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e A Thue—Mahler equation is a Diophantine equation of the form

F(X,Y)=a-pi'--py

where
o F(X,Y)=aoX?+a XY+ Fag 1 XYt +a,Y?
e ais a fixed integer
® pi1,...,p, are rational primes
e X.Y, zi,...,2z are unknown integers
e gcd(X,Y)=1



Our main objective

Solve F(X,Y)=a-pi*---pZ






Theorem (Bennett, G., Rechnitzer)

Let E/Q be an elliptic curve of conductor N = 2938 Ny where Ny is
coprime to 6.

Then there exists an integral binary cubic form F of discriminant
Df = sign(AE)2“°3ﬁ° Ny,
and relatively prime integers u and v with

F(u,v) = qu® + q®v + couv? + cgv® = 2134 H p'r
pINo

such that E is isomorphic over Q to Ep, where

Ep :31P/31y2 — \3 27D?*He(u, v)x + 2TD3Gr(u, v).
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The algorithm

1. Compute all binary form F as given in the statement of the theorem

2. Solve the corresponding Thue—Mahler equations
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Fig 1. Draw two circles Fig 2. Draw the rest of the damn owl
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A brief history

Mahler (1933):

A Thue—Mabhler equation has at most finitely many solutions
SprindZuk, Vinogradov, Coates (1968/1969):

An effective method exists to bound the number of solutions

e Tzanakis, de Weger (1989):

A practical method for solving the general Thue—Mahler equation

Hambrook (2011):
Implementation of a Thue—Mahler solver
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Irreducible forms

For N < 10

e There are 6,078,277 corresponding forms which need to be solved

e At 5 seconds per form, this requires 11.55 months on a single core
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How bad could it be?

e A nice case
X3 +3X2Y +44XY2 +66Y3 =32 .112.17% . 23% . 31%
Total time: 4.1 minutes

e A less nice case
3X3 +3X2Y 4 44XY?2 +66Y3 =32 .11%2.17% . 23% . 31%
Total time: 1.6 hours

e A much less nice case
2X3 +20X2Y — 14XY2 4+ 37Y3 =22 .32 .5%.11%.13% . 17%
Total time: 4 hours

e A really, really bad case
14X3 4+ 20X2Y 4+ 24XY2 4 15Y3 =22 .32 .17 . 37% . 53%
Total time: 7?7?77 months ®
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But wait, there’s more!

e Goormaghtigh's equation

m__q B _ 1
x _ Y —> Thue—Mabhler of degree 4
x—1 y—1

189X* +189X3Y + 189X2 Y2 + 189XY3 + 190Y* = 27 . 5% . 197

Total time: 20 days

e Ramanujan 7 function

7(p™ 1) # £g* = Thue-Mahler of degree |(m —1)/2]

X0 —210XY + ... +703X%2Y1® —39XY19 4+ Y20 = 1832

Total time: ?7?77? months ®



A new Thue—Mahler solver!




An example

Let
F(X,Y)=3X>+65X*Y —290X3Y? —2110X? Y3 +975XY* 4 3149 Y">.

Then F(X,Y) = —2°.3%.5%.11% has no solutions
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An example

Let
F(X,Y)=3X>+65X*Y —290X3Y? —2110X? Y3 +975XY* 4 3149 Y">.
Then F(X,Y) = —2°.3%.5%.11% has no solutions

e Hambrook implementation of Tzanakis, de Weger: 72 days

e Soydan, Tzanakis: 2.3 hours

e G., Siksek: 0.1 seconds ©®
e F(X,Y)==43*m has no solutions for m € Z, m coprime to 3
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More examples

o 14X3 +20X2Y 4+ 24XY? +15Y3 =22 .32 . 177 . 37% . 53%
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More examples

o 14X3 +20X2Y +24XY?2 4 15Y3 =27 .32 .17% . 37% . 3%
o 486X 4 2673X10Y +8910X°Y? + ... 4 22XY10 4 YIl =32

11



Solving a Thue—Mahler equation




Overview

e Generate a very large upper bound for the solutions using the theory
of linear forms in logarithms

e Reduce this bound via Diophantine approximation computations

e Search below this reduced bound

12
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Initial steps

Given F(X,Y) = apX9 + a1 X971Y + ... + a4Y¢

o Let f(x) =ad™" F(x/a0,1)
o Let K = Q(6) with £(6) =0
e Solving F(X,Y) = apy*--- pZ is equivalent to solving

Normg g(a0X —0Y) = agfl ~a-prt-pl

13



An equivalent problem

Given Normy/g(aoX — 0Y) = al™l.a.pt-..pz

14



An equivalent problem

Given Normy/g(aoX — 0Y) = al™l.a.pt-..pz

e There is a finite computable set of equations of the form

(30X —0Y)Ok = ap---p, S ={p1,...,ps}

14



An equivalent problem

Given Normy/g(aoX — 0Y) = al™l.a.pt-..pz
e There is a finite computable set of equations of the form
(30X —0Y)Ok = ap---p, S ={p1,...,ps}

where

e p; € S is a prime ideal above p; with e(p;)f(p;) =1

14



An equivalent problem

Given Normy/g(aoX — 0Y) = al™l.a.pt-..pz
e There is a finite computable set of equations of the form
(30X —0Y)Ok = ap---p, S ={p1,...,ps}

where
e p; € S is a prime ideal above p; with e(p;)f(p;) =1
o If pi, pj € S such that pi ‘ pi and Pj ‘ P, then pi 75 pj

14



An equivalent problem

Given Normy/g(aoX — 0Y) = al™l.a.pt-..pz

e There is a finite computable set of equations of the form

(30X —0Y)Ok = apf ---p%, S ={p1,...,ps}

where
e p; € Sis a prime ideal above p; with e(p;)f(p;) =1
e If pj, pj € S such that p; | pi and p; | p;, then p; # p;
e ais an ideal of Ok of norm |agf1 ~a-pit---pl|

14



An equivalent problem

Given Normy/g(aoX — 0Y) = al™l.a.pt-..pz

e There is a finite computable set of equations of the form

(30X —0Y)Ok = apf ---p%, S ={p1,...,ps}

where
e p; € Sis a prime ideal above p; with e(p;)f(p;) =1
e If p;, pj € S such that p; ‘ pi and p; ‘ pj, then p; # p;

e ais an ideal of Ok of norm |ag ~a-pit---pl|

e Obtain a number of equations of the form
aX—-Y0 =162 b ez,

where 41, ...,0, is a basis for OZ /torsion.

14
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An example

BXM 4+ X0V +4X0Y% + X3y 4 6XTY* + XOV® +6X°YO+
6X3Y® +4XY10 — 2yt =2 .37 .55 . 7% . 11

e Two possiblities for (5X —0Y)Ox = ap* - --pl
e For one such ideal equation:
p1=(11,340), p>=(7,140),
p3=(5,9), pa=(3,5+0), ps=1(2,1+86),
where

1
¢ = ?(49“’ +96° 4+ 18508 + 42507 + 46250° + 137500° + 1312500*

4 7500000° + 320312562 + 269531256 + 5859375)

15



An example - continued

e The corresponding equation 5X — Y@ = 7.2 --- 652 has
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An example - continued

51

55

53

84

310

. 0 by bio
corresponding equation 5X — Y0 = 767" --- 075 has
1
= (11114010 — 15662669 — 396008 + 71305007 + 37330000° — 1296637500° + 1758031256

— 18468750007 + 145780062502 — 701687500000 -+ 134298828125)

3 10 9 8 7 6 5 4
—5 (626390"0 — 7481960° — 46219800 — 2220702567 + 389650000° — 341950000° — 4495437500
5

— 2127131250003 — 5176570312567 — 2008007656256 -+ 942012109375),
2 10 9 8 7 6 5
— (—3045076"° — 12862000° — 52862780° — 1474453007 — 1201381500° + 2957350000
5

+ 317603750% + 106456718750° — 185607812562 + 1507415625000 — 1543260140625),

1
79(—506181269733()10 — 151990813790480° + 34170399960000° + 206312637308500 "
5

— 8621016345988750° — 112487612450893750° + 132779534749000000% — 479693441045625000°

— 4816882920606250000% — 55260424133057031250 + 13231499496662100375),
1 10 9 8 7 6 5
—5 (37593671861 + 11130685136° + 970125383060° + 264204509006 + 3376801042500° + 8970753712500
5

+ 8807817156250 + 172701451406256° + 2100841248437500° + 41192719335937560 + 3744720025390625),

1
= (—173010 — 15280° — 28400° + 680067 + 541256° — 2087500° — 26093750%
5

— 195468756° — 1195312562 + 27070312560 + 1181640625).
16



Height Bounds




Upper bounds

Given agX — YO = 71.62 ...
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Upper bounds

Given agX — YO = 71.62 ...

o Let B = max{|bi,....|b]|}

e Via linear forms in logarithms, we obtain
B < o
e If b= (by,...,b,), let By denote the bound on the L?-norm of b

[bll2 < V/r- coo = B>
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An example - continued

BXM 4 X0V 4+ 4X%Y2 + XBY3 4 6XTY4 + XOV® 4 6X3Y0+
6X3Y® 44Xy — 2yt =27 .32 .55 . 7% . 1%
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An example - continued

BXM 4 X0V 4+ 4X%Y2 + XBY3 4 6XTY4 + XOV® 4 6X3Y0+
6X3Y® 44Xy — 2yt =27 .32 .55 . 7% . 1%

5X — QY =710 ... 600, B = max{|by], ..., |bwo|}
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An example - continued

BXM 4 X0V 4+ 4X%Y2 + XBY3 4 6XTY4 + XOV® 4 6X3Y0+
6X3Y® 44Xy — 2yt =27 .32 .55 . 7% . 1%

5X — QY =710 ... 600, B = max{|by], ..., |bwo|}

We obtain a bound of

B <1.33 x 10?2 — ||b||, < 4.2 x 10?*2

18
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e From initial bound computations,

B <20 3 logmax{L, e}
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e For all places v € Mk, find ¢, such that
B < By = log max{1, ||5_1H,,} <e,

To find €,:
e Forv=p €S, find k such that ord,(a0X — 0Y) < k
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Bound reduction

aX—-Y0 = 7-62...6b B =max{|bs],...,|b|}
N—_——

E

Suppose B < By  (initially By = c)
e From initial bound computations,

B <20 3 logmax{L, e}
ve Mg

For all places v € Mk, find €, such that
B < By = logmax{1,|le7!|.} <e,

To find €,:
e Forv=p €S, find k such that ord,(a0X — 0Y) < k
e For v infinite, slightly annoying
e Obtain a new bound for B:

B <2c¢i7 Z I — iterate!

19
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Valuations of gp X — 6Y

o letpe Sand ke Z>
e Suppose

ordy(aX —0Y) >k = agX —0Y =0 (mod p¥)
e There is some 6y € Z such that § — 6y =0 (mod p*)

20X —0Y =0 (modpX) = aX—6Y =0 (mod p)

e Recall agX —0Y = T.5fl...gby

r

700 85 = (agX—0Y)—(a0X—6Y) = Y (6p—0) (mod (pOk)¥)

o Let a = (pOk)/p, then
76257 = Y(y—0) (mod a¥)
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Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p
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Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p

o Let ¢: 27— (Ox /o) J(Z/PD)<, @(x,... %)= %65

21



Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p

o Let ¢:Z" — (Ok/ak)* (Z/P*T)*, ¢(x1,...,x) =6 -..6%
o If b= (by,...,b,), then ¢(b) = %=*

T
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Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p

o Let ¢:Z" — (Ok/ak)* (Z/P*T)*, ¢(x1,...,x) =6 -..6%
o If b= (by,...,b,), then ¢(b) = %=*

T

e Contradiction if %= ¢ Image(¢)
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Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p

Let ¢: 27 — (O /aX)<[(Z/PFL)%, Bx1,. .. %) = 8565

o If b=(by,...,b,), then ¢(b)= %=t

T

Contradiction if @ ¢ Image(o)

Thus suppose, for some w € Z',

p(wy = 2 —°

T
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Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p

Let ¢: 27 — (O /aX)<[(Z/PFL)%, Bx1,. .. %) = 8565

o If b=(by,...,b,), then ¢(b)= %=t

T

Contradiction if @ ¢ Image(o)

Thus suppose, for some w € Z',

p(wy = 2 —°

T

= bew+ L, L=Ker(¢)
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Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p

Let ¢:Z" — (Ox/a*)*/(Z/P*Z)", d(x1,... %) =87 -8y
o If b=(by,...,b), then ¢(b)= %=*

T

Contradiction if @ ¢ Image(o)

Thus suppose, for some w € Z',

p(wy = 2 —°

T

= bew+ L, L=Ker(¢)

Recall ||blla < B>

21



Valuations of gp X — 6Y

7605 = Y(0y—60) (mod a¥), a=(pOk)/p

Let ¢:Z" — (Ox/a*)*/(Z/P*Z)", d(x1,... %) =87 -8y
o If b=(by,...,b), then ¢(b)= %=*

T

Contradiction if @ ¢ Image(o)

Thus suppose, for some w € Z',

p(wy = 2 —°

T

= bew+ L, L=Ker(¢)

e Recall ||bll2 < B
If w+ L does not contain any vectors v with ||v|2 < By, then

ordy(agX —0Y) < k-1
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An example - continued

For (5X —0Y)Ox = ap*---p®, where 5X — Y0 = 7.2 ... 500
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An example - continued

For (5X —0Y)Ox = ap*---p®, where 5X — Y0 = 7.2 ... 500

Iteration

Bo

Bounds for ordy, (5X — 0Y)
with 1 <j <5

0

| 1.33x 1022 || 237 | 292 [ 355 | 518 | 821 |

22



An example - continued

For (5X —0Y)Ox = ap*---p®, where 5X — Y0 = 7.2 ... 500

Iteration Bo Bounds for ordy, (5X — 0Y)
with 1 <j <5

0 1.33 x 1022 || 237 | 292 | 355 | 518 | 821

8285 4 5 7 10 | 15
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An example - continued

For (5X —0Y)Ox = ap*---p®, where 5X — Y0 = 7.2 ... 500

Iteration Bo Bounds for ordy, (5X — 0Y)
with 1 <j <5

0 1.33 x 1022 || 237 | 292 | 355 | 518 | 821

8285 4 5 7 10 | 15

2 236 2 3 5 6 10
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An example - continued

For (5X —0Y)Ox = ap*---p®, where 5X — Y0 = 7.2 ... 500

Iteration Bo Bounds for ordy, (5X — 0Y)
with 1 <j <5

0 1.33 x 10222 || 237 | 292 | 355 | 518 | 821
1 8285 4 5 7 10 | 15
2 236 2 3 5 6 10
3 179 2 3 5 6 9
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An example - continued

For (5X —0Y)Ox = ap*---p®, where 5X — Y0 = 7.2 ... 500

Iteration Bo Bounds for ordy, (5X — 0Y)
with 1 <j <5

0 1.33 x 10222 || 237 | 292 | 355 | 518 | 821
1 8285 4 5 7 10 | 15
2 236 2 3 5 6 10
3 179 2 3 5 6 9
4 179 2 3 5 6 9
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An example - continued

For (5X —0Y)Ox = ap*---p®, where 5X — Y0 = 7.2 ... 500

Iteration Bo Bounds for ordy, (5X — 0Y)
with 1 <j <5

0 1.33 x 10222 || 237 | 292 | 355 | 518 | 821
1 8285 4 5 7 10 | 15
2 236 2 3 5 6 10
3 179 2 3 5 6 9
4 179 2 3 5 6 9

B = max{|by],...|bio|} <179 = ||b||, < 567

22



Searching below the reduced
bound




by b, b §B2
a()X*Ya:T‘(Sl-"(Sr, H H2
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X —-Y0 = 7.6%...8b |bll2 < B>

e Let g be a prime coprime to the support of 7, d1,...,0,
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X —-Y0 = 7.6%...8b |bll2 < B>

e Let g be a prime coprime to the support of 7, d1,...,0,
o Let ¢q:Z" — (Ok/qOk)*J(Z/qZ)*, ¢q(x1,...,x;) = 1" ---0F
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X —-Y0 = 7.6%...8b |bll2 < B>

e Let g be a prime coprime to the support of 7, d1,...,0,
o Let ¢q:Z" — (Ok/qOk)*J(Z/qZ)*, ¢q(x1,...,x;) = 1" ---0F
e Then ¢4(b) € Ry, where

Ry = {""O“T 6. ve ]Fq} U {%} C (Ox/qOK)* (Z)qZ)*
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X —-Y0 = 7.6%...8b |bll2 < B>

e Let g be a prime coprime to the support of 7, d1,...,0,
o Let ¢q:Z" — (Ok/qOk)*J(Z/qZ)*, ¢q(x1,...,x;) = 1" ---0F
e Then ¢4(b) € Ry, where

Ry = {""O“T 6. ve ]Fq} U {%} C (Ox/qOK)* (Z)qZ)*

o If g| Y, then ¢g(b) =62 ... 6% = (aX — 0Y)/7 = ao/T
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X —-Y0 = 7.6%...8b |bll2 < B>

e Let g be a prime coprime to the support of 7, d1,...,0,
o Let ¢q:Z" — (Ok/qOk)*J(Z/qZ)*, ¢q(x1,...,x;) = 1" ---0F
e Then ¢4(b) € Ry, where

Ry = {""O“T 6. ve ]Fq} U {%} C (Ox/qOK)* (Z)qZ)*

o If g| Y, then ¢g(b) =62 ... 6% = (aX — 0Y)/7 = ao/T
o If g1 Y, then ¢g(b) = 65 ... 6P = (30X — 0Y) /7 = (a0 XY — 0) /7

23



20X Y8 = 7528k |b]. < B
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20X Y8 = 7528k |b]. < B

gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F
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aX—-Y0 = 7.62...8b b2 < B,
gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F

¢q(b)eRq{"°“9 : uewq}u{‘f}

T
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aX—-Y0 = 7.62...8b b2 < B,
gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F

¢q(b)eRq{"°“9 : uewq}u{‘f}

T

o Let Ly = ker(¢q) C Z"
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aX—-Y0 = 7.62...8b b2 < B,
gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F

¢q(b)eRq{"°“9 : uewq}u{‘f}

o Let Ly = ker(¢q) C Z"
o Let W, be a set of preimages under ¢4 of elements of R,

24



aX—-Y0 = 7.62...8b b2 < B,
gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F

¢q(b)eRq{"°“TH : uewq}u{‘f}

o Let Ly = ker(¢q) C Z"
o Let W, be a set of preimages under ¢4 of elements of R,

e Thusbe W, + L,
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aX—-Y0 = 7.62...8b b2 < B,
gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F

¢q(b)eRq{"°“TH : uewq}u{‘f}

o Let Ly = ker(¢q) C Z"
o Let W, be a set of preimages under ¢4 of elements of R,

e Thusbe W, + L,

Choose several primes g1, ..., gn.
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aX—-Y0 = 7.62...8b b2 < B,
gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F

¢q(b)eRq{"°“TH : uewq}u{‘f}

o Let Ly = ker(¢q) C Z"
o Let W, be a set of preimages under ¢4 of elements of R,

e Thusbe W, + L,

Choose several primes g1,...,q,. Then

be (\Wy+Llg) =W+L  L=()L,

i=1
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aX—-Y0 = 7.62...8b b2 < B,
gL' — (Ok/qOk)* /(Z/qZ)*, ¢(x1,...,%) =01 ---6F

¢q(b)eRq{"°“TH : uewq}u{‘f}

o Let Ly = ker(¢q) C Z"
o Let W, be a set of preimages under ¢4 of elements of R,

e Thusbe W, + L,

Choose several primes g1,...,q,. Then

be (\Wy+Llg) =W+L  L=()L,
i=1
L has huge index = easy to determine b using Finke and Pohst!
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Looking for donations: Cores with Magma and storage!
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An appeal to your generosity

Looking for donations: Cores with Magma and storage!

—> adela.gherga@warwick.ac.uk
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Thank You
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