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Let A be a symmetrizable generalized Cartan matrix.

This is essentially a Cartan matrix which is not positive
definite and which is either symmetric or can be symmetrized.

Let g = g(A) be a Kac–Moody algebra over Q with simple
roots α1, . . . , α`.

This is the most natural generalization to infinite dimensions
of a finite dimensional simple Lie algebra.

The Lie algebra g can be defined using generators and
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Let ∆ denote the roots of g, ∆± the positive (respectively
negative) roots.

The category of representations that are most useful for
constructing groups are the integrable highest weight modules.

Let λ be a dominant integral weight.

Let V = V λ be an integrable highest weight g-module with
highest weight λ and defining homomorphism
ρ : g→ End(V ).

Let VZ = V λ
Z be a Z-form of V λ.

This is constructed from a Z-form of the universal enveloping
algebra.
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Minimal Kac-Moody Groups

The minimal representation-theoretic Kac–Moody group
G(Q) is the group

G(Q) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Q〉

where

ei is a choice of root vector corresponding to the simple root
αi.

fi is a choice of root vector corresponding to the root −αi.

The subgroup of G(Q) of Z-points is the subgroup

G(Z) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Z〉.

We define the Chevalley subgroup of G(Q) to be

Γ(Z) = {g ∈ G(Q) | g(VZ) ⊆ VZ}.



Minimal Kac-Moody Groups
The minimal representation-theoretic Kac–Moody group
G(Q) is the group

G(Q) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Q〉

where

ei is a choice of root vector corresponding to the simple root
αi.

fi is a choice of root vector corresponding to the root −αi.

The subgroup of G(Q) of Z-points is the subgroup

G(Z) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Z〉.

We define the Chevalley subgroup of G(Q) to be

Γ(Z) = {g ∈ G(Q) | g(VZ) ⊆ VZ}.



Minimal Kac-Moody Groups
The minimal representation-theoretic Kac–Moody group
G(Q) is the group

G(Q) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Q〉

where

ei is a choice of root vector corresponding to the simple root
αi.

fi is a choice of root vector corresponding to the root −αi.

The subgroup of G(Q) of Z-points is the subgroup

G(Z) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Z〉.

We define the Chevalley subgroup of G(Q) to be

Γ(Z) = {g ∈ G(Q) | g(VZ) ⊆ VZ}.



Minimal Kac-Moody Groups
The minimal representation-theoretic Kac–Moody group
G(Q) is the group

G(Q) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Q〉

where

ei is a choice of root vector corresponding to the simple root
αi.

fi is a choice of root vector corresponding to the root −αi.

The subgroup of G(Q) of Z-points is the subgroup

G(Z) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Z〉.

We define the Chevalley subgroup of G(Q) to be

Γ(Z) = {g ∈ G(Q) | g(VZ) ⊆ VZ}.



Minimal Kac-Moody Groups
The minimal representation-theoretic Kac–Moody group
G(Q) is the group

G(Q) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Q〉

where

ei is a choice of root vector corresponding to the simple root
αi.

fi is a choice of root vector corresponding to the root −αi.

The subgroup of G(Q) of Z-points is the subgroup

G(Z) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Z〉.

We define the Chevalley subgroup of G(Q) to be

Γ(Z) = {g ∈ G(Q) | g(VZ) ⊆ VZ}.



Minimal Kac-Moody Groups
The minimal representation-theoretic Kac–Moody group
G(Q) is the group

G(Q) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Q〉

where

ei is a choice of root vector corresponding to the simple root
αi.

fi is a choice of root vector corresponding to the root −αi.

The subgroup of G(Q) of Z-points is the subgroup

G(Z) = 〈exp(tρ(ei)), exp(tρ(fi)) | t ∈ Z〉.

We define the Chevalley subgroup of G(Q) to be

Γ(Z) = {g ∈ G(Q) | g(VZ) ⊆ VZ}.



Statement of Problem

This work concerns the question of integrality of G(Q).

By this we mean the following.

Is G(Z) = Γ(Z)?

This equality holds for finite dimensional semisimple Lie
groups.

This question has not been answered for Kac–Moody groups
and remains elusive.

For Kac–Moody groups, is easy to show that G(Z) ⊆ Γ(Z).
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of G(Q), where α is a real root.

This is a root with positive norm squared.
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As a first step towards proving integrality of U(Q), we prove
integrality of ‘inversion subgroups’ of U(Q).

Let W denote the Weyl group of g.

For w ∈W , the inversion subgroup U(w) is defined as

U(w) = 〈Uβ | β ∈ Φ(w)〉.

Φ(w) = {β ∈ ∆+ | w−1β ∈ ∆−} = ∆+ ∩ w(∆−) ⊂ ∆re
+ .

The group U(w) is generated by finitely many real root groups.
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Main Theorems

Our main result is the following.

Theorem
For each w ∈W and v(w) ∈ U(w), if v(w)wvλ ∈ V λ

Z , then
v(w) ∈ U(Z).

This allows us to prove the following.

Theorem
Let H be an abelian subgroup of U(Q) and u ∈ H be such that
uV λ

Z ⊆ V λ
Z , then u ∈ H ∩ U(Z).

When g has rank 2 and has a symmetric generalized Cartan
matrix, this gives integrality of commutative subgroups Ui of
U(Q) for i = 1, 2.

Where each Ui is generated by ‘half’ the positive real roots
and U(Q) = U1∗ U2.
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Conclusion

Unipotent subgroups play an important role in the study of the
structure and representation theory of Kac–Moody groups.

They are constituents of group decompositions such as
Iwasawa and Birkhoff decompositions, which provide
important tools for studying Kac–Moody groups and their
applications.

Thus integrality of U(Q) would be an important step towards
proving integrality of G(Q).

Unfortunately our current methods do not extend to a proof
of integrality of U(Q), though we conjecture integrality to
hold for U(Q), or perhaps a completion of U(Q).
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