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Singular solutions of 2D incompressible Euler equations

8tw+u-vxw20,
u=V+tA~lw.

o (Generalized) Yudovich solutions w € L*: globally well-posed.
@ Diperna-Majda solutions w € LP: global existence.

@ Weak solutions.
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Singular solutions of 2D incompressible Euler equations

@ Q1. What can we say about the behavior of singular solutions?
o Propagation of certain structures? Singular vortices?
@ Q2. Can we derive singular solutions as limits?

e Limits of smooth solutions/ vanishing viscosity limit/etc.
e Macroscopic limit of solutions of Boltzmann equation.
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Transport equation

00+ u- Vil =0,
9‘1_-:0 - 90.

@ Associated ODE:

Joonhyun La  (KIAS) BIRS workshop July 25, 2023 4 /29



Transport equation

@ Condition for uniqueness: Osgood.
e L:(0,m.) — R*: modulus of continuity.

u(x, t) = uly, t)] < [lul[L(x = yI),

zl—lg)]—l— M(Z) - %%

M(z) = /ZmL LC(’:).

@ Osgood's lemma:

~M(|é(x, 1) = 6y, )]) < =M(Ix = y[) + Jq llu(s)|lods.
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Transport equation

e u Lipschitz: L(z) =z, M(z) = log (1/2).
o u log-Lipschitz: L(z) = zlog(1/z), M(z) = loglog (1/z).
o L(z) =zlog(1/z)logy(1/z) - -log,(1/2), M(z) = log,,1(1/2).
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Transport equation

@ For Osgood u, unique integrable solution to (Tr) (Ambrosio and
Bernard 2008, Caravenna and Crippa 2021):

0(x, t) = Oo(¢~(x, t)). (Flow)

@ Not much quantitative information about 6.
(EX: Loss of regularity below Lipschitz)

o Certain singular features propagate by Osgood vector fields.
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Propagation of singular structures

Theorem (Drivas, Elgindi, L. 2022)
Let L:(0,m;) — Rt be Osgood(i.e. M(0+) = oo, M(z) = [™ %), u

z L)
div-free with modulus of continuity L. Define the seminorm by

[flx,L= lim sup M

v e R.
r—0+ y:0<|x—y|<r M(|X - y|)7 ,

Then 0 = (¢~ 1(x, t)) defined by (Flow) preserves the seminorm:

[9( t)](b(X,t),’y,L = [QO]X,’Y,L .

@ ~v > 0: singularities, v < 0: cusps.

e Chae and Jeong (2020): preservation of logarithmic cusps for
Lipschitz drifts.

Joonhyun La  (KIAS) BIRS workshop July 25, 2023 8 /29



Propagation of singular structures

@ Certain singular structures keep their shape.

Theorem (Drivas, Elgindi, L. 2022)

Let L and M as before (L Osgood, M(z) = [, 195.) Let F be a smooth

z L(r)-
function with at most linear growth at infinity (sup|,>1 |F'(z)| < c0). If
0o has the form

Oo(x) = F(M(|x = xo[)) + bo, bo € L™
near x = xo, then 0(x,t) given by (Flow) has the form

0(x,t) = F(M(|x — ¢(xo,t)|)) + b, b € L™

near x = ¢(xo, t).
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Propagation of singular structures

@ What kinds of shape can propagate?

o M(|x —xol), vV M(|x — xol), log(M(|x — x0[)), etc.
e Pathological shape: F(z) = sin(Az), A > 0 small. 6(x, t) changes
signs like Topologist's sine curve as x — ¢(xp,t) (t < T).

@ Even more singular (i.e. superlinear F)? It seems to be sharp: if F
grows faster, b ¢ L.
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Propagation of singular vortices in 2D Euler equations

@ Application: 2D incompressible Euler, singular initial data.

e Singular vortex M — u (Biot-Savart).
BUT, modulus of continuity for u worse than L = —1/M’.

o Cancellation from radial symmetry of M.

Joonhyun La  (KIAS) BIRS workshop July 25, 2023 11 /29



Propagation of singular vortices in 2D Euler equations

@ w = M in generalized Yudovich space: ||w||rr grows mildly in p.

) © _dp _
° ©:[l,00) = RY, [[7 ;505 = .

f
Yo = {f € ﬂpe[l,oo)Lp : Hf”ye = |(|9(HPL; < OO}

@ Modulus of continuity:

u(x, t) — uly, t)] < |x — y[log(1/|x — y|)©(log(1/[x — yI))-

e Existence and uniqueness in Yg (Yudovich 1995, Serfati 1994.)
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Propagation of singular vortices in 2D Euler equations

o L: Osgood, zlog(1/z) < L(z), M(z) = |, %.
® M(z) = loglog,(1/z),logs(1/z),"--.
e w = M(|x — xo|) propagates in 2D Euler equations.

Theorem (Drivas, Elgindi, L. 2022)

Let ©(p) = log,(p), k >0, L, M as above, by € Yo N L,
fell (R YonL),

loc

wo(x) = M(|x]) + bo(x)-
Then there is b : L3 (R; Yo N L1), ¢.(t) : R — R? such that

w(x; t) = M(|x — p.(t)[) + b(x;, t).

@ Meaningful only when M is more singular than b.
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Propagation of singular vortices in 2D Euler equations

Sketch of the proof.

We find governing equation for ¢, and b.
Ansatz: assume b and ¢, as above.

w(x, t) = ws(x, t) + b(x, t),ws(x, t) = M(|x — ¢.(t)]).

Uy := —VH(=A)"tbh,us := —V+(—A) lws: Osgood.
Key observation: ws radial, us circular, so us - Vyws = 0.

(0 4+ u- Vy)ws = (0t + ur - Vi)ws = (0 + ur - Vi)(Ix — ¢u(t) ) M.

@ 50(8) = ur(8u(2), 1), 04(0) = 0= (3% + - Vo) = 0.

Then equation for b can be written. O
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Propagation of singular vortices in 2D Euler equations

@ Remark 1. Multiple singular vortices.

}:% (Ix = x3]) + bo().

Evolution of center excludes self-interaction.

D o5(t) = ~VEB) | S M — 6i(e)) + b, 1) | 0 05(e),
i#j

$;(0) = g
o cf. Vortex-wave system (point vortices + perturbation). Point

vortices do NOT solve Euler since too singular (Schochet 1996), while
the above are actual solutions.

@ Remark 2. Is loglog, the most singular vortex? (Open).
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Propagation of possible nonuniqueness

2D Euler with wp € LP,1 < p < o0.
Diperna and Majda(1987): global existence.
Vishik(2018): non-uniqueness with forcing.

Let wi(t),w2(t) be two solutions from wy € LP.
How different are they?

Non-uniqueness “propagates” with speed ||ul|;« for p > 2.
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Propagation of possible nonuniqueness

Theorem (Drivas, Elgindi, L. 2022)

Q Let uy,up € C([0, T); WLP) be two distinct weak solutions to 2D
velocity-Euler with u1(0) = u2(0). Then uy — uy cannot be smooth.

Q Let wg € L1 N LP, smooth away from origin. Let w§ be regularized
data, which are uniformly smooth away from B1(0), and let w® be
corresponding solution.
Let w, be a subsequential limit of w¢, ¢ — 0. Then w, is a weak
solution to 2D Euler equation, which is smooth outside of By c+(0)
where C = sup, ||u|| 1.
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Singular Euler solutions as limits

@ Singular solutions: limit of regular solutions.

o Limit of regular Euler solutions (e.g. Crippa, De Lellis 2008)
e Vanishing viscosity limit (e.g. Constantin, Drivas, Elgindi 2020)
e Macroscopic limits of smaller scale description of fluids?
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Singular Euler solutions as limits of Boltzmann

@ Hilbert's sixth problem (1900): developing limiting processes between
physical models of different scales.

@ Ruling out small scale fluctuations by averaging.

o If fluids are not regular, the limiting process becomes nontrivial.
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Kinetic description: Boltzmann equation

@ O:F +v-ViF =Q(F,F).
@ (Hard-sphere) Collision Q(F, F)(v)

1

Q(F,G)(v) = / (v —w)-o|(F,G, — F,G,,)dv.do.
2 Jraxse :

(v, v)) = (v, vs) after collision, o: collision cross-section.

o (local) Maxwellian: R density, U velocity, © temperature.

R v — UP
M = _ .
R,U,@(V) (27r )% exp< 20 )
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Non-dimensionalization

Non-dimensionalize, take the limit.

@ Two non-dimensional numbers

. macroscopic length
o St:= microscopic length
o Kn :— mean free path length,

macroscopic length frequency of collision.

@ Non-dimensionalized Boltzmann equation:

1
St0:F + v ViF = - Q(F. F).

.__ (macroscopic) velocity scale
Ma := (microscopic) velocity scale St

1
Re

= $2 (Von Karman).
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Hydrodynamic limit

@ More collisions Kn — 0: averages representative of the distribution
(hydrodynamic regime).

@ Ma << 1: macroscopic velocity << particle velocity - incompressible
regime.

@ Ma = Kn — 0: incompresible Navier-Stokes.

o Kn << Ma — 0: incompressible Euler.
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Hydrodynamic limit

o c=St=Ma—0,rk=r(c) =5 — 0 for
1
e0:F + v -V F° = E—HQ(FE, F©),

e Goal: 1 [bsvFe(x,t,v)dv — u(x, t).

e x € T? (symmetric in z direction).
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Hydrodynamic limits toward Euler equation

Hilbert expansion: perturbative method.

Singular limit (k — 0): use the local Maxwellian p := My ¢4 1
F¢ = i+ efry/t + (correctors).

We ask lim.,ofr =0: L [vFe=u+ [vigy/u+---.
Stability estimate of fg.
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Hydrodynamic limits toward Euler equation

@ Regularity requirements for u:
o Relative entropy (Saint-Raymond 2003): V,u € L}L% needed,
1 ['vFe — u weakly.
o L? stability of fr: u € LZHf needed, 1 [ vF® — u strongly in L.
o H¥ stability of fz: higher regularity for u needed, stronger convergence.
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SIS

@ Not enough regularity: V,u ¢ L.

@ Singular structures only observable in stronger topology (e.g.
interfaces in vortex patch)

© Viscosity effect blurs singular structures.

© Large perturbation(general data): fgr = o(1), but as large as possible.
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SIS

@ Issues 3 and 4: Incompressibility - size e =1, Euler equation - size €9,

viscosity term - size k.
o Need to suppress up to size x: (i) put viscosity term in Euler (k-NS),
or (ii) further corrector expansions (but x = €: too singular).
o fr = o(k) optimal: comparable to viscosity effect.
o Issues 1 and 2: approximation of u bt u® (Euler solution with initial
data ug = uo*qbg.)

° 3 —p—0 do: B(e) — 0.

e Perturbation around ,uB M; .8 1, stability u? = uin Whe ,p < 0.
o I [Fevdv=u’+o0(1) = u.

o u? smooth, § can be adjusted: stability estimate for fg in H2L2.
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SIS

@ Issues 2 and 4: using strong topology gives a better scaling.

o fr equation: partially coercive, but two problems (more than L2
required).
(i) perturbation around local Maxwellian - higher moment.
(ii) nonlinearity Q(frpt®, frt?) - integral with rapidly decaying
multiplier: only lacks integrability in x.
H2L2 and interpolation L>® C H? treats (ii). (i): small prefactor.
Scaling: fr ~ o(k), Oxfr ~ o(\/k),0*fr ~ o(1).
@ Issues 2 and 3: new expansion designed.

o Scales of various terms tractable as only one is (mostly) used.
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Main theorem

Theorem (Kim, L. 2022)

For a singular solution u of 2D Euler equation (w € LP,||w||» = ©(p)),
there exists a sequence of Boltzmann solutions

F¢ = % + O(H&)

such that L [ vFedv = u® + O(k) — u in WP, Moreover, u” solves
Euler equation as well.

e EX: u vortex patch — u” smooth Euler, a patch with 3-thick layer.
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