Neural Control of Parametric Solutions for Evolution PDEs

Xiaojing Ye
Department of Mathematics and Statistics, Georgia State University

Joint work with Nathan Gaby (GSU) and Haomin Zhou (GT)

This research is partially supported by National Science Foundation

Motivations

1. Partial Differential Equations (PDEs) are central to modeling phenomenon
from science and engineering, to finance and economics.

2. PDEs lack explicit closed form solutions.

3. Many of the traditional numerical methods for PDEs suffer from the
so-called “curse-of-dimensionality”.

4. Use neural-networks as reduced order models to approximate the solutions
of PDEs.

5. While effective, if any initial data of the PDE changes (boundary values,
initial values) neural-network based methods require expensive retraining.

Evolution PDEs

Consider the following class of Initial Value Problem (IVP) with an evolution

PDE:
Oeu(x, t) = Flu](x,t), VxeQ,te]0,T]
(PDE) Blu](x,t) =0, Vx € 0Q,te[0,T]
u(x,0) = g(x), VxeQ

» F is a potentially nonlinear differential operator of u.
» B is the boundary conditions operator.

» g is the initial value of wu.

Related Work

A rather incomplete list of related work:

» Classical methods: Finite Difference (Thomas '13), Finite Element
(Johnson '12) etc.

» NNs for PDE:

» Strong form: PINN (Raissi, Perdikaris, Karniadakis '19), nPINN (Pang,
D’Elia, Parks, Karniadakis '20), fPINN (Pang, Lu, Karniadakis '19) etc.

» Variational form: Deep Ritz (Yu, E '18) etc.

> Weak form: Weak adversarial net (Zang, Bao, Ye, Zhou '19, '20) etc.

» Faynman-Kac: Backward SDE (Beck, E, Jentzen '17, Han, E, Jentzen '17,
'18) etc.

» Solution operator of PDE:

> Green's function: NN approx Green's function (Boullé, Kim, Shi Townsend
'22, Teng, Zhang, Wang, Ju '22) etc.

» Operator learning: DeepONet (Lu, Jin, Karniadakis '19), FNO (Li,
Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar '20) etc.

Problems to Tackle

1. Seek a method to solve the IVP for different initial values without the
need to retrain.

2. The method should be able to apply to high-dimensional problems.

3. Simple to implement and generalizable to nonlinear PDEs.

~

. A rigorous error estimate of the approximate solution.

Neural Networks (NNs)

We first parameterize the solution of IVPs using reduced-order models, such as
Neural Networks (NNs).

Many structures exist for NNs (e.g. Feedforward, CNN, RNN, ResNet, NF,
NODE, etc.)

We require:

> A NN @ +— ug € C(2) where § € R™ are the parameters of uy.
> up: Q — R is smooth with respect to 6.

Parameter Submanifold

To establish motivation, realize the following:
» Let ug be an NN with parameter 6 € © C R". © is parameter space.
> Then 6 — ug defines a set of functions by M :={uy : Q = R | 6 € ©}.

» We call M the parameter submanifold determined by the architecture of
ug.

> So a curve 0(t) € © corresponds to a trajectory ug;) on M.

0 — Ug -

Control Vector Field in Parameter Space

> For any initial g, let u®(-, t) denote the solution of the IVP.

» Under sufficient regularity conditions, there is a curve 6(t) in the
parameter space © such that ug()(-) € M tracks ué(-, t), i.e.,

Ug(t)(') ~ ug(~7 t), Vit
»> We want to learn a control V in © such that it can steer §(t) to obtain
such close tracking of u®(-, t) from starting point 6q.
» If such a vector field V is continuous then we need solve
0(t) = V(6(t))

(ODE) {9(0) o

to generate the desired 6(t).

» Note that this control vector field V' is universal for all g.

Proposed Method

Suppose then we have another NN V¢ : © — R"™ which is a vector field defined

over ©.

What requirement should V satisfy to steer 6(t) such that wug(, tracks ué(-, t)?
» Since ug)(-) =~ ué(:, t) which solves the PDE, we need

Ortig(ry(x) = Flugnl(x)

» We also have

Btu9(t)(x) = 89U9(t)(X) . 0(t) = 6@u9(t)(x) . V{(@(t))

» Therefore, it suffices to have for any x € Q and 0 € © that

F[UQ](X) = 8@”9()() . Vg(g), Vx € Q,9 €0

Proposed Method

Design ug such that Blug] = 0 for all 8 € ©. Then seek V¢ by solving

méin 28 = /e/§2|89ue(x) - Ve(0) — Flue](x)| dxd®.

We form the empirical loss by sampling 6; uniformly in © and for each 6;
sampling x; uniformly in Q:

L
mgmé I\ng Ogug;(x;) - Ve(6i) — F[UG](XJ)|

Algorithms
Train V:
Algorithm 1. Training neural control field V¢

Input: Reduced-order model structure up and parameter set ©. Control
vector field structure V. Error tolerance ¢.
Output: Optimal control parameter &.

1: Sample {615, uniformly from ©.

2: Form empirical loss 1163}

3: Minimize 7 with respect to ¢ using any optimizer (e.g. SGD) until #(¢) < e.

Use V¢ to solve IVP:
Algorithm 2. Solution operator of IVP using trained V¢

Input: Initial value g and tolerance 9. Reduced-order model uy and trained
neural control V¢.
Output: Trajectory §(t) such that ug(,) approximate the solution of the IVP
(PDE).

1: Compute initial parameter 6y such that ||ug, — gl|2 < 0.

2: Use any ODE solver to compute 6(t) to solve (ODE) with approximate field
Ve and initial 6(0) = 6.

Numerical Results: 10D Transport Equation

Consider the following 10D transport equation:

Oru(x,t) = —1-Vu(x,t), Vx € (0,1)° t €0,1]
u(x,t) =0, Vx € 9(0,1)™
U(X,O)Ig(X)7 Vx € [07 1]107
To have analytic examples to compare against, we tested our method against
the following functions:
g1(x) = sin(2mx1) sin(2mx2) [T12, sin(mx;),
g2(x) = sin(27mx1) cos(27mx2) [1125 sin(mx;),

g3(x) = sin(4mxq) sin(27x2) H}L sin(7x;).

Numerical Results: 10D Transport Equation

0.64
032
0.00
-0.32

—0.64

0.64
032
0.00
-0.32

-0.64

0.003495
0.002622
0.001748
0.000874

0.000000

g1(x) = sin(27xq) sin(27x2) H}L sin(7x;)

Numerical Results: 10D Transport Equation

t=0 t=0.15 t=0.5 t=0.85 t=1.0
0291
K05 0.000
-0.291
0.0 -0.582
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
X1
t=0 t=0.15 t=05 t=0.85 t=1.0
L 0]- 0.582
0291
<05 0.000
-0.291
0.0 -0.582
0.0 05 1.0 00 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
xi
t=0 t=0.15 t=05 t=0.85 t=1.0
10 0.002119
0.001589
<05 0.001059
0.000530
0.0 0.000000
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0

x1

g2(x) = sin(27x1) cos(2mx2) [T124 sin(7x;)

Numerical Results: 10D Transport Equation

0.72
0.36
0.00
-0.36

-0.72

0.72
0.36
0.00
-0.36

-0.72

0.001205
0.000904
0.000602
0.000301

0.000000

g3(x) = sin(4mxq) sin(27x2) H}; sin(7x;)

Numerical Results: 10D Transport Equation

0.03{ — aw
— ga(x)
— g3(x)
£0.02
i
)
=
©
< 0.01;
o
0.001

0.00 025 050 0.75 1.00
t

Figure: Comparison of the relative error [|uf (-, t) — o) ()|l 2(q)/ll1u8 (> t)l 2(q) Over time t for
IVPs with initial values g1, g» and gs.

Numerical Results: 10D Heat Equation

Consider the following 10D heat equation:

Owu(x, t) = Au(x,t), Vx€(0,1)!° ¢t €[0,0.015]
u(x,t) =0, Vx € 0(0,1)"°
u(x,0) = g(x), Vx € [0,1]'°,
To have analytic examples to compare against, we tested our method against
the following functions:
gi(x) = sin(27mx1) sin(2mx2) 1125 sin(7x;) + 0.5M}2; sin(mx;),
g2(x) = sin(2mx1) sin(2mx2)M1125 sin(7x;),

g3(x) = sin(2mx)M}2, sin(7x;).

Numerical Results: 10D Heat Equation

1.265
0.633
0.000
-0.633

-1.265

t=0.008 t=0.012

1.265
0.633
0.000
-0.633

-1.265

0.04512
0.03384
0.02256
0.01128

0.00000

0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
X1

g1(x) = sin(2mx1) sin(27x2) 1725 sin(7x;) + 0.5M12; sin(7x;)

Numerical Results: 10D Heat Equation

0.5
0.0
-0.5

-1.0

t=0 t=0.004 t=0.008 t=0.012 t=0.015

1.0 0.01216
0.00912

<05 0.00608
0.00304

0.0 0.00000

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X1

&(x) = sin(27mx1) sin(27x2) 1125 sin(7x;)

Numerical Results: 10D Heat Equation

t=0.008 t=0.012 t=0.015

1.0
0.5
0.0
-0.5
-10

0.5 1.0 0.0 0.5 1.0

t=0.012 t=0.015

0.003535

0.002651

0.001768

0.000884

0.000000

g3(x) = sin(2mx1)N}2, sin(mx;).

Numerical Results: 10D Heat Equation

0.03

0.02

Relative Error

0.000 0.005 0.010 0.015
t

Figure: Comparison of the relative error ||u8(-,t) — ue(t)(-)HLQ(Q)/Hug(', t)HLg(Q) over time t for
IVPs with initial values g1, g» and gs.

Numerical Results: 2D Allen-Cahn Equation

Consider the following 2D Allen-Cahn equation (we use the 2d Allen-Cahn as
we lack analytic solution to compare to in high-dimensions):

deu(x,t) =103 Au(x, t) + 3 (u(x, t) — u(x, t)*), Vx€(0,1)* t € (0,0.6]
u(x,t) =0 x € 8(0,1),t € [0,0.6]
u(x,0) = g(x), Vx€[o0,1]
We compare to the following initials which are not contained in our training set
as evidence for the model’s success:
g1(x) = 0.755sin(3mx1) sin(7xz)
&(x) = (x1 — x{) cos(2mxi) sin(mx2)

&3(x) = (x1 — x7) cos(2mxi) sin(27x2).

Numerical Results: 2D Allen-Cahn Equation

t=0 t=0.15 t=03 t=0.45 t=0.6

118
0.59
0.00
-0.59

-118

118
0.59
0.00
-0.59

-118

0.05875
0.04406
0.02938
0.01469

0.00000

g1(x) = 0.755sin(3mx1) sin(7x2)

Numerical Results: 2D Allen-Cahn Equation

t=0 t=0.15 t=03 t=0.45 t=0.6
10 0.1785
0.0892
<05 0.0000
-0.0892
0.0 -0.1785
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 10
x1
t=0 t=0.15 t=0.3 t=0.45 t=0.6
10 0.1785
0.0892
05 0.0000
~0.0892
0.0 -0.1785
0.0 05 1.00.0 05 1.0 0.0 05 1000 05 1.0 00 05 10
x
t=0 t=0.15 t=03 t=0.45 t=0.6
10 0.002367
0.001775
£o05 0.001183
0.000592
0.0 0.000000
0.0 05 1.00.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0

g (x) = (a — x12) cos(2mxi) sin(mx2)

Numerical Results: 2D Allen-Cahn Equation

0.535
0.267
0.000
-0.267
-0.535
t=0.3
0.535
0.267
0.000
-0.267
-0.535
. 1.0 0.0 0.5 1.0 0.0 . X
x1
10 t=0 t=0.15 t=0.3 t=0.45 t=0.6 0.006311
0.004733
%05 0.003155
0.001578
0.0 0.000000

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

g3(x) = (x1 — x) cos(27x1) sin(27x2).

Numerical Results: 2D Allen-Cahn Equation

0.021

0.011

Relative Error

0.001

0.0 0.2 0.4 0.6
t

Figure: Comparison of the relative error.

Figure: Comparison of the relative error [|uf(-, t) — o) (")ll 2(q)/II148 (> t)l 2(q) Over time t for
IVPs with initial values g1, g» and gs.

Error Analysis

Assumption (Regularity)

The reduced-order model ug(-) € C*(Q2) N C(Q) for every 6 € © and _
u(x;-) € CY(©) N C(B). Moreover, there exists L > 0 such that for all § € ©

Flugl € F&i={f € C{(Q) N C(Q) : ||flloc < L, |VFlloo < L}

Assumption (Bounded projection error)

For any € > 0, there exist a reduced-order model ug and a bounded open set
© C R™, such that for every € © there exists a vector o € R™ satisfying

lla- Bouo — Fluo]lliz) < &

Error Analysis

Lemma (Uniform boundedness of approximate control (GYZ23))

Suppose the assumptions above are satisfied. For all € > & there exists
v : © — R"™ such that v is bounded over © and

||V9 . 89U9 — F[U@]”z S E.

Error Analysis

Proposition (Existence of neural control (GYZ23))

Suppose the assumptions above hold. Then for any € > 0, there exists a
differentiable vector field parameterized as a neural network V¢ : © — R™ with
parameter £, such that

([Ve(0) - Opup — Flus]ll2 <,

for all § € .

Theorem (Error of controlled parametric solution (GYZ23))
> Let Flul =V - (AVu) + b-Vu+ f(u) where
> zTA(x)z > Mz[?, VzeR?, xeQ,
> ||V bllec < B, A>0,
> f:R — R is L¢-Lipschitz.
» Suppose Assumptions 1 and 2 hold. Then:
> For all e0,& > 0 and ||ug, — g|l12(q) < €0, there exists control field V¢ such
that
luo (-) = uF (-)l i2ge) < e B2 D (g 4),
where

> ug is a solution to (PDE) with initial g,
> 0(t) is solved from (ODE) with V¢ and initial 6y,
»> C, is a constant depending only on Q.

Summary and Future Work

Summary’

» We propose a new approach to numerically approximate solution operators
of evolution PDEs;

» Qur approach is particularly promising to tackle problems with
high-dimension;

» We provide rigorous approximation error estimates of our method.

Future Work
» More effective ways to leverage useful 6 in network training;

» Relaxation of assumptions on differential operators in proofs of error
estimations;

» Applications to other interesting real-world problems.

!Preprint available at https://arxiv.org/abs/2302.00045.

https://arxiv.org/abs/2302.00045

Thank You

	Background
	Trajectories in Parameter Space
	Method
	Numerical Results
	Error Analysis

