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1 Overview of the Field
Classical results and long-standing problems concerning algebraic groups over global fields are the foun-
dation of the arithmetic theory of algebraic groups, but this workshop also considered more recent de-
velopments that extend local-global principles, finiteness results, and other aspects of the classical theory
to algebraic groups over more general fields of arithmetic nature. This includes function fields of curves
over local fields or global fields, and, in some cases, even arbitrary finitely generated fields. All aspects
of the subject have close connections with number theory and arithmetic geometry, and many results have
important applications in other areas, from group theory to geometry and combinatorics.

Algebraic groups over global fields
The origins of the arithmetic theory of algebraic groups can be traced back to the analysis of finite-index
subgroups of SL2(Z) in connection with the classical theory of modular forms [Fricke, Klein, Poincaré]
and the work of Gauss, Hermite, and later Minkowski and Hasse, on the theory of integral and rational
quadratic forms. These results subsequently developed into the theory of arithmetic and S-arithmetic groups
and the general local-global approach that has been successfully used in many situations. The theory was
complemented by approximation results and results on the structure of the groups of rational points of
algebraic groups over global fields. It has been an area of active research for over 50 years, with foundations
laid by Borel, Harish-Chandra, and Serre in the 1960s, and with many new applications discovered in the
last decade. Nevertheless, some critical question in the theory remain open, and one of the objectives of the
workshop was to discuss the recent progress, and look for new approaches. Some specific topics that were
discussed in the workshop include:

Congruence Subgroup Problem, its generalizations and applications. While it was known already to
Fricke and Klein that SL2(Z) has numerous finite-index subgroups that do not contain any congruence
subgroups, it was not proved until the 1960s that if n > 3, then every infinite, normal subgroup of SLn(Z)
has finite index and contains a suitable congruence subgroup. This solution of the Congruence Subgroup
Problem (CSP) for SLn(Z) was followed by a period of very active research that generalized the result to
S-arithmetic subgroups of many other simple algebraic groups over global fields. However, some important
cases still remain open; in particular, the CSP has not been solved for arithmetic subgroups of the group
G = SL1,D of norm 1 elements in a central divisionK-algebraD — even whenD is a quaternion algebra).
In 2017, G. Prasad and A. Rapinchuk proposed a new approach that provides a simpler and shorter proof of
many of the known cases, and one can expect this approach to lead to further progress on this long-standing
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problem. A few years earlier, in 2013, Y. Shalom and G. Willis proposed a generalization of the CSP,
by formulating a precise conjecture on the homomorphisms of S-arithmetic groups into general locally
compact groups. Very recently, the techniques developed to investigate the CSP were used by N. Avni,
A. Lubotzky, and C. Meiri to establish a new form of rigidity, which can be called first-order rigidity: if
G is a connected, isotropic, almost-simple algebraic group over Q, such that rankRG ≥ 2, and Λ is any
finitely generated group that satisfies precisely the same first-order axioms as some finite-index subgroup Γ
of G(Z), then Λ is isomorphic to Γ.

Bounded generation. An abstract group is said to be “boundedly generated” if it is a product of finitely
many cyclic subgroups. This seemingly simple property has surprisingly strong and diverse consequences
for abstract groups, and the implications are particularly striking for S-arithmetic groups. For example,
an abstract boundedly generated group that satisfies one additional natural condition is known to have
only finitely many inequivalent irreducible complex representations in each dimension. (This is a form of
homomorphism rigidity.) For an S-arithmetic subgroup of an absolutely almost simple simply connected
algebraic group, bounded generation implies the congruence subgroup property. And bounded generation
has been used to estimate Kazhdan constants and to analyze the actions of arithmetic groups; it also played
a significant role in the works of Shalom-Willis mentioned above. These applications illustrate that proving
bounded generation of S-arithmetic groups is an important problem, with far-reaching consequences. In
1983, D. Carter and G. Keller proved that SLn(O) has bounded generation for any n > 3 and any ring of
algebraic integers O. Since then, the list of S-arithmetic groups known to have bounded generation has
been steadily increasing — with important results obtained in the last few years.

A very important development in this area occurred in the year prior to the workshop. In a remarkable
paper by Corvaja, A. Rapinchuk, Ren and Zannier, it was shown that if a linear group over a field of
characteristic zero is boundedly generated by semi-simple elements, it must be virtually solvable. This
implies that infinite S-arithmetic subgroups of absolutely almost simple anisotropic algebraic groups over
number fields are never boundedly generated. A whole series of other “boundedness” conditions are also
being investigated (and applied). For example, Chevalley groups over the rings of integers in function fields
are not boundedly generated, but in the past year it was shown that such groups in the higher rank case
possess bounded elementary generation, that is, can be written as products of finitely many root subgroups.
Another related condition is “bounded generation by the conjugacy class.” (This means that the normal
subgroup generated by an arbitrary element is a product of finitely many copies of the conjugacy class of
that element and its inverse.) While this property is known, for example, for SLn(O) (where n > 3 and O
is a ring of algebraic integers), its general consequences have not been explored yet. For example, it is not
known whether this property for an S-arithmetic subgroup of an absolutely almost simple simply connected
algebraic group implies the congruence subgroup property.

New local-global principles. Local-global principles are at the heart of the arithmetic theory of algebraic
groups: they provide a uniform perspective on the analysis of many phenomena, and serve as an important
technical tool in the investigation of others. They are often expressed in terms of the injectivity of certain
global-to-local maps for Galois cohomology, but others are of a different nature. In the last decade, a
number of new local-global principles have been established. In particular, while the norm principle for
finite extensions of global fields has been investigated for a long time, an understanding of the local-global
principle for the products of norms from several extensions was achieved only (relatively) recently. This
is known as the multinorm principle, and, surprisingly, it often holds when the usual norm principle fails
for each of the individual extensions. This principle was used in the investigation of the Margulis-Platonov
conjecture for anisotropic inner forms of type An, and also in the analysis of another local-global principle
that governs the existence of an embedding of an etale algebra with an involutive automorphism into a
simple algebra with involution. This embedding principle is important for understanding the maximal tori
of simple groups of classical types over global fields. The genus of a given simple algebraic group G is the
collection of isomorphism classes of simple groups with the same maximal tori as G, and it is reasonable to
hope that these results will make it possible to determine the cardinality of the genus of any simple group
of classical type. (This would have applications to the analysis of isospectral and length-commensurable
locally symmetric spaces in differential geometry.) In addition, the multinorm principle can be stated as the
vanishing of the Tate-Shafarevich group of an associated ”multinorm torus,” and this torus can be realized
as a maximal torus of an isotropic inner form of type An, so a natural generalization would provide useful
conditions that ensure the triviality of the Tate-Shafarevich group of maximal tori in other simple isotropic
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algebraic groups of classical types.

Algebraic groups over more general fields
Results obtained in the last decade have lead to the realization that many classical results over global fields
should be considered in the broader context of finitely generated fields. For example, the genus is expected
to be finite over arbitrary finitely generated fields, and this has already been established for inner forms of
type An (and also for the related notion of genus of a finite-dimensional division algebra). Very recently,
the finiteness of the genus was established for the spinor groups of quadratic forms and some other groups
of classical types over 2-dimensional arithmetic fields. The general case, which remains wide open, is the
subject of active investigation.

It was discovered that the study of the genus of a simple algebraic groupG over a finitely generated field
K is closely related to the problem of analyzing the K-forms of G that have good reduction at a divisorial
set of places V of K. This is a totally new area of research at the meeting ground of the theory of algebraic
groups and arithmetic geometry. Previously, simple algebraic groups over Q with good reduction at all
primes were considered by B.H. Gross, but more general situations have never been analyzed. In addition
to the finiteness of the genus, another important consequence of the finiteness of the number of forms with
good reduction is the properness of the map H1(K,G) →

∏
v∈V H

1(Kv, G) for the Galois cohomology
of the adjoint group G. (Over global fields, the properness is known for all groups.)

Yet another important finiteness property in the classical theory is the finiteness of the class number of
a global field; its generalization to algebraic groups states that for any algebraic group over a global field,
the number of double cosets of the adele group modulo its subgroups of integral and principal adeles is
finite (and the analog for regular schemes of finite type over Z or its localizations). One can introduce adele
groups for algebraic groups over any field with respect to any set of discrete valuations subject to some mild
assumptions, and then formulate a condition that naturally generalizes both finiteness results. The question
is when does this condition hold? At this point, the affirmative answer is known only for reductive split
groups over the function fields of curves over finitely generated fields with respect to the set of geometric
places. The argument uses a variant of strong approximation for split groups. While strong approximation
has been fully investigated for the groups over global fields, its analysis for anisotropic groups over the
function fields of curves over general fields is only beginning.

Theorems on homomorphism rigidity and the congruence subgroup problem have been proved for split
simple groups over rings other than the rings of S-integers of global fields. (For example, there is now
a fairly explicit description of all finite-dimensional complex representations of the group SLn(Z[X]).)
These results need to be extended to more general isotropic groups; in particular, this work is expected to
give a proof of the Borel-Tits conjecture on abstract homomorphisms of the groups of rational points of
simple isotropic groups. And there is the following very general conjecture of Prasad-Rapinchuk: if G is
an absolutely almost simple algebraic group over an arbitrary field K, then any finite quotient of G(K) is
solvable.

2 Presentation Highlights
Abid Ali (Rutgers University)
Integrality of unipotent subgroups of Kac-Moody groups

Let G be a Kac-Moody group over Q. There are several approaches to defining its “Z-form” G(Z),
including the functorial definition proposed by Tits, and in most cases it is unknown whether different
definitions yield isomorphic groups. In this talk the speaker discussed some recent progress on finding a
relationship between different Z-forms of G. The talk was based on a joint work with Lisa Carbone (Rut-
gers), Dongwen Liu (Zhejiang) and Scott S Murray (Toronto) which generalizes Chevalley’s fundamental
theorem on the integrality for finite dimensional semisimple Lie groups.

Nir Avni (Northwestern University)
Distributions of words in unitary groups

Let G be a compact group, and let w be a nontrivial word in the free group Fr, so w defines a function
from Gr to G. Let µw be the image of Haar measure under this map. (Thus, µw is the distribution of a
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random value of w when the variables are i.i.d.) The talk presented recent work (and provided historical
background) on the Fourier coefficients of this measure in the case where G is a unitary group Ud.

For each character χ of Ud, the corresponding Fourier coefficient of the measure µw is the expectation
Eχ
(
w(x1, . . . , xr)

)
. The maximum value of χ

(
w(x1, . . . , xr)

)
is χ(1), and it is conjectured that the

expected value is substantially smaller than this: ∀w 6= 1, ∃ε > 0, ∀d, ∀χ, Eχ
(
w(x1, . . . , xr)

)
< χ(1)1−ε.

This talk was based on a joint work with Itay Glazer, which proved that the conjecture is true for the
fundamental representations of Ud. In more elementary terms, this means that the expected value of the
kth coefficient of the characteristic polynomial of w(x1, . . . , xr) is bounded by

(
d
k

)1−ε
.

Rony Bitan (Afeka Academic College)
τ (G) = τ (G1): An equality of Tamagawa numbers

Given a smooth, geometrically connected and projective curve C defined over a finite field k, let K =
k(C) be the function field of rational functions on C. The Tamagawa number τ(G) of a semisimple K-
group G is defined as the covolume of the discrete group G(K) (embedded diagonally) in the adelic group
G(A) with respect to the Tamagawa measure. The Weil conjecture, recently proved by Gaitsgory and Lurie,
states that if G is simply connected then τ(G) = 1.

This talk was based on a work in progress (joint with Gunter Harder, Ralf Kohl and Claudia Schoemann)
whose aim is to prove, without relying on the Weil conjecture, the following fact: Let G be a quasi-split
inner form of a split semisimple and simply-connected K-group G1. Then τ(G) = τ(G1). This theorem
can serve as a part of an alternative proof to the Weil conjecture.

Mikhail Borovoi (Tel Aviv University)
Galois cohomology of a real reductive group

The goal of this talk was to describe the first Galois cohomology setH1(R,G) of a connected reductive
group G over the field of real numbers R by the method of Borel and Serre and by the method of Kac. The
talk was based on the recent preprints [6] and [7].

Vladimir Chernousov (University of Alberta)
New evidence that cohomological invariants might determine Albert algebras/groups
of type F4 uniquely up to isomorphism

In this talk, based on a joint work with A. Lourdeaux and A. Pianzola, the speaker provided a sketch
of a proof that Albert algebras arising from the first Tits construction are determined uniquely up to an
isomorphism by the Rost cohomological invariant g3.

Uriya First (University of Haifa)
Sheaves on simplicial complexes and 2-query locally testable codes

This talk was based on joint work with Tali Kaufman [12], which shows that if arithmetic groups with
certain properties exist, then one can construct good 2-query locally testable codes. The device that enables
this is a novel notion of sheaves on simplicial complexes. The latter are typically taken to be quotients of
an affine building by an arithmetic group, e.g., Ramanujan complexes.

Julia Hartmann (University of Pennsylvania)
Bounding cohomology classes over semi global fields

This talk was based on a joint work with David Harbater and Daniel Krashen [14]. It provides a uniform
bound for the index of cohomology classes in Hi(F, µ⊗i−1` ) when F is a semiglobal field (i.e., a one
variable function field over a complete discretely valued field K). The bound is given in terms of the
analogous data for the residue field of K and its finitely generated extensions of transcendence degree at
most one. An explicit bound is obtained in example cases when the information on the residue field is
known.
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Chen Meiri (Technion)
Conjugacy width in higher rank orthogonal groups

It is known that conjugacy classes of elements in orthogonal groups over number fields have finite
width. (This means that every element of the group is a product of a bounded number of elements of the
conjugacy class.) This talk was based on joint work with Nir Avni which presents evidence that the same is
true for conjugacy classes of elements in higher rank arithmetic groups of orthogonal type. It is shown that
the question whether a conjugacy class of such a group has a finite width can be viewed as a congruence
subgroup problem on a non-standard saturated model of the group.

Alexander Merkurjev (UCLA)
Classification of special reductive groups

An algebraic groupG over a field F is called special if for every field extensionK/F allG-torsors (prin-
ciple homogeneousG-spaces) overK are trivial. Examples of special groups are special linear groups, gen-
eral linear groups, and symplectic groups. A. Grothendieck classified special groups over an algebraically
closed field. In 2016, M. Huruguen classified special reductive groups over arbitrary fields. This talk was
based on the recent preprint [18] where it is shown how to improve the classification given by Huruguen.

Raman Parimala (Emory University)
Pencils of quadrics and hyperellliptic curves

This talk discussed a weak Hasse principle for a smooth intersection of two quadrics in P5 and connec-
tions to period index questions for the associated hyperelliptic curves.

Eugene Plotkin (Bar Ilan University)
Bounded generation and commutator width of Chevalley groups and Kac-Moody
groups: function case

This talk was based on a recent joint work with B. Kunyavskii and N. Vavilov [17] which provides
new results on bounded elementary generation and bounded commutator width for Chevalley groups over
Dedekind rings of arithmetic type in positive characteristic. In particular, Chevalley groups of rank greater
than 1 over polynomial rings and Chevalley groups of arbitrary rank over Laurent polynomial rings (in
both cases the coefficients are taken from a finite field) are boundedly elementarily generated. The speaker
presented rather plausible explicit bounds and discussed applications to Kac-Moody groups and various
model theoretic consequences and certain conjectures which look quite tempting.

Igor Rapinchuk (Michigan State University)
Algebraic groups with good reduction and applications

Techniques involving reduction are very common in number theory and arithmetic geometry. In par-
ticular, elliptic curves and general abelian varieties having good reduction have been the subject of very
intensive investigations over the years. The purpose of this talk, based on joint papers with V. Chernousov
and A. Rapinchuk, was to report on recent work that focuses on good reduction in the context of reductive
linear algebraic groups over higher-dimensional fields.

Zinovy Reichstein (University of British Columbia)
Hilbert’s 13th Problem for algebraic groups

The algebraic form of Hilbert’s 13th Problem asks for the resolvent degree rd(n) of the general polyno-
mial f(x) = xn+a1x

n−1 + . . .+an of degree n, where a1, . . . , an are independent variables. Here rd(n)
is the minimal integer d such that every root of f(x) can be obtained in a finite number of steps, starting
with C(a1, . . . , an) and adjoining an algebraic function in ≤ d variables at each step. It is known that
rd(n) = 1 for every n ≤ 5. It is not known whether or not rd(n) is bounded as n tends to infinity; it is not
even known whether or not rd(n) > 1 for any n. Recently Farb and Wolfson defined the resolvent degree
rdk(G), where G is a finite group and k is a field of characteristic 0. In this setting rd(n) = rdC(Sn),
where Sn is the symmetric group on n letters and C is the field of complex numbers. This talk was based
on a recent preprint [21] which defines rdk(G) for any field k and any algebraic group G over k. Sur-
prisingly, Hilbert’s 13th Problem simplifies when G is connected. In particular, the speaker explained why
rdk(G) ≤ 5 for an arbitrary connected algebraic group G defined over an arbitrary field k.
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Jinbo Ren (Institute for Advanced Study)
Applications of Diophantine Approximation in Group Theory

An abstract group Γ has the property of “bounded generation” if it is equal to a product of finitely many
fixed cyclic groups. Being a purely combinatorial property of groups, bounded generation has a number
of interesting consequences and applications in different areas including Kazhdan’s constants computation,
semi-simple rigidity, the Margulis-Zimmer conjecture and the Serre’s congruence subgroup problem.

This talk was based on a recent joint work Corvaja, A. Rapinchuk and Zannier [11] where the following
result is proved: if a linear group Γ ⊂ GLn(K) over a fieldK of characteristic zero is boundedly generated
by semi-simple (diagonalizable) elements then it is virtually solvable. As a consequence, one obtains that
infinite S-arithmetic subgroups of absolutely almost simple anisotropic algebraic groups over number fields
are never boundedly generated. The proof relies on the subspace theorem (a far-reaching generalization of
Roth’s Fields medal work) from Diophantine approximation and properties of generic elements.

David J Saltman (Center for Communications Research - Princeton)
Cyclic Matters

This work was motivated by the problem of describing cyclic Galois extensions and differential crossed
product algebras in mixed characteristic, with the the goal of lifting from arbitrary characteristic p rings to
suitable characteristic 0 rings. The first step was the construction of Artin-Schreier like polynomials and
extensions in mixed characteristic, where the group acts by σ(x) = ρx+1 (ρp = 1). This leads to Azumaya
algebras A defined by xy − ρ yx = 1. Of course, a generalization to degrees higher than p is desirable.
This leads to an Albert like criterion for extending cyclic Galois extensions of rings and to the definition
and study of almost-cyclic Azumaya algebras, generalizing A above.

George Tomanov (Université Claude Bernard Lyon 1)
Actions of maximal tori on homogeneous spaces and applications to number theory

During the last decades long-standing conjectures in number theory have been reformulated and, sub-
sequently, some of them successfully solved using the homogeneous dynamics approach. The approach is
based on the description of the closures of orbits for the natural action of subgroupsH of an algebraic group
G on the homogeneous space G/Γ where Γ is an arithmetic subgroup of G. The closures of such orbits are
well-understood when H is unipotent and considerably less when H is a torus. This talk described some
recent results on the action of maximal (split or non-split) tori on G/Γ and related applications.

Charlotte Ure (University of Virginia)
Symbol Length in Brauer Groups of Elliptic Curves

Elements in the Brauer group of an elliptic curve E may be described as tensor products of symbol
algebras over the function field of E by the Merkurjev-Suslin Theorem. The symbol length is the smallest
number n so that every element in the Brauer group can be expressed as a tensor product of at most n
symbols. This talk was based on a recent joint work with Mateo Attanasio, Caroline Choi, and Andrei
Mandelshtam [1] which describes bounds on the symbol length of E. In particular, it is shown that the
symbol length in the prime torsion for a prime q of a CM elliptic curve over a number field is bounded
above by q + 1.

Kirill Zaynullin (University of Ottawa)
The canonical dimension of a semisimple group and the unimodular degree of a root
system

This talk was based on a recent preprint [27], which provides a short and elementary algorithm to
compute an upper bound for the canonical dimension of a split semisimple linear algebraic group. The key
tools are the classical Demazure formula for the characteristic map and the elementary properties of divided-
difference operators. Using this algorithm, one can confirm all previously known bounds by Karpenko and
Devyatov as well as produce new bounds (e.g., for adjoint simple groups of type F4 or E6, and for some
semisimple groups).
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3 Open Problems
The workshop featured a problem session on Tuesday evening, during which 7 open problems were dis-
cussed. We are very grateful to Asher Auel for taking detailed notes from the problem session.

Problem 1 (Andrei Rapinchuk). Groups with bounded generation.

An abstract group Γ has bounded generation (BG ) if there exist γ1, . . . , γd ∈ Γ with Γ = 〈γ1〉 · · · 〈γd〉,
which means Γ = { γn1

1 γn2
2 · · · γ

nd

d | n1, n2, . . . , nd ∈ Z }.
What are some examples? Finitely generated nilpotent groups. What else? Carter and Keller showed

that Γ = SLn(Z) for n ≥ 3 has BG, see [8]. This fact can be rephrased in the terminology of elementary
linear algebra. It is a basic fact that, over a field, every invertible matrix can be reduced to the identity
matrix by elementary row operations. The same is true for matrices with integer entries. (Furthermore, for
a matrix with determinant 1, the only necessary row operation is adding a multiple of one row to another
row, so we see that the original matrix is a product the elementary matrices, which are unipotent.) What
Carter and Keller proved is that every matrix in SLn(Z) (for fixed n ≥ 3) can be reduced to the identity in
a bounded number of steps.

For SL(n,Z), the γ1, . . . , γd are elementary matrices, so are unipotent. For a long time, it was an open
question whether such γ1, . . . , γd ∈ SLn(Z) can be chosen to be semi-simple elements, but it was recently
proved that this is impossible, see [11]. More generally, the expectation is that if a group has no unipotent
elements, then it usually should not have BG. As an example of this, it was recently shown that if Γ is
boundedly generated by semisimple elements, then Γ is virtually solvable, i.e., has a solvable subgroup of
finite index. Therefore, if Γ ⊂ GLn(C) is an anisotropic group, i.e., if every element is semisimple, then
Γ has BG if and only if Γ is finitely generated and virtually abelian, i.e., has an abelian subgroup of finite
index.

A profinite group ∆ has bounded generation (BG ) if there exist elements γ1, . . . , γd ∈ ∆ such that
∆ = 〈γ1〉 · · · 〈γd〉 where the overline means the topological closure.

There exist many S-arithmetic groups Γ = G(Z) with the congruence subgroup property (CSP ), which
(roughly speaking) means that Γ̂ =

∏
pG(Zp), where the hat ̂ means the profinite completion, and the

product is over all primes. See the survey [19], and the references within, for more details on the CSP. It is
known that this implies that Γ̂ has BG as a profinite group. (On the other hand, if the original group Γ is
anisotropic, then we know from above that Γ does not have BG.)
Question. Given an abstract group Γ whose profinite completion Γ̂ has BG, can one find γ1, . . . , γd ∈ Γ
such that Γ̂ = 〈γ1〉 · · · 〈γd〉.

We know that there exist such γ1, . . . , γd in Γ̂ (because we assume Γ̂ has BG as a profinite group), but
the question is whether these elements can be chosen to be in the original group Γ, instead of in the profinite
completion.

The easiest case might be to take an integral quadratic form q. If q has Witt index ≥ 2 over R, then
Spin(q)(Z) is known to have CSP (this was proved by M. Kneser); otherwise, one can consider the group
of points Spin(q)

(
Z[1/s]

)
over a suitable localization. This would be a good test case.

Problem 2 (Peter Abramenko). Generation by elementary matrices.

Following P.M. Cohn [10], we call a (not necessarily commutative) ring R with 1 a GEn ring (n a
natural number > 1) if GLn(R) is generated by elementary and invertible diagonal matrices, i.e., if
GLn(R) = GEn(R).

For commutative R this is equivalent to SLn(R) = En(R). We will restrict to (commutative) integral
domains in the following. It is clear that fields and Euclidean domains are GEn rings for all n. GEn
properties of S-arithmetic rings are also well known (but also not relevant to this problem). A. Suslin [22]
studied the question of when GEn properties of a base ring A carry over to (Laurent) polynomial rings
over A. In particular, he obtained the following:
Theorem 1. If A is a field or Euclidean domain, and `, m and n are natural numbers with ` ≤ m, then
R = A[t1, . . . , tm; t−11 , . . . , t−1` ] is a GEn ring for all n > 2.

This leaves the question when these rings are also GE2. A general answer was given by H. Chu [9].
Among his results for integral domains S are the following:
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Theorem 2. If R = S[t] is a GE2 ring, then S is a field.

Corollary. If A is a field, m > 1, and ` < m or A is any integral domain that is not a field, m is any
natural number and ` < m, then R = A[t1, . . . , tm; t−11 , . . . , t−1` ] is not a GE2 ring.

Theorem 3. If R = S[t, t−1] is a GE2 ring, then S is a Bezout domain.

Corollary. If A is a field and ` = m > 2 or A is any integral domain which is not a field and ` = m > 1,
then R = A[t1, . . . , tm; t−11 , . . . , t−1m is not a GE2 ring.

It is worth noting that for Laurent polynomial rings the situation is more complicated than for polyno-
mial rings as described in Theorem 2. Namely, Chu also proved:
Theorem 4. If S is a valuation domain (but not a field ), then R = S[t, t−1] is still a GE2 ring.

So the most interesting questions in this context which (to the best of our knowledge) are still open after
many decades are the following two:
Question 1. Is Z[t, t−1] a GE2 ring, i.e., is SL2

(
Z[t, t−1]

)
= E2

(
Z[t, t−1]

)
?

Obviously, the latter group is finitely generated. So a weaker variant of this question would be:
Question 1′. Is SL2

(
Z[t, t−1]

)
finitely generated?

Question 2. Is it true for some/all/no fields F that R = F [t1, t2, t
−1
1 , t−12 ] is a GE2 ring?

Problem 3 (Eugene Plotkin and Boris Kunyavskii). Matrix word maps.

Let w(x, y) ∈ F2 be a nontrivial word in the free group on x, y. Let G = PSL2(C). Then w defines a
map w : G×G→ G : (g1, g2) 7→ w(g1, g2).
Question. Is w always surjective? In other words, for any a ∈ PSL2(C), does the equation w(x, y) = a
always have a solution?

The answer is believed to be “yes”. This has been checked by computer for “short words” and it’s also
true if w is a commutator or belongs to the second commutant subgroup in the derived series. However,
nobody knows what happens if the word lies deeper in the derived series. For more details, see [16].

On the other hand, the answer is “no” for G = SL2(C). A counterexample can be obtained by taking
w(x) = xn, where n is even. In general, if G is a connected, semisimple algebraic group over C, then the
power map x 7→ xn cannot be surjective on G(C) unless n is relatively prime to the order of the center
of G.

One might want to generalize to any adjoint algebraic groupG, but there are counterexamples in general,
which requires a slight modification of the question. The only group which might possess exactly the same
property is PSL(n,C).

Problem 4 (Uriya First). Extensions of torsors.

Let F be a field, e.g., F = C. LetG,H1, H2 algebraic groups over F and consider morphismsH1 → G
and H2 → G.
Question. Is there a G-torsor T → X over an F -variety X that is extended from H1 but not from H2?

As an example, for On → GLn and Spn → GLn, the question is equivalent to the existence of a locally
free module E on X such that E has a regular quadratic form but not a regular symplectic form. This is
known to be true for small n, e.g., [5], and also when n is divisible by 4 (unpublished).

Of course, if there is a morphism H1 → H2 compatible with the morphisms to G, then every G-torsor
extended from H1 is also extended from H2. The general expectation is that, if there is no such morphism,
then the question has a positive answer for some F -variety X .

If one bounds the complexity of the possible X , then this becomes harder. For example, for PGLp →
PGLp the identity map and Z/pZoµp → PGLp and takingX = Spec(F ), then this question is equivalent
to whether there exists a noncyclic p-algebra. Similarly, for G → G the identity map and {1} → G the
inclusion of the trivial subgroup, the question has a positive answer over X = Spec(F ) if and only if G is
not a special group.

At the opposite extreme, the question should be easiest to answer if one takes “X = BG,” and the
question is open even in the topological category.



9

If we restrict to affine X , then, by taking Levi subgroups of H1, H2 and replacing G with G/radu(G),
we can reduce to the case where G, H1, H2 are reductive (at least if F is perfect).

Past work has addressed special cases of this problem using topological methods, by choosing X to be
an appropriate finite dimensional algebraic approximation of the classifying space BG(C) of the complex
Lie groupG(C). While the first use of such approximations is Raynaud’s [20] study of stably free modules,
this technique has been developed in the past decade by Antieau and Williams [2, 3, 4] with dramatic results
on the purity problem for torsors. The results in [5] and [23] use similar techniques to address the above
question. These methods usually require careful analysis of topological obstruction invariants tailored to
the specific choice of the groupsH1,H2,G. Also, they are oblivious to unipotent radicals, e.g., ifH1 = B2,
H2 = T2, G = GL2, then we cannot use such methods. Is there a way to address this problem in general
(rather than treating special cases separately), and more generally, in the presence of unipotent radicals?

Problem 5 (Chen Meiri). Local-global property for commutators.

Let O be a ring of S-integers with infinitely many units and consider SL2(O).
Question. If g ∈ SL2(O) is locally a commutator, then is g a commutator?

Here, “locally” means in the profinite completion. For carefully chosen p, there are counterexamples
when O = Z[ 1p ]. Are there any counterexamples when O is the ring of integers in Q

(√
D
)

where D is a
square-free positive integer?

Since O has infinitely many units, we know that SL2(O) has the congruence subgroup property, so
“locally” is equivalent to checking modulo all congruence subgroups.

One can ask the same question for SL2(Z), or the free subgroup F2 ⊂ SL2(Z). Khelif [15] proved that
the answer is “yes“ for the free group (though here the congruence subgroup property does not hold), and
the same methods apply to SL2(Z), see [13]. However, for a general free product of finite cyclic groups
Cn ∗ Cm, the question is open.

Problem 6 (Dave Morris). Normal subsemigroups.

Let G be a simple algebraic group over a field K of characteristic 0. A subset N ⊂ G(K) is a normal
subgroup if and only ifN is nonempty, closed under multiplication, closed under inverses, and closed under
conjugation from G. We have general classification results for all normal subgroups.
Question. Classify the normal subsemigroups (so not assumed to be closed under inverses).

In fact, this classification should reduce to the classical one, as conjectured in [26]:
Conjecture. Every normal subsemigroup is a subgroup.

Maybe one expects the conjecture to also hold for arithmetic groups such as SLn(Z) for n ≥ 3?
The question can be rephrased in different ways, as the following are equivalent:

• every normal subsemigroup is a subgroup,

• for every x ∈ G(K) there exist y1, . . . , yn such that x−1 = xy1 · · ·xyn (where xy = y−1xy is the
conjugate of x by y),

• for every x ∈ G(K), there exist y1, . . . , yn such that 1 = xy1 · · ·xyn ,

• there does not exist a nontrivial bi-invariant partial order on G(K), i.e., x < y ⇒ gx < gy and
xg < yg for all g ∈ G(K) (and “nontrivial” means there exist some x and y such that x < y).

The conjecture was verified when K is algebraically closed or a local field, and when G is a split
classical group. But it is open for K = Q.

Problem 7 (Andrei Rapinchuk). How to classify algebraic groups?

Let K be an arbitrary field and L/K a fixed quadratic extension. Can one classify all simple groups
over K that are split over L?

Specifically, say that G is L/K-admissible if G has a maximal K-torus T that is anisotropic over K
but splits over L. (For example, C/R-admissible tori are compact.) Can we classify these groups?

It would be especially interesting to work out the case of types E6, E7, E8.
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Something is special about C/R, which is that there is a unique nonsplit central simple algebra, which
makes the classification nice, see [6, 7].

This notion of L/K-admissible groups was introduced by Boris Weisfeiler (or Vesfeler) [24], [25], and
there is a theory of the admissible tori in G, including elementary moves that allow one to move from one
admissible torus to another.

4 Outcome of the Meeting
We feel that the hybrid format worked very well for this meeting. For many participants this was the
first in-person meeting in more than 2 years, and they enjoyed the opportunity to fully interact with their
colleagues. At the same time, a number of mathematicians we invited could not travel for various reasons,
so it was very helpful to have the virtual option as well. Several participants, including both in-person and
online participants, indicated that thanks to this workshop, they were able to either start a new project or
make progress on an existing project. We are very grateful to BIRS for allowing us to run the workshop at
increased in-person capacity and for accommodating last minute changes.
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