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Fractional Brownian motion

• Denote by W a standard Brownian motion (Wiener process).

• Denote by Ŵ a fractional Brownian motion (fBm) of Riemann-Liouville type with
Hurst index 0 < H < 1, i.e.,

Ŵt :=

∫ t

0

K(t− s)dWs, K(r) :=
√

2HrH−1/2, r > 0. (1)

• When H = 1
2

, W = Ŵ .
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Roughness of the paths

H=0.1 H=0.3

H=0.5 H=0.8

Figure: Rough paths are (H − ε)-Hölder continuous, for any ε > 0.
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Volatility is rough

• Consider a general stochastic volatility model given under a risk neutral probability
measure as dSt = rStdt+ St

√
Vt
(
ρ dWt +

√
1− ρ2 dBt

)
;

S0 = s0,
(2)

where ρ ∈ [−1, 1] denotes the correlation coefficient and the constant r the interest rate.

• (Vt)t≥0 is the volatility process. It was set to be constant in classical Black-Scholes
models. Later, it was modelled via stochastic differential equations. But, . . . . . .
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Compare the roughness (intuitively)

Oxford-Man KRV estimates of SPX realized variance from January 2000 to year 2018 (by J. Gatheral et al.)

https://tpq.io/p/rough volatility with python.html

A: H=0.12 B: H≈ 0.5 C: H=0.8
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Evidence shows roughness of order H = 0.1

To mention but a few,

Alòs, León, & Vives, 2007;

Bayer, Friz, & Gatheral, 2016;

Forde & Zhang, 2017;

Fukasawa, 2011, 2017;

Gatheral, Jaisson, & Rosenbaum, 2018;

El Euch, Fukasawa, & Rosenbaum, 2018;

. . .

For the rough volatility literature, you may refer to

https://sites.google.com/site/roughvol/home
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Consider a general stochastic volatility model given under a risk neutral probability
measure as dSt = rStdt+ St

√
Vt
(
ρ dWt +

√
1− ρ2 dBt

)
;

S0 = s0,
(3)

where ρ ∈ [−1, 1] denotes the correlation coefficient and the constant r the interest rate.

Rough Bergomi model (Bayer-Friz-Gatheral-2016)

The stochastic variance is given as

Vt = ξtE
(
ηŴt

)
, (4)

where ξt denotes the forward variance curve (a quantity which can be computed from the
implied volatility surface), E denotes the Wick exponential, i.e.,
E(Z) := exp

(
Z − 1

2
varZ

)
for a zero-mean normal random variable Z, and η ≥ 0.

Finally, Ŵ denotes a fractional Brownian motion (fBm) of Riemann-Liouville type with
Hurst index 0 < H < 1

2
, i.e.,

Ŵt :=

∫ t

0

K(t− s)dWs, K(r) :=
√

2HrH−1/2, r > 0. (5)

• The process V (or even (S, V )) may not be a Markov process or a semi-martingale.
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Rough Heston model (Euch-Rosenbaum-2019)

The stochastic variance satisfies the stochastic Volterra equation

Vt = V0 +

∫ t

0

K(t− s)λ (θ − Vs) ds+

∫ t

0

K(t− s)ζ
√
VsdWs, (6)

where the Kernel satisfies

K(r) := rα−1/Γ(α), r > 0,
1

2
< α < 1. (7)

• The process V (or even (S, V )) may not be a Markov process or a semi-martingale.
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Setting

• Let (Ω,F , (Ft)t∈[0,T ],P) be a complete filtered probability space with the filtration
(Ft)t∈[0,T ] being generated by two independent Wiener processes W and B.

• (FW
t )t∈[0,T ] is the filtration generated by the Wiener process W .
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Consider a general stochastic volatility model given under a risk neutral probability
measure as dSt = rStdt+ St

√
Vt
(
ρ dWt +

√
1− ρ2 dBt

)
;

S0 = s0,
(8)

where ρ ∈ [−1, 1] denotes the correlation coefficient and the constant r the interest rate.
We impose the following assumptions on the stochastic variance process V .

Assumption 1

V has continuous trajectories, takes values in R≥0, and is adapted to the filtration
generated by the Brownian motion W . We further assume that V is integrable, i.e.,

E

[∫ T

0

Vsds

]
<∞, T > 0.

• Both the rough Bergomi model and rough Heston model satisfy the above assumption.
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The fair price of a European option with payoff H, as the smallest initial wealth required
to finance an admissible (super-replicating) wealth process, is given by (Cox-Hobson-05)

Pt(s) := E
[
e−r(T−t)H(St,sT )

∣∣Ft

]
. (9)

• In the special/classical case when Vt ≡ σ2 is a constant, Pt(s) is deterministic and
satisfies the so-called Black-Scholes equation:−

∂Pt(s)

∂t
=
σ2s2

2
D2
ssPt(s)− rsDsPt(s)− rPt(s);

PT (s) = H(s),

• Markovianity leads to a deterministic value function Pt(s); general models include
hidden Markov models to restore the Markovianity by extending the state spaces.
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Difficulties of pricing options under rough volatility

• The process V (or even (S, V )) may not be a Markov process or a semi-martingale; in
fact, the adopted rough Bergomi/Heston models are neither.

• It is impossible to characterize the value function Pt(s) with a conventional
(deterministic) partial differential equation (PDE).

• Indeed, Pt(s) satisfies the following backward stochastic PDE (BSPDE,
Yong-Ma-1999-PTRF):

−dPt(s) =

[
Vts

2

2
D2
ssPt(s) + ρ

√
VtsDsΨt(s)− rsDsPt(s)− rPt(s)

]
dt

−Ψt(s) dWt;

PT (s) = H(s), s ∈ (0,∞).

where both Pt(s) and Ψt(s) are unknown random fields.

• Question: Wellposedness and computations ?
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Coordinate Transformation

• Taking Xt = log(e−rtSt), we may reformulate the above pricing problem, i.e.,

ut(x) := E
[
e−r(T−t)H(eX

t,x
T

+rT )
∣∣Ft

]
, (t, x) ∈ [0, T ]× R, (10)

subject todX
t,x
s =

√
Vs
(
ρ dWs +

√
1− ρ2 dBs

)
− Vs

2
ds, 0 ≤ t ≤ s ≤ T ;

Xt,x
t = x.

(11)

• Obviously, we have ut(x) = Pt(e
x+rt) and ut(x) satisfies BSPDE:−dut(x) =

[Vt
2
D2ut(x) + ρ

√
VtDψt(x)− Vt

2
Dut(x)− rut(x)

]
dt− ψt(x) dWs;

uT (x) = H(ex+rT ), x ∈ R.

• Question: Wellposedness and computations ?
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Wellposedness of semilinear BSPDEs

• Consider a general nonlinear BSPDE:

−dut(x) =
[Vt

2
D2ut(x) + ρ

√
VtDψt(x)− Vt

2
Dut(x)

+ Ft(e
x, ut(x),

√
(1− ρ2)VtDut(x), ψt(x) + ρ

√
VtDut(x))

]
dt

− ψt(x) dWs, (t, x) ∈ [0, T )× R;

uT (x) = G(ex), x ∈ R.

(12)

• The previous stochastic Black-Scholes equation is a particular case when
Ft(x, y, z, z̃) ≡ −ry and G(ex) = H(ex+rT ).

• Difficulty lies in the combination of the non-uniform-boundedness of (Vt)t∈[0,T ] and the
inintegrability of G(ex) and Ft(e

x, y, z, z̃) w.r.t. x on the whole space R.
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Feynman-Kac formula

Let the triple (Y t,xs , Zt,xs , Z̃t,xs ) be the L1-solution to backward SDE (Briand et al.-2003):{
−dY t,xs = Fs(e

Xt,x
s , Y t,xs , Zt,xs , Z̃t,xs ) ds− Z̃t,xs dWs − Zt,xs dBs, 0 ≤ t ≤ s ≤ T ;

Y t,xT = G(Xt,x
T ).

(13)

Theorem

Value function Φt(x) := Y t,xt is just FW
t -measurable.

The weak solution (u, ψ) of BSPDE (12) satisfies

uτ (Xt,x
τ ) = Y t,xτ ,

√
(1− ρ2)VτDuτ (Xt,x

τ ) = Zt,xτ , ψτ (Xt,x
τ ) + ρ

√
VτDuτ (Xt,x

τ ) = Z̃t,xτ ,

for 0 ≤ t ≤ τ ≤ T and x ∈ R, where (Y t,xτ , Zt,xτ , Z̃t,xτ ) is the unique solution to BSDE
(13).

Remark

For hedging, Z =
√

(1− ρ2)V Du is delta, and Z̃ = ψ + ρ
√
V Du corresponds to

portfolios in the forward variance curve ((E [Vt+u|Ft])u∈[0,T−t] using liquid variance
swaps or European options) in rough Heston models; see El Euch-Rosenbaum-2018.
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Omar El Euch, and Mathieu Rosenbaum.
Perfect hedging in rough Heston models
Ann. Appl. Probab., 28(6), 3813–3856, 2018.

Theorem: existence and uniqueness of weak solution

Suppose further that there is an infinitely differentiable function ζ such that ζ(x) > 0 for
all x ∈ R and

G(e·+X
0,0
T )ζ(·) ∈ L2(Ω,FT ;L2(R)), ζ(·)F·(e·+X

0,0
· , 0, 0, 0) ∈ L2(Ω× [0, T ];L2(R)). (14)

Then BSPDE (12) admits a unique weak solution (u, ψ).
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• Consider the rough Bergomi model with parameters: H = 0.07, η = 1.9, ρ = −0.9,
r = 0.05, T = 1, X0 = ln(100). For simplicity, we choose the forward variance curve to
be ξ(t) ≡ 0.09, independent of time.

• We have the associated FBSDE:

dX0,x
s =

√
Vs
(
ρ dWs +

√
1− ρ2 dBs

)
− Vs

2
ds, 0 ≤ s ≤ T ;

X0,x
0 = x;

Vs = ξs E(η Ŵs) with Ŵs =

∫ s

0

√
2H(s− r)H−1/2 dWr, s ∈ [0, T ];

dY 0,x
s = rY 0,x

s ds+ Z0,x
s dWs + Z

0,x
s dBs, s ∈ [0, T ];

Y 0,x
T = (K − eX

0,x
T

+rT )+.
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• N = 20 in the Euler Scheme and set a single hidden layer whose number of neurons is
equal to half of the total number of neurons in the input and output layers.

• activation function: Sigmoid; Optimizer: Adam

Reference value RSD = standard deviation
average value

Estimated value RSD

K = 90 4.9550 0.0259 4.9535 0.0228
K = 100 7.8284 0.0135 7.8061 0.0201
K = 110 12.1844 0.0100 12.1940 0.0143
K = 120 18.1631 0.0077 18.1699 0.0055

Table: Prices of European put options at t=0 under the different strike prices K.

• Reference values are calculated by Monte Carlo method.
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Thank You !
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