
Long memory in option pricing: A fractional discrete-time
framework

Alexandru Badescu
joint work with M. Augustyniak, J-F. Bégin, and S. K. Jayaraman

Stochastic Modelling of Big Data in Finance, Insurance and Energy Markets, Banff, May 2023



Outline

1 Introduction

2 Long-Memory Affine GARCH Models

3 Derivative Valuation

4 Data and Estimation Methodology

5 Joint Estimation and Option Valuation Empirics

6 Concluding Remarks

Long memory in option pricing: A fractional discrete-time framework 2—



Motivation

Definition 1 (Long Memory).

A return series is said to feature long memory in volatility if the shocks to
the conditional variance die out at a slow hyperbolic rate.

Long memory in volatility models has been popular in the financial
econometric literature.

Long memory manifests itself when a time series’ sample autocorrela-
tion function (ACF) exhibits significant autocorrelations of squared
returns over long lags (Ding et al., 1993; Ding and Granger, 1996).
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Motivation, cont’d
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Motivation, cont’d

The ability of long-memory models to improve the in-sample fit of as-
set return distributions and out-of-sample volatility forecasts have
both been widely studied (see, e.g., Baillie, 1996; Ding and Granger,
1996; Bollerslev and Mikkelsen, 1996; Mikosch and Stărică, 2004; An-
dersen et al., 2001; Maheu, 2005; Stărică and Granger, 2005).

However, the impact of long memory for option pricing has been rel-
atively unexplored.

Research Question.

Is long memory a relevant feature for option pricing?
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Literature Review

Bollerslev and Mikkelsen (1996):

Compared empirical performance of non-affine short- and long-memory
EGARCH models using S&P 500 LEAPS from 1991–1993.

Found that the prices of these option contracts are described more
accurately when long-memory is included.

Wang (2007):

Proposed an affine version of the fractional integrated model of Baillie
(1996), extending Heston and Nandi (2000).

Used S&P 500 options from 1990–1996.

Found that a two-component short-memory model generates lower
option RMSEs than long-memory models.
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Literature Review, cont’d

Shortcoming of previous contributions:

The proposed fractional models are not (weakly) stationary.

Option prices are derived based on monotonic pricing kernels.

Empirical analyses are solely based on parameters estimated using
historical returns and do not incorporate the informational content from
option prices.

Analyses are performed over short periods.
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Contributions

Theoretical: Development of a discrete-time framework for a general class
of affine component ARCH(∞∞∞) models using a non-monotonic pricing
kernel.

→→→ Semi-closed forms for a variety of European option payoffs.

→→→ Many existing GARCH option pricing models nested in the setting.

→→→ New (stationary) long-memory affine GARCH models by mixing short-
memory and fractionally integrated processes.

Empirical: Investigation of the impact of long memory on option pricing
using joint estimation based on returns and options on S&P 500 from
1996–2019.

→→→ Long-memory outperforms short-memory both in and out of sample.

→→→ Long-memory improvements are greater for LEAPS.
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General Structure

Under the physical measure P, the return dynamics are governed by

yt = r + λht +
√

htzt , zt ∼ N(0, 1),

ht = FΘ (ht−1, ht−2, ..., zt−1, zt−2, ...) ,

where

r is the constant risk-free interest rate,

λ is the equity risk premium parameter,

h = {ht }t∈Z is the conditional variance process,

FΘ is a non-linear function of the past variances and innovations, and

Θ is set of parameters that satisfy certain non-negativity and station-
arity constraints.
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From Short-Memory to Fractional Models

Starting from the Heston and Nandi (2000; HN hereafter) model, we
have that

ht = ω + βht−1 + α
(
zt−1 − γ

√
ht−1

)2
.

Using the lag operator notation LLL , it can be reparametrized:

ht = ω + βht−1 + ψHN(L )
(
zt − γ

√
ht

)2
,

where
ψHN(L ) = αL =

1
γ2

(1 − βL − (1 − φL )) ,

and φ = β + αγ2 measures the model persistency.
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From Short-Memory to Fractional Models, cont’d

Wang (2007) proposed a fractional integrated version of the HN
model, called the FI model:

ht = ω + βht−1 + ψFI(L )
(
zt − γ

√
ht

)2
, (1)

where
ψFI(L ) =

1
γ2

(
1 − βL − (1 − φL ) (1 − L )d(1 − L )d(1 − L )d

)
(2)

and d is the fractional differencing parameter which characterizes
the long memory.

Nested Case.

We obtain the HN variance dynamics if d = 0.
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From Short-Memory to Fractional Models, cont’d
We can rewrite the dynamics by using a Maclaurin series expansion of
Equation (1):

ht = ω + βht−1 +
∞∑
j=1

ψFI
j

(
zt−j − γ

√
ht−j

)2
,

where

ψFI
1 =

φ − β + d
γ2

and ψFI
j =

(
j − 1 − d

j
− φ

)
δj−1,

with

δ1 =
d
γ2

and δj = δj−1

(
j − 1 − d

j

)
, j ≥ 2.

Stationarity.

The FI model is not covariance stationary.
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Building a Stationary Affine Fractional Model

In the spirit of Davidson (2004), we introduce the hyperbolic (HY)
model by mixing HN and FI:

ψHY(L ) = (1 − τ)ψHN(L ) + τψFI(L ).

Stationarity.

The HY model is covariance stationary if and only if (1 − φ)(1 − τ) > 0.
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ARCH(∞∞∞) Representations and Decays

Let us assume an equivalent—but less convenient—ARCH(∞) repre-
sentation:

ht = ω̃ +
∞∑
j=1

ψ̃j

(
zt−j − γ

√
ht−j

)2
.

The HN coefficients ψ̃HN
j are characterized by a geometric decay,

ψ̃HN
j = O(βj).

The HY and FI coefficients ψ̃HY
j and ψ̃FI

j are characterized by a hyper-
bolic decay

ψ̃HY
j = O(j−1−d) and ψ̃FI

j = O(j−1−d), for 0 < d < 1,

leading to long memory.
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Affine Multi-Component Fractional Models

Multi-Component.

Although the HY is a combination of short- and long-memory models, the
single volatility regime may not be rich enough to capture the market be-
haviour over different periods.

We introduce the FI-HN model as a mixture of HN and FI compo-
nents:

ht = w1σ
2
1,t + w2 σ

2
2,t , w1,w2 ≥ 0,

σ2
1,t =ω1 + β1σ

2
1,t−1 + ψFI

1 (L )
(
zt − γ1

√
ht

)2
,

σ2
2,t =ω2 + β2σ

2
2,t−1 + ψHN

2 (L )
(
zt − γ2

√
ht

)2
.

The FI-HN model can be extended to a HY-HN structure by replacing
ψFI

1 (L ) with ψHY
1 (L ).
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Affine Multi-Component Fractional Models, cont’d

Nested Case.

We can obtain a two-component short-memory model by setting d = 0,
similar to the model proposed by Christoffersen et al. (2008). It is denoted
by HN-HN henceforth.
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Summary of Nested Competing Models

1 HN model: affine GARCH(1,1) model of Heston and Nandi (2000).

2 FI model: the affine version of the fractionally integrated variance pro-
cess proposed by Wang (2007).

3 HY model: a hyperbolic fractionally integrated version of the HN model,
similar in spirit to Davidson (2004).

4 HN-HN model: a two-component model for which both components
are short memory HN model, similar to Christoffersen et al. (2008).

5 FI-HN model: a two-component model with the first variance com-
ponent given by the FI model and the second component by the HN
model.

6 HY-HN model: a two-component model with the first variance compo-
nent following the HY model and the second component the HN model.
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Component Affine ARCH(∞∞∞) Models
We develop a pricing framework for the valuation of European-style
derivatives assuming the following P-dynamics:

yt = r + λht +
√

htzt , zt ∼ N(0, 1),

ht =www>σσσ2
t , www = [ w1 w2 ]> ≥ 000,

σσσ2
t =ωωω + βββ �σσσ2

t−1 +
∞∑
j=1

ψψψj � lllt−j ,

where σσσ2
t ≡ [ σ2

1,t σ2
2,t ]> is the two-dimensional vector of conditional

variance components which admit ARCH(∞) representations driven by
the noise lllt ≡ [ l1,t l2,t ]> defined as:

lk ,t =
(
zt − γk

√
ht

)2
, for k = 1, 2,

where γk is the k th component leverage parameter.
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Component Affine ARCH(∞∞∞) Models, cont’d

More Component?

The pricing framework is extended to K components in the article.

Long memory in option pricing: A fractional discrete-time framework 21—



Non-Monotonic Pricing Kernel

The P-equivalent risk-neutral probability measure Q is defined by:

dQ
dP

∣∣∣∣∣
Ft

=
∏
s≤t

exp
(
θY Ys + θθθ>σσσσ

2
s+1 − G

P

(Ys ,σσσ
2
s+1,llls)

(θY , θθθσ,000 | Fs−1)
)
,

where GP(Ys ,σσσ
2
s+1,llls)

(θY , θθθσ,000 | Fs−1) is the joint cgf of Ys , σ2
1,s+1, and llls .

Here, θY and θθθσ = [ θ1,σ θ2,σ ]> represent the equity and the vector
of variance component risk preference parameters, respectively, and
satisfy:

θY = −λ −
1
2

+ 2 (θθθσ �ψψψ1)> (λλλ + γγγ) ,

where λλλ is a K -dimensional vector for which all components are equal
to λ.

This is called the no-arbitrage constraint because it ensures that the
discounted asset price is a martingale under Q.
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Valuation of European-Style Derivatives
We use the inverse Laplace representation of the option payoff.
A European call payoff with strike X admits the following representa-
tion:

H = f (YT ) = max
[
eYT − X , 0

]
=

1
2πi

R+i∞∫
R−i∞

ezYT f̌ (z) dz, for any R > 1,

where the kernel function is given by f̌ (z) = X1−z/ (z(z − 1)).
The time-t price of an option with a maturity of T − t and a strike of X
is:

OModel
t (X ,T ) =

e−r(T−t)

2πi

R+i∞∫
R−i∞

exp
(
G
Q
YT

(z | Ft )
)
f̌ (z) dz, (3)

where GQYT
(z | Ft ) is the risk-neutral cgf of the terminal log-price YT

conditional on Ft .
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Valuation of European-Style Derivatives, cont’d

Proposition 1 (Log-Price Cumulant Generating Function).

For any real u and for any t ,T ∈ Z with t ≤ T , the terminal conditional cgf
of the log-price YT = log ST is given by

G
Q
YT

(z | Ft ) = A∗(z; t ,T ) + zYt +BBB∗(z; t ,T )>σσσ∗2t+1 +
∞∑
j=1

CCC∗j (z; t ,T )>lll∗t+1−j ,

where

σσσ∗2t+1 = πσσσ2
t+1, lll∗t+1−j =

lllt+1−j

π
, with π =

1
1 − 2 (θθθσ � ψψψ1)> 111

,

The coefficients A∗(z; t ,T ),BBB∗(z; t ,T ), and CCC∗j (z; t ,T ) satisfy some recur-
sions.
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Data

Daily S&P 500 index returns from January 1976 to December 2019
obtained from the Center for Research in Security Prices (CRSP).
→ The estimation sample begins in 1996, and the returns from January

1976 to December 1995 are used to warm up the filter.
→ We use a total of 6,042 daily returns in the estimation.

Three-month Treasury bill rate from the Federal Reserve Board’s H.15
report.
OTM S&P 500 put and call implied volatilities on Wednesdays from
January 1996 to December 2019 extracted from OptionMetrics.
→ We use the usual filters (see, e.g., Bakshi et al., 1997; Carr and Wu,

2011; Christoffersen et al., 2012, 2013).
→ We select the six most liquid options (based on volume) for each matu-

rity and date, and we end up with 45,084 options.
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Estimation Methodology

Return-and option-based joint maximum likelihood estimation:

`Joint(Θ) =
T + N

2

(
`Returns(Θ)

T
+
`Options(Θ)

N

)
.

where

`Returns(Θ) = log
T∏

t=t0+1

1
2πht

exp
(
−

1
2

(yt − r − λht )2

ht

)
,

`Options
(
Θ

∣∣∣∣∣ {{IVt ,i}
nt
i=1

}T

t=t0+1

)
= log

T∏
t=t0+1

nt∏
i=1

1
2πs2

ε

exp

−1
2

ε2
t ,i

s2
ε

 ,
and εt ,i = IVt ,i − IV(OModel

t (Xt ,i ,Tt ,i)).
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Implementation

Throughout our calculations and variance updates, infinite sums need
to be truncated. We use a value of 1,000 lags—an optimal tradeoff in
terms of accuracy and computational speed.

To begin our variance update recursions, we fix all the pre-sample
terms (i.e., t < 1) to their unconditional average: we use the un-
conditional average level for each component and the unconditional
expectation for the leveraged terms.

Option prices are obtained by applying a simple quadrature method
(i.e., the trapezoidal rule) to Equation (3) with 1,000 nodes.

The risk-neutral cgf relies on a truncation of 1,000 lags, similar to the
number of lags used in the variance update calculation.
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Joint Maximum Likelihood Estimates

One-component models Two-component models

HN FI HY HN-HN FI-HN HY-HN

λ 2.14 0.00 1.77 2.98 3.15 3.16
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

τ − − 0.97 − − 1.00
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

d − 0.45 0.49 − 0.36 0.36
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

π 1.06 1.06 1.08 1.19 1.04 1.04

Log-likelihood
Return 19,496 19,531 19,499 19,501 19,512 19,512
Option 82,616 88,589 89,086 90,422 90,870 90,878
Joint 129,330 132,865 133,012 133,777 134,077 134,080

IVRMSE (%) 3.87 3.39 3.35 3.26 3.22 3.22
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Out-of-Sample Study

We focus on the last 10 years of our sample.

We estimate all models jointly on returns and options using an ex-
panding window.

We then compute implied volatility on the options traded in the year
following the end of the sample.

The approach is similar in spirit to the out-of-sample analyses per-
formed by Huang and Wu (2004) and Christoffersen et al. (2009).
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Out-of-Sample Implied Volatility RMSEs
Panel A: Out-of-sample IVRMSEs.

One-component models Two-component models

HN FI HY HN-HN FI-HN

3.77 3.03 3.04 3.09 2.97

Panel B: Out-of-sample IVRMSEs per year.

One-component models Two-component models

HN FI HY HN-HN FI-HN

2010 4.80 3.50∗∗ 4.12 3.89∗ 3.95
2011 4.19 4.18∗ 4.49 4.34 3.90∗∗
2012 3.52 2.81 2.59∗∗ 2.88 2.76∗
2013 2.18 1.73∗ 1.60∗∗ 1.93 1.97
2014 2.70 1.97 1.85∗ 2.18 1.82∗∗
2015 3.16 2.41 2.17∗ 2.32 2.04∗∗
2016 3.49 3.10 3.32 2.64∗∗ 2.75∗
2017 3.76 3.59 2.80∗∗ 2.96∗ 3.14
2018 5.12 3.49∗∗ 3.67∗ 4.06 3.70
2019 3.62 2.64∗∗ 2.72∗ 2.81 2.76

Count, Best model 0 3 3 1 3
Count, Second-best model 0 2 4 2 2

Long memory in option pricing: A fractional discrete-time framework 32—



Diebold–Mariano Test Statistics

Panel A: Time-series mean of the weekly IVRMSEs.

One-component models Two-component models

HN FI HY HN-HN FI-HN

Mean 3.41 2.70 2.69 2.76 2.61
Standard deviation (1.56) (1.39) (1.47) (1.40) (1.44)

Panel B: DM pairwise statistics for weekly IVRMSEs.

One-component models Two-component models

HN FI HY HN-HN FI-HN

HN 10.81 9.98 11.14 12.91
FI –0.62 –1.22 1.38
HY –0.47 1.86
HN-HN 2.88
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LEAPS: Out-of-Sample Implied Volatility RMSEs
Panel A: Out-of-sample IVRMSEs for LEAPS.

One-component models Two-component models

HN FI HY HN-HN FI-HN

4.07 3.07 3.09 3.52 3.14

Panel B: Out-of-sample IVRMSEs per year for LEAPS.

One-component models Two-component models

HN FI HY HN-HN FI-HN

2010 4.81 4.30∗∗ 4.73 4.71∗ 4.88
2011 3.58 3.62 3.49∗ 3.68 3.19∗∗
2012 4.50 4.39∗∗ 4.39∗ 4.77 4.53
2013 3.62 3.21 2.98∗ 3.48 2.92∗∗
2014 3.69 2.21 2.11∗ 2.21 2.09∗∗
2015 3.19 1.62 1.44∗ 2.21 1.42∗∗
2016 3.05 2.16 2.09∗ 2.46 1.72∗∗
2017 4.43 2.99 2.47∗∗ 3.20 2.65∗
2018 5.13 2.73∗∗ 3.23∗ 4.20 3.55
2019 4.02 2.63∗∗ 2.92∗ 3.33 3.11

Count, Best model 0 4 1 0 5
Count, Second-best model 0 0 8 1 1
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LEAPS: Diebold–Mariano Test Statistics

Panel A: Time-series mean of the weekly IVRMSEs for LEAPS.

One-component models Two-component models

HN FI HY HN-HN FI-HN

Mean 3.84 2.84 2.81 3.26 2.82
Standard deviation (1.33) (1.31) (1.43) (1.43) (1.53)

Panel B: DM pairwise statistics for weekly IVRMSEs for LEAPS.

One-component models Two-component models

HN FI HY HN-HN FI-HN

HN 11.78 12.63 8.65 12.60
FI –0.54 –8.17 –1.55
HY –11.32 –1.32
HN-HN 10.11
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Concluding Remarks

We propose new covariance-stationary long-memory models by
mixing short-memory and fractionally integrated processes.
→ This specification leads to semi-closed forms for the valuation of Euro-

pean-style derivatives for a general class of affine multi-component
ARCH(∞) volatility processes.

Using S&P 500 option data (including LEAPS), we investigate the im-
pact of long-memory dynamics in volatility for option pricing.
→ Once the informational content from options is incorporated into the pa-

rameter estimation process, their out-of-sample pricing performance
stands out.

→ This suggests that long memory captures better the distributional prop-
erties of risk-neutral variance forecasts.
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Maximum Likelihood Estimates

One-component models Two-component models

HN FI HY HN-HN FI-HN HY-HN

λ 2.44 1.88 2.33 2.42 2.42 2.42
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

τ − − 0.87 − − 0.99
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

d − 0.19 0.41 − 0.23 0.23

Log-likelihood
Return 19,630 19,663 19,668 19,688 19,689 19,689
Option 65,198 69,170 71,868 70,262 70,405 70,405
Joint 120,021 122,413 123,963 123,136 123,220 123,220

IVRMSE (%) 5.70 5.22 4.91 5.09 5.08 5.08
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Annualized Volatility Forecasts
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