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Singular solutions of 2D incompressible Euler equations

∂tω + u · ∇xω = 0,

u = ∇⊥∆−1ω.

(Generalized) Yudovich solutions ω ∈ L∞: globally well-posed.

Diperna-Majda solutions ω ∈ Lp: global existence.

Weak solutions.
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Singular solutions of 2D incompressible Euler equations

Q1. What can we say about the behavior of singular solutions?

Propagation of certain structures? Singular vortices?

Q2. Can we derive singular solutions as limits?

Limits of smooth solutions/ vanishing viscosity limit/etc.
Macroscopic limit of solutions of Boltzmann equation.
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Transport equation

{
∂tθ + u · ∇xθ = 0,

θ|t=0 = θ0.
(Tr)

Associated ODE: 
d

dt
φ(x , t) = u(φ(x , t), t),

φ(x , 0) = x .
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Transport equation

Condition for uniqueness: Osgood.

L : (0,mL)→ R+: modulus of continuity.

|u(x , t)− u(y , t)| ≤ ‖u‖LL(|x − y |),
lim

z→0+
M(z) =∞,

M(z) :=

ˆ mL

z

dr

L(r)
.

Osgood’s lemma:
−M(|φ(x , t)− φ(y , t)|) ≤ −M(|x − y |) +

´ t
0 ‖u(s)‖Lds.
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Transport equation

u Lipschitz: L(z) = z , M(z) = log+(1/z).

u log-Lipschitz: L(z) = z log(1/z), M(z) = log log+(1/z).

L(z) = z log(1/z) log2(1/z) · · · logn(1/z), M(z) = logn+1(1/z).
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Transport equation

For Osgood u, unique integrable solution to (Tr) (Ambrosio and
Bernard 2008, Caravenna and Crippa 2021):

θ(x , t) = θ0(φ−1(x , t)). (Flow)

Not much quantitative information about θ.
(EX: Loss of regularity below Lipschitz)

Certain singular features propagate by Osgood vector fields.
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Propagation of singular structures

Theorem (Drivas, Elgindi, L. 2022)

Let L : (0,mL)→ R+ be Osgood(i.e. M(0+) =∞, M(z) =
´ mL

z
dr
L(r) ), u

div-free with modulus of continuity L. Define the seminorm by

[f ]x ,γ,L = lim
r→0+

sup
y :0<|x−y |<r

|f (x)− f (y)|
M(|x − y |)γ

, γ ∈ R.

Then θ = θ0(φ−1(x , t)) defined by (Flow) preserves the seminorm:

[θ(t)]φ(x ,t),γ,L = [θ0]x ,γ,L.

γ > 0: singularities, γ < 0: cusps.

Chae and Jeong (2020): preservation of logarithmic cusps for
Lipschitz drifts.
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Propagation of singular structures

Certain singular structures keep their shape.

Theorem (Drivas, Elgindi, L. 2022)

Let L and M as before (L Osgood, M(z) =
´
z

dr
L(r) .) Let F be a smooth

function with at most linear growth at infinity (sup|z|≥1 |F ′(z)| <∞). If
θ0 has the form

θ0(x) = F (M(|x − x0|)) + b0, b0 ∈ L∞

near x = x0, then θ(x , t) given by (Flow) has the form

θ(x , t) = F (M(|x − φ(x0, t)|)) + b, b ∈ L∞

near x = φ(x0, t).
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Propagation of singular structures

What kinds of shape can propagate?

M(|x − x0|),
√
M(|x − x0|), log(M(|x − x0|)), etc.

Pathological shape: F (z) = sin(λz), λ > 0 small. θ(x , t) changes
signs like Topologist’s sine curve as x → φ(x0, t) (t ≤ T ).

Even more singular (i.e. superlinear F )? It seems to be sharp: if F
grows faster, b /∈ L∞.
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Propagation of singular vortices in 2D Euler equations

Application: 2D incompressible Euler, singular initial data.

Singular vortex M→ u (Biot-Savart).
BUT, modulus of continuity for u worse than L = −1/M′.
Cancellation from radial symmetry of M.
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Propagation of singular vortices in 2D Euler equations

ω =M in generalized Yudovich space: ‖ω‖Lp grows mildly in p.

Θ : [1,∞)→ R+,
´∞

1
dp

pΘ(p) =∞.

YΘ :=

{
f ∈ ∩p∈[1,∞)L

p : ‖f ‖YΘ
:=
‖f ‖Lp
Θ(p)

<∞
}
.

Modulus of continuity:

|u(x , t)− u(y , t)| . |x − y | log(1/|x − y |)Θ(log(1/|x − y |)).

Existence and uniqueness in YΘ (Yudovich 1995, Serfati 1994.)
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Propagation of singular vortices in 2D Euler equations

L: Osgood, z log(1/z) . L(z), M(z) =
´
z

dr
L(r) .

M(z) = log log+(1/z), log3(1/z), · · · .
ω =M(|x − x0|) propagates in 2D Euler equations.

Theorem (Drivas, Elgindi, L. 2022)

Let Θ(p) = logk(p), k ≥ 0, L,M as above, b0 ∈ YΘ ∩ L1,
f ∈ L1

loc(R;YΘ ∩ L1),

ω0(x) =M(|x |) + b0(x).

Then there is b : L∞loc(R;YΘ ∩ L1), φ∗(t) : R→ R2 such that

ω(x , t) =M(|x − φ∗(t)|) + b(x , t).

Meaningful only when M is more singular than b.
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Propagation of singular vortices in 2D Euler equations

Sketch of the proof.

We find governing equation for φ∗ and b.
Ansatz: assume b and φ∗ as above.

ω(x , t) = ωs(x , t) + b(x , t), ωs(x , t) =M(|x − φ∗(t)|).

ur := −∇⊥(−∆)−1b, us := −∇⊥(−∆)−1ωs : Osgood.
Key observation: ωs radial, us circular, so us · ∇xωs = 0.

(∂t + u · ∇x)ωs = (∂t + ur · ∇x)ωs = (∂t + ur · ∇x)(|x − φ∗(t)|)M′.

d

dt
φ∗(t) = ur (φ∗(t), t), φ∗(0) = 0⇒ (∂t + u · ∇x)ωs = 0.

Then equation for b can be written.
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Propagation of singular vortices in 2D Euler equations

Remark 1. Multiple singular vortices.

ω0(x) =
N∑
i=1

γiM(|x − x i0|) + b0(x).

Evolution of center excludes self-interaction.

d

dt
φj(t) = −∇⊥x (−∆)−1

∑
i 6=j

γiM(|x − φi (t)|) + b(x , t)

 ◦ φj(t),

φj(0) = x j0.

cf. Vortex-wave system (point vortices + perturbation). Point
vortices do NOT solve Euler since too singular (Schochet 1996), while
the above are actual solutions.

Remark 2. Is log log+ the most singular vortex? (Open).
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Propagation of possible nonuniqueness

2D Euler with ω0 ∈ Lp, 1 ≤ p <∞.

Diperna and Majda(1987): global existence.

Vishik(2018): non-uniqueness with forcing.

Let ω1(t), ω2(t) be two solutions from ω0 ∈ Lp.
How different are they?

Non-uniqueness “propagates” with speed ‖u‖L∞ for p > 2.
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Propagation of possible nonuniqueness

Theorem (Drivas, Elgindi, L. 2022)

1 Let u1, u2 ∈ C ([0,T );W 1,p) be two distinct weak solutions to 2D
velocity-Euler with u1(0) = u2(0). Then u1 − u2 cannot be smooth.

2 Let ω0 ∈ L1 ∩ Lp, smooth away from origin. Let ωε0 be regularized
data, which are uniformly smooth away from B1(0), and let ωε be
corresponding solution.
Let ω∗ be a subsequential limit of ωε, ε→ 0. Then ω∗ is a weak
solution to 2D Euler equation, which is smooth outside of B1+Ct(0)
where C = supε ‖uε‖L∞ .
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Singular Euler solutions as limits

Singular solutions: limit of regular solutions.

Limit of regular Euler solutions (e.g. Crippa, De Lellis 2008)
Vanishing viscosity limit (e.g. Constantin, Drivas, Elgindi 2020)
Macroscopic limits of smaller scale description of fluids?
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Singular Euler solutions as limits of Boltzmann

Hilbert’s sixth problem (1900): developing limiting processes between
physical models of different scales.

Ruling out small scale fluctuations by averaging.

If fluids are not regular, the limiting process becomes nontrivial.
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Kinetic description: Boltzmann equation

∂tF + v · ∇xF = Q(F ,F ).

(Hard-sphere) Collision Q(F ,F )(v)

Q(F ,G )(v) =
1

2

ˆ
R3×S2

|(v − v∗) · σ|(Fv ′Gv ′∗ − FvGv∗)dv∗dσ.

(v ′, v ′∗)→ (v , v∗) after collision, σ: collision cross-section.

(local) Maxwellian: R density, U velocity, Θ temperature.

MR,U,Θ(v) =
R

(2πΘ)
3
2

exp

(
−|v − U|2

2Θ

)
.
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Non-dimensionalization

Non-dimensionalize, take the limit.

Two non-dimensional numbers

St := macroscopic length
microscopic length

Kn := mean free path length
macroscopic length : frequency of collision.

Non-dimensionalized Boltzmann equation:

St∂tF + v · ∇xF =
1

Kn
Q(F ,F ).

Ma := (macroscopic) velocity scale
(microscopic) velocity scale = St.

1
Re = Kn

Ma (Von Karman).
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Hydrodynamic limit

More collisions Kn→ 0: averages representative of the distribution
(hydrodynamic regime).

Ma << 1: macroscopic velocity << particle velocity - incompressible
regime.

Ma = Kn→ 0: incompresible Navier-Stokes.

Kn << Ma→ 0: incompressible Euler.
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Hydrodynamic limit

ε = St = Ma→ 0, κ = κ(ε) = 1
Re → 0 for

ε∂tF
ε + v · ∇xF

ε =
1

εκ
Q(F ε,F ε),

Goal: 1
ε

´
R3 vF

ε(x , t, v)dv → u(x , t).

x ∈ T2 (symmetric in z direction).
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Hydrodynamic limits toward Euler equation

Hilbert expansion: perturbative method.

Singular limit (κ→ 0): use the local Maxwellian µ := M1,εu,1

F ε = µ+ εfR
√
µ+ (correctors).

We ask limε→0 fR = 0: 1
ε

´
vF ε = u +

´
vfR
√
µ+ · · · .

Stability estimate of fR .
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Hydrodynamic limits toward Euler equation

Regularity requirements for u:

Relative entropy (Saint-Raymond 2003): ∇xu ∈ L1
tL

∞
x needed,

1
ε

´
vF ε → u weakly.

L2 stability of fR : u ∈ L2
tH

k
x needed, 1

ε

´
vF ε → u strongly in L2.

Hk stability of fR : higher regularity for u needed, stronger convergence.
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Issues

1 Not enough regularity: ∇xu /∈ L∞.

2 Singular structures only observable in stronger topology (e.g.
interfaces in vortex patch)

3 Viscosity effect blurs singular structures.

4 Large perturbation(general data): fR = o(1), but as large as possible.
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Issues

Issues 3 and 4: Incompressibility - size ε−1, Euler equation - size ε0,
viscosity term - size κ.

Need to suppress up to size κ: (i) put viscosity term in Euler (κ-NS),
or (ii) further corrector expansions (but κ = ε: too singular).
fR = o(κ) optimal: comparable to viscosity effect.

Issues 1 and 2: approximation of u bt uβ (Euler solution with initial

data uβ0 = u0 ? φβ.)

φβ →β→0 δ0: β(ε)→ 0.
Perturbation around µβ = M1,εuβ ,1, stability uβ → u in W 1,p, p <∞.
1
ε

´
F εvdv = uβ + o(1)→ u.

uβ smooth, β can be adjusted: stability estimate for fR in H2
xL

2
v .
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Issues

Issues 2 and 4: using strong topology gives a better scaling.

fR equation: partially coercive, but two problems (more than L2

required).
(i) perturbation around local Maxwellian - higher moment.
(ii) nonlinearity Q(fRµ

β , fRµ
β) - integral with rapidly decaying

multiplier: only lacks integrability in x .
H2

xL
2
v and interpolation L∞ ⊂ H2 treats (ii). (i): small prefactor.

Scaling: fR ∼ o(κ), ∂x fR ∼ o(
√
κ), ∂2

x fR ∼ o(1).

Issues 2 and 3: new expansion designed.

Scales of various terms tractable as only one is (mostly) used.
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Main theorem

Theorem (Kim, L. 2022)

For a singular solution u of 2D Euler equation (ω ∈ Lp, ‖ω‖Lp = Θ(p)),
there exists a sequence of Boltzmann solutions

F ε = µβ + O(κε)

such that 1
ε

´
vF εdv = uβ + O(κ)→ u in W 1,p. Moreover, uβ solves

Euler equation as well.

EX: u vortex patch → uβ smooth Euler, a patch with β-thick layer.
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