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We are interested in minimizers of
ﬂ[u]E/F(Du)dx, u: QCR"— R
Q

where F: R™" — R and m,n > 2.
A crucial feature in vectorial problems is that F is often non-convex.

In nonlinear Elasticity, F is the stored-energy function of an elastic
material with reference configuration .



Neo-Hookean models

Non-uniqueness of solutions = F is not convex!

Prescribed Two solutions in two
displacement dimensions; a circle of
solutions in three dimensions

Image from the book by Marsden and Hughes



Neo-Hookean models
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Prescribed Two solutions in two
displacement dimensions; a circle of
solutions in three dimensions

Image from the book by Marsden and Hughes

In a neo—Hookean model, F may take the form

F(Du) =G (d|5cl]l)|u> + H(det Du), (NH)

known as the additive isochoric—volumetric split (Flory 1961).
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Quasiconvexity

Natural existence condition for min problems is quasiconvexity:

Q|F(A) < /QF(Du)dx for all u € A+ C2(Q,R™),

i.e. linear maps are minimizers. Equivalently, F(f, Du) < f, F(Du).
Assuming that |F| < C(1+]-|P),
F is quasiconvex <= 3 minimizers in WP,

Morrey '52, Meyers '65, Ball-Murat '84, Marcellini '86, Acerbi—Fusco '87, Fonseca—
Maly '97, Chen—Kristensen '15. ..

The growth condition fails for (NH):
Open Problem (Ball-Murat 1984, Ball 2002)

Prove existence of minimizers for quasiconvex F satisfying

detA — 0 = |F(A)| — oc.
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Rank-one convexity

A main example is F = det:
1] det(A) = /Qdet(Du) dx Vue A+ C(QR").
In general we have
F is convex z F is quasiconvex = F is rank-one convex.

We say that F is rank-one convex if, for A € (0,1),
FI(M+ (1 —=X)B) < AF(A) + (1 = N)F(B),

when rank(B — A) = 1. Equiv: Euler-Lagrange system is elliptic.



Morrey's problem

Recall that F: R™*" — R and the maps are u: R” — R™.

Morrey's Problem (1952)

F is rank-one convex = F is quasiconvex?



Morrey's problem

Recall that F: R™*" — R and the maps are u: R” — R™.

Morrey's Problem (1952)

F is rank-one convex = F is quasiconvex?

Counter-examples:

o Sverdk 1992: if m > 3,n > 2, NO!



Morrey's problem

Recall that F: R™*" — R and the maps are u: R” — R™.

Morrey's Problem (1952)

F is rank-one convex = F is quasiconvex?

Counter-examples:

o Sverdk 1992: if m > 3,n > 2, NO!
® Grabovsky 2016: if m > 8,n > 2, NO!



Morrey's problem

Recall that F: R™*" — R and the maps are u: R” — R™.

Morrey's Problem (1952)

F is rank-one convex = F is quasiconvex?

Counter-examples:

o Sverdk 1992: if m > 3,n > 2, NO!
® Grabovsky 2016: if m > 8,n > 2, NO!

In particular,
® Thecase m=2,n>2is OPEN.

Work on this problem by Ball, Sversk, Miiller, Dacorogna, Pedregal,
Kirchheim, Iwaniec, Astala, Székelyhidi, Faraco. ..
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The main result

Notation: R3*? = {A € R?*2: det A > 0}, Ka = d'g‘i\-

Theorem (Astala—Faraco—G.—Koski—Kristensen 2023)

Let F: R2*? — R be as in (NH):
F(A) = G(Ka) + H(det A)
where H is convex. Then

F is rank-one convex = F is quasiconvex
= F is wlsc

in the sense that, if g is a diffeomorphism and g > 1,

uj = g on 0N

u — uin WH3(Q) 3 = liminf [ F(Du;)dx 2/ F(Du) dx.
J= JQ Q

IKujllLage) < €



Main ingredients

There are four main ingredients in the proof.

Rank-one convexity = quasiconvexity:

1) extremal integrands;
2) the Burkholder function;

Quasiconvexity = weak lower semicontinuity:

3) Jensen inequalities for principal maps;

4) Stoilow factorization.
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1: Extremal integrands

Krein—Milman: if K is compact and convex, K = conv(Extreme(K)).
G. 2018: still holds when K = {rank-1 convex integrands}; explicit
examples of integrands in Extreme(K).

Proposition (Voss—Martin—Ghiba—Neff 2021)

For F as in the theorem,
F is rank-one convex =— F =G +c¥#
where ¢ > 0, G is polyconvex and

W (A) = Ka — log Ka + log det A.

Recall G is polyconvex if G = g(A,det A) and g: R®> — R is convex.
# is not polyconvex, since

l Id) = lim 1+ log(t?) = —cc.

tl_%W(t d) lim1+ og(t?) 00

But it suffices to prove the theorem for 7.
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2: The Burkholder function

W is closely connected to the Burkholder function (1984)
Bo(A) = (5~ DIAP — §detA)|AP2, p=2.

It is an LP version of the determinant:

® By(ld) = —1 and B; = — det;
® B,(tA) = tPB,(A) for t > 0;
* B,(QAR) = By(A) for Q, R € SO(2);

® B, is rank-one convex.

Conjecture (lwaniec 1990s)

The Burkholder function is quasiconvex.

This conj has huge implications in harmonic and complex analysis.
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2: The Burkholder function (continued)

Theorem (G.—Kristensen 2022, AFGKK 2023)
If ue A+ CZ(,R?) and B,(Du) doesn’t change sign, then

1QIB,(A) < /Q B,(Du) dx.

Earlier results by Astala—lwaniec—Prause-Saksman 2012-2015.

Our proof combines their complex interpolation argument with an
extremality argument using gradient Young Measures, cf. G. 2018.
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2: The Burkholder function (continued)

What is the connection with #?

Consider the involution

F(A) = F(A 1) det A.

1

Its characteristic property is that, if v = u™" is a diffeo,

/Q F(Du)dx = / o F(Dv)dy.

~ preserves poly-, quasi- and rank-one convexity, but not convexity.
One can calculate

F(A) = lim 2—BP(A) LR
P2 p—2
W (A) = Z(A) + 1.

= |A]2 — (1 + log |A]?) det A,
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2: The Burkholder function (continued)

Corollary

If ue A+ C2(Q,R?) is a smooth diffeo then

Q)7 (4) < /Q Z(Du) dx,

Q7 (A) < / # (Du) dx.
Q
These are sharp versions of Miiller 1990, Koskela—Onninen 2008.
For instance, locally,
ue W1’2,detDu >0 = detDuce€lloglL.

Here we show:

/detDu |og\Du12dxg/|Du\2dx_\Qy(9(A)+1).
Q Q



Quasiconvexity = weak Isc
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3: Jensen inequalities for principal maps

A map u: C — C is principal if

o0
u(z) =z Z —J when |z| > 1.
=1

Note that this generalizes maps which are linear on S*:
- 1 1
u(z)=z4+bz=z+bi—onS
z

so can extend u to be a principal map.

Theorem (AFGKK 2023)
Let u € W-(C) be a principal map with K, € L}(ID). Then

: w (]][DDudx) < ]f)“//(Du) dx.

This is a Jensen inequality without linear boundary conditions!
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3: Jensen inequalities for principal maps (continued)

Recall: #'(A) = Ka — log Ka + logdet A. If by = 0, want to show:

W (ld) < ][ W (Du) dx.
D

Since u = Id at oo, by quasiconvexity we have
0< /C # (Du) — #(1d)] dx.
The main point is that, when u is holomorphic, 1 is harmonic:
Y = #(Du) — #(Id) = 2log |/].

Applying the mean value at co, we get

0=u(oc)= | wdx= / [#/(Du) — % (1d)] dx
C\D C\D

i.e. C\D is a null quadrature domain (Sakai 1981).
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4: Stoilow Factorization

Proposition (AFGKK 2023)

Let g be a diffeo, g > 1. For any sequence u; we have

uj = g on 09

u— uin W2(Q) 3 = Iiminf/S;W(Duj-) dx > /QW(DU) dx.

Jj—o0

| Kujlla@) < C

By YM machinery wlog can take Du; — Id. Want to replace u; with
a better sequence (cf. Astala—Faraco 2002).

Iwaniec—Sverak 1992: 3 holomorphic h;, principal maps f; with
uj = hjof;,

with hj(z) — zin GX2. Then apply Jensen's ineq for principal maps:

liminf 4+ % (Du;j) dx = liminf W(Df)dx > (Id).

Jj—=oo Jp j—o0



Proof outline

Krein—Milman Thm

Suffices to understand # ‘

rank-one cvx = quasicvx
in our class

quasicvx = weak Isc
in our class

‘ B, is (partially) quasiconvex ‘

4By
[ P

Z is quasiconvex in R2*? ‘

B

‘ # is quasiconvex in R2*2 ‘

\ / null quad domains

‘ W has super Jensen inegs ‘

YM theory +
Stoilow factorization

} W is sequentially weak Isc ‘




Outlook



Further directions: regularity

We have seen that, when combined,

® Jensen inequalities for principal maps

® the Stoilow factorization

yield existence theorems without growth conditions.

Question

Can these tools be used to prove regularity results?

Even in the simple polyconvex example

1
F(A) = A2<1 —)
(A) = Al +(detA)2
almost nothing is known about regularity of minimizers, but see
Bauman—Owen—Phillips 1991, lwaniec—Kovalev—Onninen 2013.



