unstable open semi-circle, but
there exists a semi-circle with finitely many stable directions.

Theorem (BSU15)

If U is critical, then pc = 0 and τ = exp(p−Θ(1)).

To be continued...
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Definition (Subcritical family)

An update family is subcritical if every semi-circle contains infinitely
many stable directions. It is trivial subcritical if all directions are stable.

Theorem (Balister–Bollobás–Przykucki–Smith’16)

If U is subcritical, then pc > 0. Moreover, pc = 1 iff it is trivial
subcritical.

Conjecture (Schonmann’92,H’21)

For all U and p > pc, τ has an exponential moment.

Theorem (H’22)

For all U supported in a half-space the conjecture holds.
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Bootstrap percolation
Geometry: Z2.

State space: Ω = {◦, •}Z2
(◦/• =healthy/infected).

Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.

Update family U 6= ∅: finite set of update rules.

In U-bootstrap percolation infections never heal and at each step
we infect all x ∈ Z2 such that

∃U ∈ U , ∀u ∈ U : x + u is • .

Infection time: τ = inf{t ∈ N : 0 is •} ∈ N ∪ {∞}.
Density of •: p ∈ [0, 1].

Initial distribution: π = Ber(p)⊗Z
2
.

Critical probability: pc = inf{p ∈ [0, 1] : π(τ =∞) = 0}.
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State space: Ω = {◦, •}Z2
(◦/• =healthy/infected).

Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.

Update family U 6= ∅: finite set of update rules.

In U-KCM infections can heal and at rate 1 we update to Ber(p)
all x ∈ Z2 such that

∃U ∈ U , ∀u ∈ U : x + u is • .

Infection time: τ = inf{t ∈ R+ : 0 is •} ∈ R+ ∪ {∞}.
Density of •: p ∈ [0, 1].

Initial and stationary distribution: π = Ber(p)⊗Z
2
.

Critical probability: pc = inf{p ∈ [0, 1] : Pπ(τ =∞) = 0}.
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Theorem (Cancrini–Martinelli–Roberto–Toninelli’08)

For any U the following are equivalent:

π(τ =∞) = 0 in U-bootstrap percolation;

Pπ(τ =∞) = 0 in the U-KCM;

0 is a simple eigenvalue of the generator of the U-KCM;

the U-KCM is ergodic;

the U-KCM is mixing.

Theorem (CMRT08,H21)

For any U the following are equivalent:

in U-bootstrap percolation τ has an exponential moment;

in U-KCM τ has an exponential moment;

Trel <∞ for the U-KCM.

Ivailo Hartarsky Bootstrap and KCM
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Theorem (CMRT08,Shapira’20)

For the 1-neighbour KCM we have

Trel =


Θ(p−3) d = 1,

p−2+o(1) d = 2,

Θ(p−2) d > 3.
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Theorem (CMRT08,Shapira’20)

For the 1-neighbour KCM we have

Trel =


Θ(p−3) d = 1,

p−2+o(1) d = 2,

Θ(p−2) d > 3.

Proof.
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Lemma (Mauch–Jackle’99, Sollich–Evans’99,
Chung–Diaconis–Graham’01)

Starting from an infection at 0 and using at most n infections
simultaneously, we can bring an infection only as far as 2n−1 − 1.
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Critical

East

Lemma (Mauch–Jackle’99, Sollich–Evans’99,
Chung–Diaconis–Graham’01)

Starting from an infection at 0 and using at most n infections
simultaneously, we can bring an infection only as far as 2n−1 − 1.

Theorem (Aldous–Diaconis’02, CMRT08)

Trel = exp

(
log2(1/p)

2 log 2 + o(1)

)
.
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Lemma (Two-block Poincaré inequality of CMRT)

Let X1 and X2 be two independent RV valued in the finite sets X1,X2.
Let H ⊂ X1 with p := P(X1 ∈ H) > 0. Then for any f : X1,X2 → R

Var(f ) 6
1

1−
√

1− p
E[Var(f |X2) + 1X1∈H Var(f |X1)]
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Lemma (Two-block Poincaré inequality of CMRT)

Let X1 and X2 be two independent RV valued in the finite sets X1,X2.
Let H ⊂ X1 with p := P(X1 ∈ H) > 0. Then for any f : X1,X2 → R

Var(f ) 6
1

1−
√

1− p
E[Var(f |X2) + 1X1∈H Var(f |X1)]

Idea: e−1/Trel = limt→∞(dTV(µt , π))1/t .

Probabilistic proof

Two chains couple as soon as we update X1 so that H occurs and
then X2. There are bN/2c attempted updates at X2 preceded by an
update at X1, where N ∼ P(t). Each succeeds with probability p, so

dTV(µt , π) 6 P(not coupled at time t) 6 E
[
(1− p)bN/2c

]
≈ E

[(√
1− p

)N]
= exp

(
−t
(

1−
√

1− p
))

.
Ivailo Hartarsky Bootstrap and KCM
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Lemma (Two-block Poincaré inequality of CMRT)
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1−
√
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√
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Supercritical KCM
Definition (Rooted)

A supercritical family U is rooted if there exist two non-opposite stable
directions and unrooted otherwise.

Theorem (Martinelli–Toninelli’19, Martinelli–Morris–Toninelli’19,
Marêché’20, Marêché–Martinelli–Toninelli’20)

For a supercritical KCM we have

Trel = p−Θ(1) if U is unrooted;

Trel = exp(Θ(log2(1/p))) if U is rooted.
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2-neighbour KCM

Theorem (H–Martinelli–Toninelli’20+)

For the 2-neighbour model

τ = exp

(
π2 + o(1)

9p

)
=
(
τBP

)2+o(1)
.

Theorem (MT19, MMT19)

For critical U-KCM we have τ = exp(p−Θ(1)).
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.

Theorem (MT19, MMT19)

For critical U-KCM we have τ = exp(p−Θ(1)).
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Higher dimensions

Theorem (3× Balister–Bollobás–Morris–Smith’22)

Bootstrap percolation universality statements for supercritical and
subcritical families extend to higher dimensions modulo adapting the
definition as needed. For every critical family there exists an integer
1 6 r 6 d − 1 such that

τ = exp◦r
(
p−Θ(1)

)
.
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Higher dimensions
Theorem (3× Balister–Bollobás–Morris–Smith’22)

Bootstrap percolation universality statements for supercritical and
subcritical families extend to higher dimensions modulo adapting the
definition as needed. For every critical family there exists an integer
1 6 r 6 d − 1 such that

τ = exp◦r
(
p−Θ(1)

)
.

For KCM the analogous universality result (with a rooted/unrooted
distinction for supercritical families) is not known. More precisely, the
upper bounds for supercritical and critical families are still missing.
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Open problems

Establish the KCM universality in higher dimensions.

Prove the sharpness of the phase transition of subcritical models,
even in 2 dimensions.

Determine or even conjecture which subcritical models exhibit a
continuous phase transition.

Prove anything about the behaviour of general subcritical KCM,
which is not witnessed in bootstrap percolation.

Find the asymptotics of τ starting from a product measure
different from the invariant one. Even for the 1-neighbour case
this is open when p is not close to 1.

Study universality: beyond Zd , in inhomogeneous settings, for
conservative KCM, for plaquette models, . . .
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Thank you.
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