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Motivation

Can we define a stochastic process X; on graph that behaves like a
Hamiltonian system?

1. Curiosity.

2. The notion of gradient flow on graph has been investigated
extensively, Maas'11, Mielke'11, Chow-Huang-Li-Zhou'12, and
many more.

3. Recent developments on discrete optimal transport (OT)
(Gangbo-Li-Mou'19), Schrédinger equations (SE)
(Chow-Li-Zhou'19) as well as Schrédinger Bridge Problem
(SBP)(Leonard'14, Leonard’'16) have demonstrated
Hamiltonian principles on graph.
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Two systems are equivalent in the sense of

Law(X¢) = p(-,t), P =VS(Xy,1).
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Stochastic Hamiltonian process on a finite graph

Definition
A stochastic process {X;} is called a Hamiltonian process on the graph
G=(V,E)if

1. The density p of X; satisfies the following generalized Master equation,
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2. The density p and the potential S form a Hamiltonian system on the
cotangent bundle 7*P(G) of the density space P(G).

A key concern is whether a Markov process X; exists for such a
master equation or not.



Stochastic Hamiltonian process on a finite graph

Theorem

Suppose that the stochastic process {X:}:>0 with density {p:}+>0 and potential
{St}t>0 forms a Hamiltonian process on the graph G. In addition assume that

Fij is the antiderivative of fj. Then the Hamiltonian always possesses the form
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where V is a function depending p and t. Moreover, the Hamiltonian system on
P(G) is
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X must be a time-inhomogeneous Markov process.



Example 1: OT on graph
The OT problem on graph G,
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min {/ (v, V>g(p)dt} ,
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Op + diVGG(pV) =0, p('v 0) = Pa; p('? 1) = Pb;,

where we define
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The Hamiltonian system is
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Example 2: SBP on graph

The Schrodinger Bridge Problem on G can be expressed as

1
min { | @y +ézc(p)>dr}7 4)
dp + divg (pv) =0, p(-,0) = pa, p(-,1) = py,

where the discrete Fisher Information is

To(p) =5 3 (log(p) — log(0i))Filp).
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Here 0 is some weight function, not necessarily equal to 8Y before.
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Thank you!



