Anisotropy Gauss curvature flow and *LP*-Minkowski problem

Pengfei Guan (joint work with Károly Böröczky)

Workshop on "Applied and Computational Differential Geometry and Geometric PDEs"

BIRS, July 31-August 4, 2023

Minkowski problem: Given a Borel measure $\mu = fd\sigma_{\mathbb{S}^n}$ on \mathbb{S}^n , find a convex body $\Omega \subset \mathbb{R}^{n+1}$ such that its *n*-th area measure

$$S_n(\Omega, x) = \mu$$
.

Corresponding PDE

$$\sigma_n(W_u(x)) = f(x), \quad W_u(x) > 0, \ \forall x \in \mathbb{S}^n, \tag{1.1}$$

u the support function of Ω

$$W_u(x) = (u_{ij}(x) + u\delta_{ij}(x)), \quad \forall x \in \mathbb{S}^n.$$

Necessary condition

$$\int_{\mathbb{S}^n} f(x)x_j d\mu_{\mathbb{S}^n} = 0, \ \forall j = 1, \cdots, n+1.$$

L^p-Minkowski problem (Lutwak), try to solve

$$\sigma_n(W_u(x)) = u^{p-1}f(x).$$

The classical Minkowski problem corresponds to p = 1 in (1.2). We are interested in p < 1.

 $\forall \alpha > 0$, define entropy

$$\mathscr{E}_{\alpha,f}(\Omega) := \sup_{z_0 \in \Omega} \frac{\alpha}{\alpha - 1} \log \left(\oint_{\mathbb{S}^n} u_{z_0}(x)^{1 - \frac{1}{\alpha}} f(x) d\theta(x) \right).$$

A variational problem:

Minimize
$$\mathscr{E}_{\alpha}(\Omega)$$
 under constraint $|\Omega| = c$. (1.3)

A minimizer is a solution to

$$\sigma_n(u_{ij} + u\delta_{ij}) = \lambda f u^{-\frac{1}{\alpha}}, \text{ on } \mathbb{S}^n,$$
 (1.4)

for some $\lambda > 0$.

Problem: solve (1.3).

Find a path to the minimizer of the constraint problem (1.3).

Candidate

Isotropic flow
$$X_t = -f^{\alpha}(\mathbf{v})K^{\alpha}\mathbf{v}, \ \alpha > 0.$$
 (2.1)

Andrews:

Theorem 1

For any $\alpha > 0$ and positive $f \in C^{\infty}(\mathbb{S}^n)$ and any initial smooth, strictly convex hypersurface $\tilde{M}_0 \subset \mathbb{R}^{n+1}$, the hypersurfaces \tilde{M}_{τ} given by the solution of (2.1) exist for a finite time T and converge in Hausdorff distance to a point $p \in \mathbb{R}^{n+1}$ as t approaches T.

 $\Omega \subset \mathbb{R}^{n+1}$ bounded convex, $M = \partial \Omega$, K(x) the Gauss curvature. Flow by power of Gauss curvature

Entropy $\mathscr{E}_{\alpha}(\Omega) = \sup \mathscr{E}_{\alpha}(\Omega, z_0),$

 $\exists ! z_e, \, \mathscr{E}_{\alpha}(\Omega) = \mathscr{E}_{\alpha}(\Omega, z_e), \quad dist(z_e, \partial \Omega) > \delta(d(\Omega), n, |\Omega|).$

$$X_t = -K^{\alpha} v, \quad \alpha > 0. \tag{2.2}$$

where
$$\mathscr{E}_{lpha}(\Omega, z_0) := rac{lpha}{lpha - 1} \log \left(\oint_{\mathbb{S}^n} u_{z_0}(x)^{1 - rac{1}{lpha}} d\theta(x) \right).$$

Normalized flow

$$\frac{\partial}{\partial t}X(x,t) = -\frac{K^{\alpha}(x,t)}{\oint_{\mathbb{S}^n}K^{\alpha-1}}\nu(x,t) + X(x,t). \tag{2.4}$$

(2.3)

Andrews-Guan-Ni:

•

- Under the normalized flow (2.4), $\mathscr{C}_{\alpha}(\Omega(t))$ and $\mathscr{E}_{\alpha}(\Omega(t))$ are non-increasing.
- $\forall \alpha \geq \frac{1}{n+2}$, $\mathscr{E}^{\infty}_{\alpha} := \lim_{t \to \infty} \mathscr{E}_{\alpha}(\Omega_t)$ exists,

$$\mathscr{E}_{\alpha}^{\infty} - \mathscr{E}_{\alpha}(\Omega(t_0)) \leq -\int_{t_0}^{\infty} \left[\frac{\int_{\mathbb{S}^n} f^{1+\frac{1}{\alpha}} d\sigma_t \cdot \int_{\mathbb{S}^n} d\sigma_t}{\int_{\mathbb{S}^n} f^{\frac{1}{\alpha}} d\sigma_t \cdot \int_{\mathbb{S}^n} f d\sigma_t} - 1 \right] dt \leq 0.$$

Here
$$f(x,t) = \frac{K^{\alpha}(x,t)}{u(x,t)}$$
, $d\sigma_t(x) = \frac{u(x,t)}{K(x,t)} d\theta(x)$.

- Flow (2.4) converges to a soliton $\eta u = K^{\alpha}$, $\eta = \int_{\mathbb{S}^n} K^{\alpha 1}$.
- The soliton is a critical point of $\mathscr{E}_{\alpha}(\Omega)$ under the constraint $|\Omega| = |B_1|$.

Classification of solitons:

- $\alpha = \frac{1}{n+2}$, solitons are ellipsoids. (Andrews)
- $\forall \alpha > \frac{1}{n+2}$, soliton is the sphere. (Brendle-Choi-Daskopolous)

 $\oint_{\mathbb{S}^n} f = 1$, $|\Omega| = |B(1)|$, the normalized flow

$$X_t = -\frac{f^{\alpha}(v)K^{\alpha}}{\oint_{\mathbb{S}^n} f^{\alpha}K^{\alpha-1}}v + X. \tag{2.5}$$

Monotonicity: along (2.5),

$$\mathscr{E}_{\alpha,f}(\Omega_{t_2},z) - \mathscr{E}_{\alpha,f}(\Omega_{t_1},z) = \int_{t_1}^{t_2} \left(\frac{\oint_{\mathbb{S}^n} h^{\alpha+1}(x,t) d\sigma_t}{\oint_{\mathbb{S}^n} h(x,t) d\sigma_t \cdot \oint_{\mathbb{S}^n} h^{\alpha}(x,t) d\sigma_t} - 1 \right) dt \leq 0,$$

$$h(x,t) \doteq f(x)u_z^{-\frac{1}{\alpha}}(x,t)K(x,t), d\sigma_t(x) = \frac{u_z(x,t)}{K(x,t)}d\theta(x).$$

Convergence of (2.5)? Entropy point estimate (2.3) fails for $\mathcal{E}_{\alpha,f}$!

Theorem 2

For $\alpha > \frac{1}{n+2}$ and finite non-trivial Borel measure μ on \mathbb{S}^n , $n \ge 1$, there exists a weak solution of (1.4) provided the following holds:

- (i) If $\alpha > 1$ and $\mu = f d\sigma_{\mathbb{S}^n}$ is not concentrated onto any great subsphere $x^{\perp} \cap \mathbb{S}^n$, $x \in \mathbb{S}^n$.
- (ii) If $\alpha = 1$ and μ satisfies that for any linear ℓ -subspace $L \subset \mathbb{R}^{n+1}$ with $1 \le \ell \le n$, we have
 - (a) $\mu(L \cap \mathbb{S}^n) \leq \frac{\ell}{n+1} \cdot \mu(\mathbb{S}^n);$
 - (b) equality in (a) for a linear ℓ -subspace $L \subset \mathbb{R}^{n+1}$ with $1 \le d \le n$ implies the existence of a complementary linear $(n+1-\ell)$ -subspace $\widetilde{L} \subset \mathbb{R}^{n+1}$ such that $\operatorname{supp} \mu \subset L \cup \widetilde{L}$.
- (iii) If $\frac{1}{n+2} < \alpha < 1$ and $d\mu = f d\theta$ for non-negative $f \in L^{\frac{n+1}{n+2-\frac{1}{\alpha}}}(\mathbb{S}^n)$.

Theorem 2 is known. If f is bounded from below and above, it's a result of Chou-Wang.

- \bullet $\alpha > 1$, Chen-Li-Zhu.
- **2** $\alpha = 1$, The paper Böröczky-Lutwak-Yang-Zhang characterized even measures μ . Chen-Li-Zhu for sufficient condition.

Anisotropic approach was discussed in Andrews-Böröczky-Guan-Ni under some symmetry assumptions.

Control diameter by entropy.

$$\forall \delta, \tau \in (0,1), \text{ set } D = diam(\Omega),$$

$$\Psi(L \cap \mathbb{S}^n, \delta) = \{ x \in \mathbb{S}^n : \langle x, y \rangle \le \delta \text{ for } y \in L^{\perp} \cap \mathbb{S}^n \},$$

If $\alpha > 1$, and

$$\oint_{\Psi(z^{\perp} \cap \mathbb{S}^n, \delta)} f \le 1 - \tau, \ \forall z \in S^n,$$

then

$$\exp\left(\frac{\alpha-1}{\alpha}\mathscr{E}_{\alpha,f}(\Omega)\right) \ge \gamma_{1}(n,\alpha)\tau\delta^{1-\frac{1}{\alpha}}D^{1-\frac{1}{\alpha}}.$$
 (3.1)

If $\alpha = 1$, and

$$\oint_{\Psi(L\cap\mathbb{S}^n,\delta)} f < \frac{(1-\tau)i}{n+1}$$

for any linear *i*-subspace *L* of \mathbb{R}^{n+1} , i = 1, ..., n, then

$$\mathscr{E}_{1,f}(\Omega) \ge \tau \log D + \log \delta - 4\log(n+1). \tag{3.2}$$

If
$$\frac{1}{n+2} < \alpha < 1$$
, $p = 1 - \frac{1}{\alpha}$, $\tau \leq \frac{1}{2} \oint_{\mathbb{S}^n} f \cdot u^{1 - \frac{1}{\alpha}}$ and
$$\oint_{\Psi(\tau^{\perp} \cap \mathbb{S}^n, \delta)} f^{\frac{n+1}{n+1+p}} \leq \tau^{\frac{n+1}{n+1+p}}, \ \forall z \in \mathbb{S}^{n-1},$$

then

either
$$D \le 16n^2/\delta^2$$
, or $D \le \left(\frac{1}{2} \oint_{\mathbb{S}^n} f \cdot u^{1-\frac{1}{\alpha}}\right)^{\frac{2}{p}}$. (3.3)

Moreover, if $\tau \leq \frac{1}{2} \exp\left(\frac{\alpha-1}{\alpha} \mathscr{E}_{\alpha,f}(\Omega)\right)$, then

either
$$D \le 16n^2/\delta^2$$
, or $D \le \left(\frac{1}{2}\exp\left(\frac{\alpha-1}{\alpha}\mathscr{E}_{\alpha,f}(\Omega)\right)\right)^{\frac{2}{p}}$. (3.4)

As (2.1) contract to a point, we assume it's the origin.

Lemma 3

Along (2.5),

(a). The entropy $\mathscr{E}_{\alpha,f}(\Omega_t)$ is monotonically decreasing,

$$\mathscr{E}_{\alpha,f}(\Omega_{t_2}) \le \mathscr{E}_{\alpha,f}(\Omega_{t_1}), \quad \forall t_1 \le t_2 \in [0,\infty).$$
 (4.1)

(b). $\forall t_0 \in [0, ∞)$,

$$\mathscr{E}_{\alpha,f}(\Omega_{t_0},0) \ge \mathscr{E}_{\alpha,f,\infty} + \int_{t_0}^{\infty} \left(\frac{\oint_{\mathbb{S}^n} h^{\alpha+1}(x,t) \, d\sigma_t}{\oint_{\mathbb{S}^n} h(x,t) \, d\sigma_t \cdot \oint_{\mathbb{S}^n} h^{\alpha}(x,t) \, d\sigma_t} - 1 \right) dt,$$

$$(4.2)$$

where

$$h(x,t) \doteq f(x)u_0^{-\frac{1}{\alpha}}(x,t)K(x,t), \ \mathscr{E}_{\alpha,f,\infty} \doteq \lim_{t \to \infty} \mathscr{E}_{\alpha,f}(\Omega_t).$$

Assume f satisfies condition in Theorem 2, it follows from (4.1) and (3.1)-(3.4),

$$D(\Omega(t)) \le C. \tag{4.3}$$

Since $|\Omega(t)| = |B(1)|$, we have non-collapsing estimate

$$\frac{\rho_+(\Omega(t))}{\rho_-(\Omega(t))} \le C,$$

where ρ_+ and ρ_- are the outer and inner radii of the convex body.

Set

$$\eta(t) = \oint_{\mathbb{S}^n} h(x, t) d\sigma_t. \tag{4.4}$$

As $\oint_{\mathbb{S}^n} h(x,t) d\sigma_t$ is monotone and bounded from below and above by diameter estimates,

$$C \ge \lim_{t \to \infty} \oint_{\mathbb{S}^n} h(x, t) = \eta \ge \frac{1}{C}$$
 (4.5)

Holder's room

(4.2) implies that $\exists \{t_k\}_{k=1}^{\infty}, \lim_{k\to\infty} t_k = \infty$ and

$$\lim_{k \to \infty} \frac{\oint_{\mathbb{S}^n} h^{\alpha+1}(x,t) d\sigma_t}{\oint_{\mathbb{S}^n} h(x,t) d\sigma_t \cdot \oint_{\mathbb{S}^n} h^{\alpha}(x,t) d\sigma_t} = 1.$$
 (4.6)

Lemma 4

Let $p, q \in \mathbb{R}^+$ with $\frac{1}{p} + \frac{1}{q} = 1$, set $\beta = \min\{\frac{1}{p}, \frac{1}{q}\}$. Let (M, μ) be a measurable space, $\forall F \in L^p, G \in L^q, \|F\|_{L^p} \|G\|_{L^q} > 0$,

$$\frac{\int_{M} |FG| d\mu}{\|F\|_{L^{p}} \|G\|_{L^{q}}} - 1 \le -\beta \int_{M} \left(\frac{|F|^{\frac{p}{2}}}{\left(\int_{M} |F|^{p} d\mu \right)^{\frac{1}{2}}} - \frac{|G|^{\frac{q}{2}}}{\left(\int_{M} |G|^{q} d\mu \right)^{\frac{1}{2}}} \right)^{2}. \tag{4.7}$$

We use the extra room in above improved Holder inequality to deduce weak convergence of flow (2.5).

Proposition 1

Denote $u_k = u(x, t_k)$, $\sigma_{n,k} = \sigma_n(u_{ij}(x, t_k) + u(x, t_k)\delta_{ij})$. Then

$$\lim_{k\to\infty} \oint_{\mathbb{S}^n} |u_k^{\frac{1}{\alpha}} \sigma_{n,k} - \frac{f}{\eta}| d\theta = 0, \tag{4.8}$$

where η is defined in (4.4) which is bounded from below and above in (4.5). As a consequence, there is convex body $\Omega \subset \mathbb{R}^{n+1}$ with $o \in \Omega$,

$$|\Omega| = |B(1)|, \quad \mathscr{E}_{\alpha,f}(\Omega_t) \le \mathscr{E}_{\alpha,f}(B(1)),$$

and its support function u satisfies

$$u^{\frac{1}{\alpha}}S_{\Omega} = \frac{1}{n}fd\theta. \tag{4.9}$$

We only need to verify (4.8), it is equivalent to prove

$$\lim_{k\to\infty}\oint_{\mathbb{S}^n}|u_k^{\frac{1}{\alpha}}\sigma_{n,k}-f\eta^{-1}(t_k)|d\theta=0. \tag{4.10}$$

$$\oint_{\mathbb{S}^n} |u_k^{\frac{1}{\alpha}} \sigma_{n,k} - \frac{f}{\eta(t_k)}| \leq \left(\oint_{\mathbb{S}^n} |\frac{f}{\eta(t_k) u_k^{\frac{1}{\alpha}} \sigma_{n,k}} - 1|^{1+\alpha} d\sigma_{t_k} \right)^{\frac{1}{1+\alpha}} \left(\oint_{\mathbb{S}^n} u_k^{\frac{1}{\alpha^2}} \sigma_{n,k} \right)^{\frac{1}{1+\alpha}}$$

Since $D(t_k)$ is bounded,

$$\oint_{\mathbb{S}^n} u_k^{\frac{1}{\alpha^2}} \sigma_{n,k} d\theta \leq (D(t_k))^{\frac{1}{\alpha^2}} \oint_{\mathbb{S}^n} u_k^{\frac{1}{\alpha^2}} \sigma_{n,k} d\theta \leq (D(t_k))^{\frac{1}{\alpha^2}} |\partial \Omega_{t_k}| \leq C.$$

By Lemma 4, with $p = \alpha + 1$, $F^{\frac{1}{1+\alpha}} = h(x, t_k)$, G = 1

$$\lim_{k \to \infty} \oint \left(\left(\frac{h(x, t_k)}{\eta(t_k)} \right)^{\frac{1+\alpha}{2}} - 1 \right)^2 d\sigma_{t_k} = 0. \tag{4.12}$$

For t_k fixed, let

$$\gamma_k(x) = f \eta^{-1}(t_k) u_k^{-\frac{1}{\alpha}} \sigma_{n,k}^{-1} = h(x, t_k) \eta^{-1}(t_k)$$

and set

$$\Sigma_k = \{ x \in \mathbb{S}^n \mid |\gamma_k(x) - 1| \le \frac{1}{2}. \}$$

It is straightforward to check that $\exists A_{\alpha} \geq 1$ depending only on α such that

$$A_{\alpha} | \gamma_k^{\frac{1+\alpha}{2}}(x) - 1 | \geq | \gamma_k(x) - 1 |, \forall x \in \Sigma_k;$$

$$A_{\alpha} | \gamma_k^{\frac{1+\alpha}{2}}(x) - 1 |^2 \geq | \gamma_k(x) - 1 |^{1+\alpha}, \forall x \in \Sigma_k^c.$$

Since
$$|\gamma_k^{\frac{1+\alpha}{2}}(x)-1| \le 2^{1+\alpha}$$
, $\forall x \in \Sigma_k$, let $\delta = \min\{1+\alpha,2\}$,

$$\oint_{\mathbb{S}^n} |\gamma_k(x) - 1|^{1+\alpha} d\sigma_{t_k} \le C\left(\left(\oint_{\mathbb{S}^n} |\gamma_k^{\frac{1+\alpha}{2}}(x) - 1|^2 d\sigma_{t_k} \right)^{\frac{\delta}{2}} + \oint_{\mathbb{S}^n} |\gamma_k^{\frac{1+\alpha}{2}}(x) - 1|^2 d\sigma_{t_k} \right)^{\frac{\delta}{2}} + \int_{\mathbb{S}^n} |\gamma_k^{\frac{1+\alpha}{2}}(x) - 1|^2 d\sigma_{t_k}$$

By (4.12),

$$\lim_{k\to\infty} \oint_{\mathbb{S}^n} |\gamma_k^{\frac{1+\alpha}{2}}(x) - 1|^2 d\sigma_{t_k} = 0.$$

It follows (4.10).

Minkowski problem Anisotropic flow diameter and entropy Weak convergence

Thank you