Higher structures in mathematics: buildings, k-graphs and C*-algebras

Alina Vdovina City College of New York, CUNY

> Banff May 2023

Outline

Buildings

Arithmetic lattices on products of trees

Drinfeld-Manin solutions of Yang-Baxter equations

C*-algebras and *k*-graphs

Further research

Buildings

► First series of buildings were introduced by J.Tits in 50s.

Buildings

- ► First series of buildings were introduced by J.Tits in 50s.
- ▶ They have algebraic, analytic and number theoretical aspects.

- First series of buildings were introduced by J.Tits in 50s.
- ► They have algebraic, analytic and number theoretical aspects.
- Buildings consist of chambers and apartments satisfying certain axioms, where each apartment consists of a set of chambers.

Polyhedra and links

Definition

A (generalized) polyhedron is a two-dimensional complex which is obtained from several decorated polygons by identification of sides with the same labels respecting orientation.

Polyhedra and links

Definition

Take a sphere of a small radius at a point of the polyhedron. The intersection of the sphere with the polyhedron is a graph, which is called the *link* at this point.

Links of manifolds are spheres, but we need highly singular spaces as links to construct buildings.

Example of a link

The link of our example above is the following graph:

This graph has *diameter* (the maximal distance between two vertices) two and *girth* (the length of the shortest cycle) four.

Buildings 00000

> The following theorem connects polyhedra with buildings (the result below deals with the 2-dimensional case, but I generalised it to arbitrary dimensions).

Theorem (Ballmann, Brin 1994)

Let X be a compact two-dimensional polyhedron. If all links are graphs of diameter m and girth 2m, then the universal cover of the polyhedron is a two-dimensional building.

Dimensions 3 and higher: joint with Ragunatapirom and Stix (2018) involving quaternion algebras. Buildings with chambers as nD cubes are constructed.

Polyhedra and links

The following theorem connects polyhedra with buildings (the result below deals with the 2-dimensional case, but I generalised it to arbitrary dimensions).

Theorem (Ballmann, Brin 1994)

Let X be a compact two-dimensional polyhedron. If all links are graphs of diameter m and girth 2m, then the universal cover of the polyhedron is a two-dimensional building.

Theorem (Vdovina 2002)

A polyhedron with given links can be constructed explicitly. Any connected bipartite graph can be realized as a link of a 2-dimensional polyhedron with 2k-gonal faces.

Dimensions 3 and higher: joint with Ragunatapirom and Stix (2018) involving quaternion algebras. Buildings with chambers as nD cubes are constructed.

•00000

Arithmetic lattices acting simply transitively on products of trees

Let *q* be a prime power. Let

$$\delta \in \mathbb{F}_{q^2}^{\times}$$

be a generator of the multiplicative group of the field with q^2 elements. If $i, j \in \mathbb{Z}/(q^2-1)\mathbb{Z}$ are

$$i \not\equiv j \pmod{q-1}$$
,

then $1 + \delta^{j-i} \neq 0$, since otherwise

$$1 = (-1)^{q+1} = \delta^{(j-i)(q+1)} \neq 1,$$

a contradiction. Then there is a unique $x_{i,j} \in \mathbb{Z}/(q^2-1)\mathbb{Z}$ with

$$\delta^{x_{i,j}} = 1 + \delta^{j-i}.$$

With these $x_{i,i}$ we set $y_{i,i} := x_{i,i} + i - j$, so that

$$\delta^{y_{i,j}} = \delta^{x_{i,j}+i-j} = (1+\delta^{j-i}) \cdot \delta^{i-j} = 1+\delta^{i-j}.$$

We set

$$l(i,j):=i-x_{i,j}(q-1),$$

$$k(i,j):=j-y_{i,j}(q-1).$$

Let $M \subseteq \mathbb{Z}/(q^2-1)\mathbb{Z}$ be a union of cosets stable under multiplication by q, and by addition of q-1.

Theorem (RSV 2018)

Each group $\Gamma_{M,\delta}$ acts simply transitively on a product of d=|M| trees.

$$\Gamma_{M,\delta} = \left\langle a_i \text{ for all } i \in M \mid a_i a_j = a_{k(i,j)} a_{l(i,j)} \text{ for all } i, j \in M \text{ with } i \not\equiv j \pmod{q-1} \right\rangle$$

if q is odd, and if q is even:

$$\Gamma_{M,\delta} = \left\langle a_i \text{ for all } i \in M \;\middle|\; \begin{array}{c} a_i^2 = 1 \text{ for all } i \in M, \\ a_i a_j = a_{k(i,j)} a_{l(i,j)} \text{ for all } i, j \in M \text{ with } i \not\equiv j \pmod{q-1} \end{array}\right\rangle.$$

3D example

$$\Gamma = \left\langle \begin{array}{c} a_1, a_5, a_9, a_{13}, a_{17}, a_{21}, \\ b_2, b_6, b_{10}, b_{14}, b_{18}, b_{22}, \\ c_3, c_7, c_{11}, c_{15}, c_{19}, c_{23} \end{array} \right.$$

$$\begin{aligned} &a_{i}a_{i+12} = b_{i}b_{i+12} = c_{i}c_{i+12} = 1 \text{ for all } i \,, \\ &a_{1}b_{2}a_{17}b_{22}, \, a_{1}b_{6}a_{9}b_{10}, \, a_{1}b_{10}a_{9}b_{6}, \\ &a_{1}b_{14}a_{21}b_{14}, \, a_{1}b_{18}a_{5}b_{18}, \, a_{1}b_{22}a_{17}b_{2}, \\ &a_{5}b_{2}a_{21}b_{6}, \, a_{5}b_{6}a_{21}b_{2}, \, a_{5}b_{22}a_{9}b_{22}, \\ &a_{1}c_{3}a_{17}c_{3}, \, a_{1}c_{7}a_{13}c_{19}, \, a_{1}c_{11}a_{9}c_{11}, \\ &a_{1}c_{15}a_{1}c_{23}, \, a_{5}c_{3}a_{5}c_{19}, \, a_{5}c_{7}a_{21}c_{7}, \\ &a_{5}c_{11}a_{17}c_{23}, \, a_{9}c_{3}a_{21}c_{15}, \, a_{9}c_{7}a_{9}c_{23}, \\ &b_{2}c_{3}b_{18}c_{23}, \, b_{2}c_{7}b_{10}c_{11}, \, b_{2}c_{11}b_{10}c_{7}, \\ &b_{2}c_{15}b_{22}c_{15}, \, b_{2}c_{19}b_{6}c_{19}, \, b_{2}c_{23}b_{18}c_{3}, \\ &b_{6}c_{3}b_{22}c_{7}, \, b_{6}c_{7}b_{22}c_{3}, \, b_{6}c_{23}b_{10}c_{23}. \end{aligned}$$

Alon and Boppana prove that asymptotically in families of finite (q+1)-regular graphs X_n with diameter tending to ∞ the largest absolute value of a non-trivial eigenvalue $\lambda(X_n)$ of the adjacency operator A_{X_n} has lower limit

$$\underline{\lim_{n\to\infty}}\,\lambda(X_n)\geqslant 2\sqrt{q}.$$

This estimate motivates the definition as follows.

Definition

A finite (q + 1)-regular graph X is defined to be a **Ramanujan graph** if all non-trivial eigenvalues λ of the adjacency operator A_X have absolute value $\lambda \leqslant 2\sqrt{q}$.

First non-trivial examples: Margulis; Lubotzky-Phillips-Sarnak 1988.

Higher-dimensional Ramanujan cube complexes

We write $P \sim_v Q$ if two vertices in the product of d trees are adjacent in v-direction, $v \in \{1, ..., d\}$.

Definition

We define an **adjacency operator** A_v **in** v**-direction** on $L^2(G/K)$ (G is a certain algebraic group and K is a stabilizer of a vertex of its building) by

$$A_v(f)(P) = \sum_{Q \sim_v P} f(Q).$$

We write $P \sim_v Q$ if two vertices in the product of d trees are adjacent in v-direction, $v \in \{1,...,d\}$.

Definition

We define an **adjacency operator** A_v **in** v**-direction** on $L^2(G/K)$ (G is a certain algebraic group and K is a stabilizer of a vertex of its building) by

$$A_v(f)(P) = \sum_{Q \sim_v P} f(Q).$$

Definition

Let $X \to \Delta^d$ be a finite cubical complex of dimension d that has constant valency q_v+1 in all directions. Then X is a **cubical Ramanujan complex**, if for each $v \in \{1,\ldots,d\}$, the eigenvalues λ of A_v are trivial, i.e., $\lambda=\pm(q_v+1)$, or non-trivial and then bounded by

$$\lambda \leqslant 2\sqrt{q_v}$$
.

Higher-dimensional Ramanujan cube complexes

Theorem (Ragunatapirom, Stix, Vdovina, 2018)

There is an infinite family of quaternionic groups Γ such that the quotient X_{Γ} of a product of d trees X by Γ is a cubical Ramanujan complex.

Large source of higher-dimensional expanders, analogues of higher D relative property τ and higher rank graphs.

Yang-Baxter equation

Definition

Let *X* be a (non-empty) set, and $R: X^2 \to X^2$ be a bijection given by

$$R(x,y)=(u,v).$$

We call *R* a set-theoretic solution of the Yang-Baxter equation, or Drinfeld-Manin solution, if

$$R^{12}R^{23}R^{12} = R^{23}R^{12}R^{23}$$

on X^3 , where R^{ij} means acting on ith and jth components of X^3 .

New series of solutions and new geometric invariants to ensure that these solutions really are new [Vdovina 2020].

The (classical) Yang-Baxter equation involves a linear operator $R: V \otimes V \to V \otimes V$, where V is a vector space, and has the form

$$R^{12}R^{23}R^{12} = R^{23}R^{12}R^{23}$$

in $End(V \otimes V \otimes V)$, where R^{ij} means acting on i-th and j-th components.

If V is spanned by X, this gives solutions of the classical Yang-Baxter equation.

Drinfeld-Manin sloutions of Yang-Baxter equations coming from arithmetic cube complexes

The geometric realisation of the (3,5,7) example consists of 24 cubes.

The set X is taken to be the set of labels on the edges of the cubes, the bijection R is induced by squares of the complex, namely if $x_i x_j x_k x_l$ is a label of a square, then $R(x_i, x_j) = (x_l^{-1}, x_k^{-1})$. In the (3,5,7) example the set X has 18 elements, so the R-matrix is of size 324×324 .

$$R^{12}R^{23}R^{12}(a_1, b_1, c_2) = R^{12}R^{23}(b_2^{-1}, a_2, c_2) = R^{12}(b_2^{-1}, c_3^{-1}, a_1^{-1})$$

which is equal to $(c_4, b_2^{-1}, a_1^{-1})$. Thus

$$R^{23}R^{12}R^{23}(a_1,b_1,c_2)=(c_4,b_2^{-1},a_1^{-1}).$$

The group Γ is the new invariant (different from the structure group used in the algebraic community).

 Γ allows to show, that our solutions are different from the existing ones.

One of the bridges between the cube complexes and C^* -algebras are so-called k-graphs (another one is via crossed products).

Moreover, in a recent work with Nadia Larsen we suggest to look at the spectra of the *k*-graphs.

Definition

A countable category C is said to be a *higher rank graph* or a k-graph if there is a functor $d: C \to \mathbb{N}^k$, called the *degree map*, satisfying the *unique factorization property* (UFP): if $d(a) = \mathbf{m} + \mathbf{n}$ then there are unique elements a_1 and a_2 in C such that $a = a_1a_2$ where $d(a_1) = \mathbf{m}$ and $d(a_2) = \mathbf{n}$. We call d(x) the of x. A *morphism* of k-graphs is a degree-preserving functor.

C*-algebras and von Neumann algebras of *k*-graphs

Theorem (Joint work with Nadia Larsen)

There exists a strongly connected k-rank graph Δ with $\rho(\Delta)=(2l_1,...,2l_k)$ for any integers $l_1,...,l_k$, such that for any cycle $\mu\in\Delta$, $\sum_{i=1}^k d(\mu)_i\in 2\mathbb{Z}$.

0000000000

Theorem (Joint work with Nadia Larsen)

There exists a strongly connected k-rank graph Δ with $\rho(\Delta) = (2l_1, ..., 2l_k)$ for any integers $l_1, ..., l_k$, such that for any cycle $\mu \in \Delta$, $\sum_{i=1}^k d(\mu)_i \in 2\mathbb{Z}$.

Corollary

By varying $l_1, ..., l_k$ we are getting an infinite family of distinct values of λ for III_{λ} factors. In particular, if $l_1 = ... = l_k = l$, then $\lambda = (2l)^{-2}$.

Definition

A k-dimensional digraph DG is a directed graph with V a finite set of vertices, E finite set of edges, and the edge set decomposes as a disjoint union $E = E_1 \sqcup E_2 \sqcup \cdots \sqcup E_k$ with E_i for $i = 1, \ldots, k$ regarded as edges of colour i, such that there is a bijection of all directed paths of length two formed of edges of colours given by ordered pairs (i,j) with $i \neq j$ in $\{1,2,\ldots,k\}$, and:

Definition

A k-dimensional digraph DG is a directed graph with V a finite set of vertices, E finite set of edges, and the edge set decomposes as a disjoint union $E = E_1 \sqcup E_2 \sqcup \cdots \sqcup E_k$ with E_i for $i = 1, \ldots, k$ regarded as edges of colour i, such that there is a bijection of all directed paths of length two formed of edges of colours given by ordered pairs (i,j) with $i \neq j$ in $\{1,2,\ldots,k\}$, and:

(F1) If xy is a path of length two with x of colour i and y of colour j, then $\phi(xy) = y'x'$ for a unique pair (y', x') where y' has colour j, x' has colour i and the origin and terminus vertices of the paths xy and y'x' coincide. We write this as $xy \sim y'x'$.

A k-dimensional digraph DG is a directed graph with V a finite set of vertices, E finite set of edges, and the edge set decomposes as a disjoint union $E = E_1 \sqcup E_2 \sqcup \cdots \sqcup E_k$ with E_i for $i = 1, \ldots, k$ regarded as edges of colour i, such that there is a bijection of all directed paths of length two formed of edges of colours given by ordered pairs (i,j) with $i \neq j$ in $\{1,2,\ldots,k\}$, and:

- (F1) If xy is a path of length two with x of colour i and y of colour j, then $\phi(xy) = y'x'$ for a unique pair (y', x') where y' has colour j, x' has colour i and the origin and terminus vertices of the paths xy and y'x' coincide. We write this as $xy \sim y'x'$.
- (F2) For all $x \in E_i$, $y \in E_j$ and $z \in E_l$ so that xyz is a path on E, where i, j, l are distinct colours, if $x_1, x_2, x^2 \in E_i$, $y_1, y_2, y^2 \in E_j$ and $z_1, z_2, z^2 \in E_l$ satisfy

$$xy \sim y^1 x^1, x^1 z \sim z^1 x^2, y^1 z^1 \sim z^2 y^2$$

and

$$yz \sim z_1y_1, xz_1 \sim z_2x_1, x_1y_1 \sim y_2x_2,$$

it follows that $x_2 = x^2$, $y_2 = y^2$ and $z_2 = z^2$.

Definition (BGV)

Let G be a k-dimensional digraph on n disjoint alphabets X_i , i = 1, ..., n such that any two alphabets generate a bi-reversible automaton with an infinite group generated by this automaton. We will call it nD automaton.

Let $\Gamma = \mathbb{Z} * \mathbb{Z}$, the free group on two generators *a* and *b*.

- Let $\Gamma = \mathbb{Z} * \mathbb{Z}$, the free group on two generators a and b.
- The Cayley graph of Γ with respect to the generating set $\{a,b\}$, $Cay(\Gamma,\{a,b\})$, is a homogeneous tree of degree 4.

- Let $\Gamma = \mathbb{Z} * \mathbb{Z}$, the free group on two generators *a* and *b*.
- The Cayley graph of Γ with respect to the generating set $\{a,b\}$, $Cay(\Gamma, \{a,b\})$, is a homogeneous tree of degree 4.
- The vertices of the tree are elements of Γ *i.e.* reduced words in $S = \{a, b, a^{-1}, b^{-1}\}.$

The boundary, Ω , of the tree can be thought of as the set of all semi-infinite reduced words $w = x_1x_2x_3...$, where $x_i \in S$

- The boundary, Ω , of the tree can be thought of as the set of all semi-infinite reduced words $w = x_1x_2x_3....$, where $x_i \in S$
- $ightharpoonup \Omega$ has a natural compact (totally disconnected) topology :

- ightharpoonup The boundary, Ω , of the tree can be thought of as the set of all semi-infinite reduced words $w = x_1 x_2 x_3 ...$, where $x_i \in S$
- $ightharpoonup \Omega$ has a natural compact (totally disconnected) topology:
- if $x \in \Gamma$ then let $\Omega(x)$ be all semi-infinite words with the prefix x

- The boundary, Ω , of the tree can be thought of as the set of all semi-infinite reduced words $w = x_1x_2x_3...$, where $x_i \in S$
- lacksquare Ω has a natural compact (totally disconnected) topology :
- ▶ if x ∈ Γ then let Ω(x) be all semi-infinite words with the prefix x
- ▶ $\Omega(x)$ is open and closed in Ω and the sets $g\Omega(x)$ and $g(\Omega \setminus \Omega(x))$, where $g \in \Gamma$ and $x \in S$, form a base for the topology of Ω .

Graph C*-algebras

Left multiplication by $x \in \Gamma$ induces an action α of Γ on $C(\Omega)$ by

$$\alpha(x)f(w) = f(x^{-1}w).$$

 $C(\Omega) \rtimes \Gamma$ is generated by $C(\Omega)$ and the image of a unitary representation π of Γ

such that $\alpha(g)f = \pi(g)f\pi^*(g)$ for $f \in C(\Omega)$ and $g \in \Gamma$ and every such C^* -algebra is a quotient of $C(\Omega) \rtimes \Gamma$.

Graph C*-algebras

For $x \in \Gamma$, let p_x denote the projection defined by the characteristic function $\mathbf{1}_{\Omega(x)} \in C(\Omega)$.

For $g \in \Gamma$, we have

$$gp_xg^{-1} = \alpha(g)\mathbf{1}_{\Omega(x)} = \mathbf{1}_{g\Omega(x)}$$

and therefore for each $x \in S$,

$$p_x + x p_{x^{-1}} x^{-1} = \mathbf{1}.$$

$$p_a + p_{a^{-1}} + p_b + p_{b^{-1}} = \mathbf{1}$$

For $x \in S$ we define a partial isometry $s_x \in C(\Omega) \times \Gamma$ by

$$s_{x}=x(\mathbf{1}-p_{x^{-1}}).$$

Then,

$$s_x s_x^* = x(\mathbf{1} - p_x)x^{-1} = p_x$$

and

$$s_x^* s_x = \mathbf{1} - p_{x^{-1}} = \sum_{y \neq x^{-1}} s_y s_y^*.$$

These relations show that the partial isometries s_x , for $x \in S$, generate a C^* -algebra \mathcal{O}_A .

The *K*-theory of this C^* -algebra is $\mathbb{Z} \times \mathbb{Z}$.

Transition matrix

Where

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

relative to $\{a, a^{-1}, b, b^{-1}\} \times \{a, a^{-1}, b, b^{-1}\}.$

 Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).

- ▶ Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- Unitary representations of higher-dimensional Thompson groups.

- ► Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- ▶ Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.

- Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- ► K-theory of *n*-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).

- Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- ▶ Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- ► K-theory of *n*-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).
- Non-residually finite higher-dimensional CAT(0) groups (with N. Ragunatapirom and J.Stix).

- ► Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- ► K-theory of *n*-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).
- Non-residually finite higher-dimensional CAT(0) groups (with N. Ragunatapirom and J.Stix).
- Systematic study of aperiodic tilings using higher-rank graph C*-algebras.

- Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- ▶ Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- ► K-theory of *n*-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).
- Non-residually finite higher-dimensional CAT(0) groups (with N. Ragunatapirom and J.Stix).
- Systematic study of aperiodic tilings using higher-rank graph C*-algebras.
- Higher-dimensional expanders.

- Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- ► K-theory of *n*-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).
- Non-residually finite higher-dimensional CAT(0) groups (with N. Ragunatapirom and J.Stix).
- Systematic study of aperiodic tilings using higher-rank graph C*-algebras.
- Higher-dimensional expanders.
- Groups acting on higher-dimensional hyperbolic buildings.

- Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- ▶ K-theory of *n*-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).
- Non-residually finite higher-dimensional CAT(0) groups (with N. Ragunatapirom and J.Stix).
- Systematic study of aperiodic tilings using higher-rank graph C*-algebras.
- ► Higher-dimensional expanders.
- Groups acting on higher-dimensional hyperbolic buildings.
- ► Low complexity algorithms on knot recognition and higher-dimensional words recognition (with O.Kharlampovich).

- Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- ▶ Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- ▶ K-theory of *n*-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).
- Non-residually finite higher-dimensional CAT(0) groups (with N. Ragunatapirom and J.Stix).
- Systematic study of aperiodic tilings using higher-rank graph C*-algebras.
- ► Higher-dimensional expanders.
- ► Groups acting on higher-dimensional hyperbolic buildings.
- ► Low complexity algorithms on knot recognition and higher-dimensional words recognition (with O.Kharlampovich).
- Applications of harmonic maps to study of buildings and higher-dimensional complexes (with G.Daskalopoulus and C.Mese).

- Higher-dimensional Thompson groups and their C*-algebraic invariants (with M.Lawson and A.Sims).
- Unitary representations of higher-dimensional Thompson groups.
- Multi-dimensional picture languages coming from buildings.
- K-theory of n-dimensional polyhedral algebras (with PhD students S.Matter and C.Radu).
- Non-residually finite higher-dimensional CAT(0) groups (with N. Ragunatapirom and J.Stix).
- Systematic study of aperiodic tilings using higher-rank graph C*-algebras.
- Higher-dimensional expanders.
- Groups acting on higher-dimensional hyperbolic buildings.
- ► Low complexity algorithms on knot recognition and higher-dimensional words recognition (with O.Kharlampovich).
- Applications of harmonic maps to study of buildings and higher-dimensional complexes (with G.Daskalopoulus and C.Mese).
- ▶ Applications to algebraic geometry: Beauville surfaces and fake quadrics (with N.Boston, N.Peyerimhoff, J.Stix).

- 1. M. V. Lawson, A. Vdovina, *Higher dimensional generalizations of the Thompson groups*, Advances in Mathematics (2020) 369, 107191.
- 2. N.Rungtanapirom, J. Stix, A. Vdovina, *Infinite series of quaternionic 1-vertex cube complexes, the doubling construction, and explicit cubical Ramanujan complexes* International Journal of Algebra and Computation (2019) 29.
- 3. J. Stix, A. Vdovina, *Simply transitive quaternionic lattices of rank 2 over Fq(t) and a non-classical fake quadric*, Mathematical Proceedings of the Cambridge Philosophical Society (2017) 163(3), 453-498.
- 4. O.Kharlampovich, A.Mohaeri, A.Taam, A.Vdovina, *Quadratic equations in hyperbolic groups are NP-complete*, Transactions of the American Mathematical Society, 2017, 369, 6207-6238.
- 5. J. Konter, A. Vdovina *Classifying polygonal algebras by their K*₀-*group,* Proceedings of the Edinburgh Mathematical Society (2015) 58(02), 485-497.
- 6. G. Daskolopoulos, C. Mese, A. Vdovina, *Superrigidity of hyperbolic buildings*, Geometric and Functional Analysis (2011) 21, 905-919.
- 7. A. Vdovina, *Groups, periodic planes and hyperbolic buildings*, Journal of Group Theory, 8 (2005), no. 6, 755-765.
- 8. A. Vdovina, *Combinatorial structure of some hyperbolic buildings*, Mathematische Zeitschrift (2002) 241, 471-478.