

UNIVERSITY OF

Long memory in option pricing: A fractional discrete-time framework

Alexandru Badescu

joint work with M. Augustyniak, J-F. Bégin, and S. K. Jayaraman

Stochastic Modelling of Big Data in Finance, Insurance and Energy Markets, Banff, May 2023

Outline

1 Introduction

- 2 Long-Memory Affine GARCH Models
- 3 Derivative Valuation
- 4 Data and Estimation Methodology
- 5 Joint Estimation and Option Valuation Empirics
- 6 Concluding Remarks

Motivation

Definition 1 (Long Memory).

A return series is said to feature long memory in volatility if the shocks to the conditional variance die out at a **slow hyperbolic rate**.

- Long memory in volatility models has been **popular** in the financial econometric literature.
- Long memory manifests itself when a time series' sample autocorrelation function (ACF) exhibits significant autocorrelations of squared returns over long lags (Ding et al., 1993; Ding and Granger, 1996).

Motivation, cont'd

Long memory in option pricing: A fractional discrete-time framework

Motivation, cont'd

- The ability of long-memory models to improve the in-sample fit of asset return distributions and out-of-sample volatility forecasts have both been widely studied (see, e.g., Baillie, 1996; Ding and Granger, 1996; Bollerslev and Mikkelsen, 1996; Mikosch and Stărică, 2004; Andersen et al., 2001; Maheu, 2005; Stărică and Granger, 2005).
- However, the impact of long memory for option pricing has been relatively unexplored.

Research Question.

Is long memory a relevant feature for option pricing?

Literature Review

Bollerslev and Mikkelsen (1996):

- Compared empirical performance of non-affine short- and **long-memory** EGARCH models using S&P 500 LEAPS from 1991–1993.
- Found that the prices of these option contracts are described **more accurately** when long-memory is included.

Wang (2007):

- Proposed an affine version of the fractional integrated model of Baillie (1996), extending Heston and Nandi (2000).
- Used S&P 500 options from 1990–1996.
- Found that a two-component short-memory model generates lower option RMSEs than long-memory models.

Literature Review, cont'd

Shortcoming of previous contributions:

- The proposed fractional models are **not (weakly) stationary**.
- Option prices are derived based on **monotonic pricing kernels**.
- Empirical analyses are solely based on parameters estimated using historical returns and do not incorporate the informational content from option prices.
- Analyses are performed over **short periods**.

Contributions

<u>Theoretical</u>: Development of a **discrete-time framework** for a general class of **affine component ARCH(\infty) models** using a non-monotonic pricing kernel.

- \rightarrow Semi-closed forms for a variety of European option payoffs.
- \rightarrow Many existing GARCH option pricing models nested in the setting.
- → New (stationary) long-memory affine GARCH models by mixing shortmemory and fractionally integrated processes.

Empirical: Investigation of the impact of long memory on option pricing using **joint estimation** based on returns and options on S&P 500 from 1996–2019.

- \rightarrow Long-memory outperforms short-memory both in and out of sample.
- \rightarrow Long-memory improvements are greater for LEAPS.

Outline

1 Introduction

2 Long-Memory Affine GARCH Models

- 3 Derivative Valuation
- 4 Data and Estimation Methodology
- 5 Joint Estimation and Option Valuation Empirics
- 6 Concluding Remarks

General Structure

Under the physical measure \mathbb{P} , the **return dynamics** are governed by

$$\begin{split} y_t &= r + \lambda h_t + \sqrt{h_t} z_t, \quad z_t \sim \mathcal{N}(0,1), \\ h_t &= F_{\Theta} \left(h_{t-1}, h_{t-2}, ..., z_{t-1}, z_{t-2}, ... \right), \end{split}$$

where

- r is the constant risk-free interest rate,
- \blacksquare λ is the equity risk premium parameter,
- $h = {h_t}_{t \in \mathbb{Z}}$ is the conditional variance process,
- F_{Θ} is a non-linear function of the past variances and innovations, and
- \bullet is set of parameters that satisfy certain non-negativity and station-arity constraints.

From Short-Memory to Fractional Models

Starting from the Heston and Nandi (2000; HN hereafter) model, we have that

$$h_t = \omega + \beta h_{t-1} + \alpha \left(z_{t-1} - \gamma \sqrt{h_{t-1}} \right)^2.$$

■ Using the lag operator notation *L*, it can be reparametrized:

$$h_t = \omega + \beta h_{t-1} + \psi^{\mathsf{HN}}(L) \left(z_t - \gamma \sqrt{h_t} \right)^2,$$

where

$$\psi^{\mathsf{HN}}(L) = \alpha L = \frac{1}{\gamma^2} \left(1 - \beta L - (1 - \phi L)\right),$$

and $\phi = \beta + \alpha \gamma^2$ measures the model persistency.

From Short-Memory to Fractional Models, cont'd

Wang (2007) proposed a fractional integrated version of the HN model, called the FI model:

$$h_t = \omega + \beta h_{t-1} + \psi^{\mathsf{FI}}(L) \left(z_t - \gamma \sqrt{h_t} \right)^2, \tag{1}$$

where

$$\psi^{\mathsf{FI}}(L) = \frac{1}{\gamma^2} \left(1 - \beta L - (1 - \phi L) \left(1 - L \right)^d \right)$$
(2)

and *d* is the **fractional differencing parameter** which characterizes the long memory.

Nested Case.

We obtain the HN variance dynamics if d = 0.

From Short-Memory to Fractional Models, cont'd

We can rewrite the dynamics by using a Maclaurin series expansion of Equation (1):

$$h_t = \omega + \beta h_{t-1} + \sum_{j=1}^\infty \psi_j^{\mathsf{FI}} \left(z_{t-j} - \gamma \sqrt{h_{t-j}} \right)^2,$$

where

$$\psi_1^{\mathsf{FI}} = \frac{\phi - \beta + d}{\gamma^2}$$
 and $\psi_j^{\mathsf{FI}} = \left(\frac{j - 1 - d}{j} - \phi\right)\delta_{j-1},$

with

$$\delta_1 = \frac{d}{\gamma^2}$$
 and $\delta_j = \delta_{j-1}\left(\frac{j-1-d}{j}\right), j \ge 2.$

Stationarity.

The FI model is not covariance stationary.

Building a Stationary Affine Fractional Model

In the spirit of Davidson (2004), we introduce the hyperbolic (HY) model by mixing HN and FI:

$$\psi^{\mathsf{HY}}(L) = (1-\tau)\psi^{\mathsf{HN}}(L) + \tau\psi^{\mathsf{FI}}(L).$$

Stationarity.

The HY model is covariance stationary if and only if $(1 - \phi)(1 - \tau) > 0$.

$ARCH(\infty)$ Representations and Decays

■ Let us assume an equivalent—but less convenient—ARCH(∞) representation:

$$h_t = \tilde{\omega} + \sum_{j=1}^{\infty} \tilde{\psi}_j \left(z_{t-j} - \gamma \sqrt{h_{t-j}} \right)^2.$$

■ The HN coefficients $\tilde{\psi}_i^{\text{HN}}$ are characterized by a **geometric decay**,

$$\tilde{\psi}_j^{\mathsf{HN}} = O(\beta^j).$$

■ The HY and FI coefficients \$\tilde{\varphi}_{j}^{HY}\$ and \$\tilde{\varphi}_{j}^{FI}\$ are characterized by a hyperbolic decay

$$ilde{\psi}^{\mathsf{HY}}_j = O(j^{-1-d}) \quad \text{and} \quad ilde{\psi}^{\mathsf{FI}}_j = O(j^{-1-d}), \quad \text{for } 0 < d < 1,$$

leading to long memory.

Affine Multi-Component Fractional Models

Multi-Component.

Although the HY is a combination of short- and long-memory models, the single volatility regime may **not be rich enough** to capture the market behaviour over different periods.

We introduce the FI-HN model as a mixture of HN and FI components:

$$\begin{split} h_t &= w_1 \sigma_{1,t}^2 + w_2 \sigma_{2,t}^2, \quad w_1, w_2 \geq 0, \\ \sigma_{1,t}^2 &= \omega_1 + \beta_1 \sigma_{1,t-1}^2 + \psi_1^{\mathsf{FI}}(L) \left(z_t - \gamma_1 \sqrt{h_t} \right)^2, \\ \sigma_{2,t}^2 &= \omega_2 + \beta_2 \sigma_{2,t-1}^2 + \psi_2^{\mathsf{HN}}(L) \left(z_t - \gamma_2 \sqrt{h_t} \right)^2. \end{split}$$

■ The FI-HN model can be extended to a **HY-HN structure** by replacing $\psi_1^{\text{FI}}(L)$ with $\psi_1^{\text{HY}}(L)$.

Affine Multi-Component Fractional Models, cont'd

Nested Case.

We can obtain a **two-component short-memory model** by setting d = 0, similar to the model proposed by Christoffersen et al. (2008). It is denoted by HN-HN henceforth.

Summary of Nested Competing Models

- **HN model**: affine GARCH(1,1) model of Heston and Nandi (2000).
- 2 **FI model**: the affine version of the fractionally integrated variance process proposed by Wang (2007).
- **HY model**: a hyperbolic fractionally integrated version of the HN model, similar in spirit to Davidson (2004).
- **HN-HN model**: a two-component model for which both components are short memory HN model, similar to Christoffersen et al. (2008).
- **5 FI-HN model**: a two-component model with the first variance component given by the FI model and the second component by the HN model.
- **HY-HN model**: a two-component model with the first variance component following the HY model and the second component the HN model.

Outline

1 Introduction

2 Long-Memory Affine GARCH Models

3 Derivative Valuation

4 Data and Estimation Methodology

5 Joint Estimation and Option Valuation Empirics

6 Concluding Remarks

Component Affine ARCH(∞) Models

■ We develop a **pricing framework** for the valuation of European-style derivatives assuming the following P-dynamics:

$$y_t = r + \lambda h_t + \sqrt{h_t} z_t, \quad z_t \sim \mathcal{N}(0, 1)$$

$$h_t = \boldsymbol{w}^\top \boldsymbol{\sigma}_t^2, \quad \boldsymbol{w} = [w_1 \ w_2]^\top \ge \boldsymbol{0},$$

$$\boldsymbol{\sigma}_t^2 = \boldsymbol{\omega} + \boldsymbol{\beta} \odot \boldsymbol{\sigma}_{t-1}^2 + \sum_{j=1}^{\infty} \boldsymbol{\psi}_j \odot \boldsymbol{I}_{t-j},$$

where $\sigma_t^2 \equiv [\sigma_{1,t}^2 \ \sigma_{2,t}^2]^{\top}$ is the two-dimensional vector of conditional variance components which admit ARCH(∞) representations driven by the noise $I_t \equiv [I_{1,t} \ I_{2,t}]^{\top}$ defined as:

$$I_{k,t} = \left(z_t - \gamma_k \sqrt{h_t}\right)^2$$
, for $k = 1, 2$,

where γ_k is the k^{th} component leverage parameter.

Component Affine ARCH(∞) Models, cont'd

More Component?

The pricing framework is extended to *K* components in the article.

Non-Monotonic Pricing Kernel

■ The P-equivalent **risk-neutral probability measure** Q is defined by:

$$\frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathcal{F}_{t}} = \prod_{s \leq t} \exp\left(\theta_{Y}Y_{s} + \boldsymbol{\theta}_{\sigma}^{\top}\boldsymbol{\sigma}_{s+1}^{2} - \mathcal{G}_{\left(Y_{s},\boldsymbol{\sigma}_{s+1}^{2},\boldsymbol{I}_{s}\right)}^{\mathbb{P}}\left(\theta_{Y},\boldsymbol{\theta}_{\sigma},\boldsymbol{0} \mid \mathcal{F}_{s-1}\right)\right),$$

where $\mathcal{G}_{(Y_s,\sigma_{s+1}^2,I_s)}^{\mathbb{P}}(\theta_Y,\theta_\sigma,\mathbf{0} | \mathcal{F}_{s-1})$ is the joint cgf of $Y_s, \sigma_{1,s+1}^2$, and I_s . Here, θ_Y and $\theta_\sigma = [\theta_{1,\sigma} \ \theta_{2,\sigma}]^{\top}$ represent the equity and the vector of variance component risk preference parameters, respectively, and satisfy:

$$\theta_{\mathbf{Y}} = -\lambda - \frac{1}{2} + 2 \left(\boldsymbol{\theta}_{\sigma} \odot \boldsymbol{\psi}_{1} \right)^{\top} \left(\boldsymbol{\lambda} + \boldsymbol{\gamma} \right),$$

where λ is a *K*-dimensional vector for which all components are equal to λ .

This is called the no-arbitrage constraint because it ensures that the discounted asset price is a martingale under Q.

Valuation of European-Style Derivatives

- We use the inverse Laplace representation of the option payoff.
- A European call payoff with strike X admits the following representation:

$$H = f(Y_T) = \max\left[e^{Y_T} - X, 0\right] = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} e^{zY_T} \check{f}(z) dz, \quad \text{for any } R > 1,$$

where the kernel function is given by $\check{f}(z) = X^{1-z}/(z(z-1))$.

■ The time-t price of an option with a maturity of T – t and a strike of X is:

$$O_t^{\text{Model}}(X, T) = \frac{e^{-r(T-t)}}{2\pi i} \int_{R-i\infty}^{R+i\infty} \exp\left(\mathcal{G}_{Y_T}^{\mathbb{Q}}\left(z \mid \mathcal{F}_t\right)\right) \check{f}(z) \, dz, \tag{3}$$

where $\mathcal{G}_{Y_{T}}^{\mathbb{Q}}(z \mid \mathcal{F}_{t})$ is the risk-neutral cgf of the terminal log-price Y_{T} conditional on \mathcal{F}_{t} .

Valuation of European-Style Derivatives, cont'd

Proposition 1 (Log-Price Cumulant Generating Function).

For any real *u* and for any $t, T \in \mathbb{Z}$ with $t \leq T$, the terminal conditional cgf of the log-price $Y_T = \log S_T$ is given by

$$\mathcal{G}_{Y_{T}}^{\mathbb{Q}}\left(z\mid\mathcal{F}_{t}\right)=\mathcal{A}^{*}(z;t,T)+zY_{t}+\boldsymbol{\mathcal{B}}^{*}(z;t,T)^{\top}\boldsymbol{\sigma}_{t+1}^{*2}+\sum_{j=1}^{\infty}\boldsymbol{\mathcal{C}}_{j}^{*}(z;t,T)^{\top}\boldsymbol{I}_{t+1-j}^{*},$$

where

$$\boldsymbol{\sigma}_{t+1}^{*2} = \pi \boldsymbol{\sigma}_{t+1}^{2}, \qquad \boldsymbol{I}_{t+1-j}^{*} = \frac{\boldsymbol{I}_{t+1-j}}{\pi}, \quad \text{with} \quad \pi = \frac{1}{1 - 2 \left(\boldsymbol{\theta}_{\sigma} \odot \boldsymbol{\psi}_{1}\right)^{\top} \mathbf{1}},$$

The coefficients $\mathcal{A}^*(z; t, T)$, $\mathcal{B}^*(z; t, T)$, and $C_j^*(z; t, T)$ satisfy some recursions.

Outline

1 Introduction

- 2 Long-Memory Affine GARCH Models
- 3 Derivative Valuation

4 Data and Estimation Methodology

- 5 Joint Estimation and Option Valuation Empirics
- 6 Concluding Remarks

Data

- Daily S&P 500 index returns from January 1976 to December 2019 obtained from the Center for Research in Security Prices (CRSP).
 - → The estimation sample begins in 1996, and the returns from January 1976 to December 1995 are used to warm up the filter.
 - \rightarrow We use a total of 6,042 daily returns in the estimation.
- Three-month Treasury bill rate from the Federal Reserve Board's H.15 report.
- OTM S&P 500 put and call implied volatilities on Wednesdays from January 1996 to December 2019 extracted from OptionMetrics.
 - \rightarrow We use the usual filters (see, e.g., Bakshi et al., 1997; Carr and Wu, 2011; Christoffersen et al., 2012, 2013).
 - $\rightarrow\,$ We select the six most liquid options (based on volume) for each maturity and date, and we end up with 45,084 options.

Estimation Methodology

Return-and option-based joint maximum likelihood estimation:

$$\ell^{\text{Joint}}(\Theta) = \frac{T+N}{2} \left(\frac{\ell^{\text{Returns}}(\Theta)}{T} + \frac{\ell^{\text{Options}}(\Theta)}{N} \right).$$

where

$$\ell^{\text{Returns}}(\Theta) = \log \prod_{t=t_0+1}^{T} \frac{1}{2\pi h_t} \exp\left(-\frac{1}{2} \frac{(y_t - r - \lambda h_t)^2}{h_t}\right),$$

$$\ell^{\text{Options}}\left(\Theta \left|\left\{\{\text{IV}_{t,i}\}_{i=1}^{n_t}\right\}_{t=t_0+1}^{T}\right\} = \log \prod_{t=t_0+1}^{T} \prod_{i=1}^{n_t} \frac{1}{2\pi s_{\epsilon}^2} \exp\left(-\frac{1}{2} \frac{\epsilon_{t,i}^2}{s_{\epsilon}^2}\right),$$

and $\epsilon_{t,i} = IV_{t,i} - IV(O_t^{Model}(X_{t,i}, T_{t,i})).$

Implementation

- Throughout our calculations and variance updates, infinite sums need to be truncated. We use a value of 1,000 lags—an optimal tradeoff in terms of accuracy and computational speed.
- To begin our variance update recursions, we fix all the pre-sample terms (i.e., *t* < 1) to their **unconditional average**: we use the unconditional average level for each component and the unconditional expectation for the leveraged terms.
- Option prices are obtained by applying a simple quadrature method (i.e., the trapezoidal rule) to Equation (3) with 1,000 nodes.
- The risk-neutral cgf relies on a truncation of **1,000 lags**, similar to the number of lags used in the variance update calculation.

Outline

1 Introduction

- 2 Long-Memory Affine GARCH Models
- 3 Derivative Valuation
- 4 Data and Estimation Methodology
- 5 Joint Estimation and Option Valuation Empirics
- 6 Concluding Remarks

Joint Maximum Likelihood Estimates

	One-component models			Two-component models		
	HN	FI	HY	HN-HN	FI-HN	HY-HN
λ	2.14	0.00	1.77	2.98	3.15	3.16
	:	÷	:	:	÷	÷
τ	-	—	0.97	-	-	1.00
	÷	:	:	:	:	:
d	_	0.45	0.49	-	0.36	0.36
•	:	•	:	:	:	•
π	1.06	1.06	1.08	1.19	1.04	1.04
Log-likelihood Return Option Joint	19,496 82,616 129,330	19,531 88,589 132,865	19,499 89,086 133,012	19,501 90,422 133,777	19,512 90,870 134,077	19,512 90,878 134,080
IVRMSE (%)	3.87	3.39	3.35	3.26	3.22	3.22

Out-of-Sample Study

- We focus on the **last 10 years** of our sample.
- We estimate all models jointly on returns and options using an expanding window.
- We then compute implied volatility on the options traded in the year following the end of the sample.
- The approach is similar in spirit to the out-of-sample analyses performed by Huang and Wu (2004) and Christoffersen et al. (2009).

Out-of-Sample Implied Volatility RMSEs

Panel A: Out-of-sample IVRMSEs.

One-component models HN FI HY 3.77 3.03 3.04		odels	Two-component models	
HN	FI	HY	HN-HN	FI-HN
3.77	3.03	3.04	3.09	2.97

Panel B: Out-of-sample IVRMSEs per year.

	One-component models			Two-component mode	
	HN	FI	HY	HN-HN	FI-HN
2010	4.80	3.50**	4.12	3.89*	3.95
2011	4.19	4.18*	4.49	4.34	3.90**
2012	3.52	2.81	2.59**	2.88	2.76*
2013	2.18	1.73*	1.60**	1.93	1.97
2014	2.70	1.97	1.85*	2.18	1.82**
2015	3.16	2.41	2.17*	2.32	2.04**
2016	3.49	3.10	3.32	2.64**	2.75*
2017	3.76	3.59	2.80**	2.96*	3.14
2018	5.12	3.49**	3.67*	4.06	3.70
2019	3.62	2.64**	2.72*	2.81	2.76
Count. Best model	0	3	3	1	3
Count, Second-best model	0	2	4	2	2

Diebold–Mariano Test Statistics

Panel A: Time-series mean of the weekly IVRMSEs.

	One-c	One-component models			Two-component models		
	HN	FI	HY	HN-HN	FI-HN		
Mean Standard deviation	3.41 (1.56)	2.70 (1.39)	2.69	2.76	2.61 (1.44)		

Panel B: DM pairwise statistics for weekly IVRMSEs.

	One-component models			Two-component models		
	HN	FI	HY	HN-HN	FI-HN	
HN Fl		10.81	9.98 -0.62	11.14 -1.22	12.91 1.38 1.86	
HN-HN				-0.47	2.88	

LEAPS: Out-of-Sample Implied Volatility RMSEs

Panel A: Out-of-sample IVRMSEs for LEAPS.

One-component models HN FI HY 4.07 3.07 3.09	Two-component models			
HN	FI	HY	HN-HN	FI-HN
4.07	3.07	3.09	3.52	3.14

Panel B: Out-of-sample IVRMSEs per year for LEAPS.

	One-co	mponent mo	Two-component mode		
	HN	FI	HY	HN-HN	FI-HN
2010	4.81	4.30**	4.73	4.71*	4.88
2011	3.58	3.62	3.49*	3.68	3.19**
2012	4.50	4.39**	4.39*	4.77	4.53
2013	3.62	3.21	2.98*	3.48	2.92**
2014	3.69	2.21	2.11*	2.21	2.09**
2015	3.19	1.62	1.44*	2.21	1.42**
2016	3.05	2.16	2.09*	2.46	1.72**
2017	4.43	2.99	2.47**	3.20	2.65*
2018	5.13	2.73**	3.23*	4.20	3.55
2019	4.02	2.63**	2.92*	3.33	3.11
Count. Best model	0	4	1	0	5
Count, Second-best model	0	0	8	1	1

LEAPS: Diebold–Mariano Test Statistics

Panel A: Time-series mean of the weekly IVRMSEs for LEAPS. **Two-component models One-component models** 1.157 ----

	HIN	FI	Пĭ	HIN-HIN	FI-HIN
Mean	3.84	2.84	2.81	3.26	2.82
Standard deviation	(1.33)	(1.31)	(1.43)	(1.43)	(1.53)

Panel B: DM pairwise statistics for weekly IVRMSEs for LEAPS.

	One-component models			Two-component models		
	HN	FI	HY	HN-HN	FI-HN	
HN		11.78	12.63	8.65	12.60	
FI			-0.54	-8.17	-1.55	
HY				-11.32	-1.32	
HN-HN					10.11	

Outline

1 Introduction

- 2 Long-Memory Affine GARCH Models
- 3 Derivative Valuation
- 4 Data and Estimation Methodology
- 5 Joint Estimation and Option Valuation Empirics

6 Concluding Remarks

Concluding Remarks

- We propose new covariance-stationary long-memory models by mixing short-memory and fractionally integrated processes.
 - → This specification leads to semi-closed forms for the valuation of European-style derivatives for a general class of affine multi-component ARCH(∞) volatility processes.
- Using S&P 500 option data (including LEAPS), we investigate the impact of long-memory dynamics in volatility for option pricing.
 - → Once the informational content from options is incorporated into the parameter estimation process, their out-of-sample pricing performance stands out.
 - → This suggests that long memory captures better the distributional properties of risk-neutral variance forecasts.

References

- Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens (2001). The distribution of realized stock return volatility. Journal of Financial Economics 61(1), 43–76.
- Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics 73(1), 5-59.
- Bakshi, G., C. Cao, and Z. Chen (1997). Empirical performance of alternative option pricing models. Journal of Finance 52(5), 2003– 2049.
- Bollerslev, T. and H. O. Mikkelsen (1996). Modeling and pricing long memory in stock market volatility. *Journal of Econometrics* 73(1), 151–184.
- Carr, P. and L. Wu (2011). A simple robust link between american puts and credit protection. Review of Financial Studies 24(2), 473-505.
- Christoffersen, P., S. Heston, and K. Jacobs (2009). The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well. *Management Science* 55(12), 1914–1932.
- Christoffersen, P., S. Heston, and K. Jacobs (2013). Capturing option anomalies with a variance-dependent pricing kernel. Review of Financial Studies 26(8), 1963–2006.
- Christoffersen, P., K. Jacobs, and C. Ornthanalai (2012). Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options. Journal of Financial Economics 106(3), 447–472.
- Christoffersen, P., K. Jacobs, C. Ornthanalai, and Y. Wang (2008). Option valuation with long-run and short-run volatility components. Journal of Financial Economics 90(3), 272–297.
- Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics 22(1), 16–29.
- Ding, Z. and C. W. J. Granger (1996). Modeling volatility persistence of speculative returns: A new approach. Journal of Econometrics 73(1), 185–215.
- Ding, Z., C. W. J. Granger, and R. F. Engle (1993, June). A long memory property of stock market returns and a new model. Journal of Empirical Finance 1(1), 83–106.

Heston, S. and S. Nandi (2000). A closed-form GARCH option valuation model. Review of Financial Studies 13(3), 585-625.

References, cont'd

- Huang, J.-Z. and L. Wu (2004). Specification analysis of option pricing models based on time-changed Lévy processes. Journal of Finance 59(3), 1405–1439.
- Maheu, J. (2005). Can GARCH models capture long-range dependence? Studies in Nonlinear Dynamics & Econometrics 9(4), Article 1.
- Mikosch, T. and C. Stărică (2004). Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Review of Economics and Statistics 86(1), 378–390.
- Stărică, C. and C. Granger (2005). Nonstationarities in stock returns. Review of Economics and Statistics 87, 503-522.
- Wang, Y. (2007). Three Essays on Volatility Long Memory and European Option Valuation. Ph. D. thesis, McGill University, Canada.

Appendix

Maximum Likelihood Estimates

	One-component models			Two-component models		
	HN	FI	HY	HN-HN	FI-HN	HY-HN
λ	2.44	1.88	2.33	2.42	2.42	2.42
÷	:	:	:	÷	÷	÷
τ	-	-	0.87	-	-	0.99
÷	:	:	÷	÷	÷	÷
d	-	0.19	0.41	-	0.23	0.23
Log-likelihood Return Option Joint	19,630 65,198 120,021	19,663 69,170 122,413	19,668 71,868 123,963	19,688 70,262 123,136	19,689 70,405 123,220	19,689 70,405 123,220
IVRMSE (%)	5.70	5.22	4.91	5.09	5.08	5.08

Annualized Volatility Forecasts

