The truncated moment problem on unital commutative real algebras

Maria Infusino
University of Cagliari (Italy)

(joint work with Raúl Curto, Mehdi Ghasemi and Salma Kuhlmann)

Joint Spectra and related Topics in Complex Dynamics and Representation Theory Banff - May 23rd, 2023

The classical truncated K-moment problem

Let $d, n \in \mathbb{N}$.

- $\left.\begin{array}{rl}\underline{x} & =\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \\ \alpha & =\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}\end{array}\right\} \rightarrow \underline{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}$.
- $J_{n}:=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\} \subset \mathbb{N}_{0}^{d}$.

The classical truncated K-moment problem

Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}}$ with $m_{\alpha} \in \mathbb{R}$ and a closed subset K of \mathbb{R}^{d}, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

The classical truncated K-moment problem

Let $d, n \in \mathbb{N}$.

- $\left.\begin{array}{rl}\underline{x} & =\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \\ \alpha & =\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}\end{array}\right\} \rightarrow \underline{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}$.
- $J_{n}:=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\} \subset \mathbb{N}_{0}^{d}$.

The classical truncated K-moment problem

Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}}$ with $m_{\alpha} \in \mathbb{R}$ and a closed subset K of \mathbb{R}^{d}, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

If such a μ exists, we say that μ is a K-representing measure for m.

The classical truncated K-moment problem

Let $d, n \in \mathbb{N}$.

- $\left.\begin{array}{l}\underline{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \\ \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}\end{array}\right\} \rightarrow \underline{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}$.
- $J_{n}:=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\} \subset \mathbb{N}_{0}^{d}$.

The classical truncated K-moment problem

Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}}$ with $m_{\alpha} \in \mathbb{R}$ and a closed subset K of \mathbb{R}^{d}, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

If such a μ exists, we say that μ is a K-representing measure for m.
$J_{n} \rightsquigarrow \mathbb{N}_{0}^{d} \backsim \sim$ classical full K-moment problem

Need for a more general formulation...

The classical truncated K-moment problem
Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}} \subset \mathbb{R}$ with $J_{n}:=\left\{\alpha \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

Examples of monomial diagrams for $d=2$

classical $\rightarrow \alpha \in J_{2}$

Need for a more general formulation...

The classical truncated K-moment problem

Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}} \subset \mathbb{R}$ with $J_{n}:=\left\{\alpha \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

Examples of monomial diagrams for $d=2$

classical $\rightarrow \alpha \in J_{2}$

rectangular $\rightarrow \alpha \in\{0,1,2\} \times\{0,1\}$

Need for a more general formulation...

The classical truncated K-moment problem

Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}} \subset \mathbb{R}$ with $J_{n}:=\left\{\alpha \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

Examples of monomial diagrams for $d=2$

classical $\rightarrow \alpha \in J_{2}$

$$
\text { sparse } \rightarrow \alpha \in\{0,1\} \times\{0\} \cup\{1,2,3\} \times\{1\}
$$

Need for a more general formulation...

The classical truncated K-moment problem

Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}} \subset \mathbb{R}$ with $J_{n}:=\left\{\alpha \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

Examples of monomial diagrams for $d=2$

classical $\rightarrow \alpha \in J_{2}$

sparse hybrid $\rightarrow \alpha \in J \subsetneq \mathbb{N}_{0}^{2}$ infinite

Need for a more general formulation...

The classical truncated K-moment problem
Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}} \subset \mathbb{R}$ with $J_{n}:=\left\{\alpha \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

- need to prescribe more general sets of moments than all the ones up to a degree $J_{n} \leadsto$ general $J \subsetneq \mathbb{N}_{0}^{d}$ (finite or infinite)

Need for a more general formulation...

The classical truncated K-moment problem
Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}} \subset \mathbb{R}$ with $J_{n}:=\left\{\alpha \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

- need to prescribe more general sets of moments than all the ones up to a degree $J_{n} \leadsto$ general $J \subsetneq \mathbb{N}_{0}^{d}$ (finite or infinite)

The B-truncated K-moment problem
Given $m=\left(m_{\alpha}\right)_{\alpha \in J} \subset \mathbb{R}$ with $J \subsetneq \mathbb{N}_{0}^{d}$ and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J ?
$$

(Here $B:=\operatorname{span}\left\{\underline{X}^{\alpha}: \alpha \in J\right\} \subsetneq \mathbb{R}[\underline{X}]$)

Need for a more general formulation...

The classical truncated K-moment problem
Given $n \in \mathbb{N}, m=\left(m_{\alpha}\right)_{\alpha \in J_{n}} \subset \mathbb{R}$ with $J_{n}:=\left\{\alpha \in \mathbb{N}_{0}^{d}: \alpha_{1}+\cdots+\alpha_{d} \leq n\right\}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J_{n} ?
$$

- need to prescribe more general sets of moments than all the ones up to a degree $J_{n} \leadsto$ general $J \subsetneq \mathbb{N}_{0}^{d}$ (finite or infinite)

The d-dimensional B-truncated K-moment problem

Given $m=\left(m_{\alpha}\right)_{\alpha \in J} \subset \mathbb{R}$ with $J \subsetneq \mathbb{N}_{0}^{d}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J ?
$$

(Here $B:=\operatorname{span}\left\{\underline{X}^{\alpha}: \alpha \in J\right\} \subsetneq \mathbb{R}[\underline{X}]$)

Need for a more general formulation...

- need to prescribe more general sets of moments than all the ones up to a degree $J_{n} \leadsto$ general $J \subsetneq \mathbb{N}_{0}^{d}$ (finite or infinite)

The d-dimensional B-truncated K-moment problem

Given $m=\left(m_{\alpha}\right)_{\alpha \in J} \subset \mathbb{R}$ with $J \subsetneq \mathbb{N}_{0}^{d}$, and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
m_{\alpha}=\underbrace{\int_{K} \underline{X}^{\alpha} \mu(d \underline{X})}_{\alpha \text {-th moment of } \mu}, \quad \forall \alpha \in J ?
$$

(Here $B:=\operatorname{span}\left\{\underline{X}^{\alpha}: \alpha \in J\right\} \subsetneq \mathbb{R}[\underline{X}]$)

- need to consider infinite dimensional spaces as supports, e.g. $K=\mathbb{R}^{\infty}, \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] \sim \sim_{\substack{\text { any other unital commutative real algebra } \\ \text { (not necessarily finitely generated) }}}^{\substack{\text { net }}}
$$

Need for a more general formulation...

- need to prescribe more general sets of moments than all the ones up to a degree $J_{n} \leadsto$ general $J \subsetneq \mathbb{N}_{0}^{d}$ (finite or infinite)

The d-dimensional B-truncated K-moment problem

Given a linear subspace $B \subsetneq \mathbb{R}[\underline{X}], L: B \rightarrow \mathbb{R}$ linear and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported in K s.t.

$$
L(p)=\int_{K} p(\underline{X}) \mu(d \underline{X}), \forall p \in B ?
$$

- need to consider infinite dimensional spaces as supports, e.g. $K=\mathbb{R}^{\infty}, \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] \sim \underset{\sim}{\text { any other unital commutative real algebra }} \begin{gathered}
\text { (not necessarily finitely generated) }
\end{gathered}
$$

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$

General setting

- $A=$ unital commutative \mathbb{R}-algebra

The d-dim. B-truncated $K-M P$
Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{\mathbb{R}^{d}} b(\alpha) \mu(d \alpha), \forall b \in B ?
$$

The general B-truncated $K-\mathrm{MP}$
Given a linear subspace $B \subsetneq A$,
$L: B \rightarrow \mathbb{R}$ linear

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $\mathbb{R}^{d} \cong \operatorname{Hom}\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] ; \mathbb{R}\right)$

General setting

- $A=$ unital commutative \mathbb{R}-algebra

The d-dim. B-truncated $K-M P$
Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq \mathbb{R}^{d}$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{\mathbb{R}^{d}} b(\alpha) \mu(d \alpha), \forall b \in B ?
$$

The general B-truncated $K-\mathrm{MP}$
Given a linear subspace $B \subsetneq A$,
$L: B \rightarrow \mathbb{R}$ linear

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $\mathbb{R}^{d} \cong \operatorname{Hom}\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] ; \mathbb{R}\right)$

General setting

- $A=$ unital commutative \mathbb{R}-algebra
- $X(A)=\operatorname{Hom}(A ; \mathbb{R})$ character space of A

The d-dim. B-truncated $K-M P$

Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq X(\mathbb{R}[X])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{\mathbb{R}^{d}} b(\alpha) \mu(d \alpha), \forall b \in B ?
$$

The general B-truncated $K-\mathrm{MP}$
Given a linear subspace $B \subsetneq A$, $L: B \rightarrow \mathbb{R}$ linear and $K \subseteq X(A)$ closed,

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $\mathbb{R}^{d} \cong \operatorname{Hom}\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] ; \mathbb{R}\right)$
- For $a \in \mathbb{R}[X]$,
$\hat{a}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=a(\alpha)$, $\forall \alpha \in \mathbb{R}^{d}$.

The d-dim. B-truncated $K-M P$

Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq X(\mathbb{R}[X])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{\mathbb{R}^{d}} b(\alpha) \mu(d \alpha), \forall b \in B ?
$$

General setting

- $A=$ unital commutative \mathbb{R}-algebra
- $X(A)=\operatorname{Hom}(A ; \mathbb{R})$ character space of A

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $\mathbb{R}^{d} \cong \operatorname{Hom}\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] ; \mathbb{R}\right)$
- For $a \in \mathbb{R}[X]$,
$\hat{a}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=a(\alpha)$, $\forall \alpha \in \mathbb{R}^{d}$.

The d-dim. B-truncated $K-M P$

Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq X(\mathbb{R}[X])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{X(\mathbb{R}[X])} \hat{b}(\alpha) \mu(d \alpha), \forall b \in B ?
$$

General setting

- $A=$ unital commutative \mathbb{R}-algebra
- $X(A)=\operatorname{Hom}(A ; \mathbb{R})$ character space of A

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $\mathbb{R}^{d} \cong \operatorname{Hom}\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] ; \mathbb{R}\right)$
- For $a \in \mathbb{R}[\underline{X}]$,
$\hat{a}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=a(\alpha)$, $\forall \alpha \in \mathbb{R}^{d}$.

General setting

- $A=$ unital commutative \mathbb{R}-algebra
- $X(A)=\operatorname{Hom}(A ; \mathbb{R})$ character space of A
- For $a \in A$ the Gelfand transform $\hat{a}: X(A) \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=\alpha(a)$, $\forall \alpha \in X(A)$.

The d-dim. B-truncated $K-M P$
Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq X(\mathbb{R}[\underline{X}])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{X(\mathbb{R}[X])} \hat{b}(\alpha) \mu(d \alpha), \forall b \in B ?
$$

The general B-truncated $K-M P$
Given a linear subspace $B \subsetneq A$, $L: B \rightarrow \mathbb{R}$ linear and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{X(A)} \hat{b}(\alpha) \mu(d \alpha), \forall b \in B ?
$$

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $\mathbb{R}^{d} \cong \operatorname{Hom}\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] ; \mathbb{R}\right)$
- For $a \in \mathbb{R}[\underline{X}]$,
$\hat{a}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=a(\alpha)$,
$\forall \alpha \in \mathbb{R}^{d}$.
- \mathbb{R}^{d} is given the product topology

The d-dim. B-truncated $K-M P$
Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq X(\mathbb{R}[\underline{X}])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{X(\mathbb{R}[X])} \hat{b}(\alpha) \mu(d \alpha), \forall b \in B ?
$$

General setting

- $A=$ unital commutative \mathbb{R}-algebra
- $X(A)=\operatorname{Hom}(A ; \mathbb{R})$ character space of A
- For $a \in A$ the Gelfand transform $\hat{a}: X(A) \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=\alpha(a)$, $\forall \alpha \in X(A)$.

The general B-truncated $K-M P$
Given a linear subspace $B \subsetneq A$, $L: B \rightarrow \mathbb{R}$ linear and $K \subseteq X(A)$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{X(A)} \hat{b}(\alpha) \mu(d \alpha), \forall b \in B ?
$$

The general B-truncated K-moment problem

Finite dimensional setting

- $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $\mathbb{R}^{d} \cong \operatorname{Hom}\left(\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] ; \mathbb{R}\right)$
- For $a \in \mathbb{R}[\underline{X}]$,
$\hat{a}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=a(\alpha)$,
$\forall \alpha \in \mathbb{R}^{d}$.
- \mathbb{R}^{d} is given the product topology

The d-dim. B-truncated $K-M P$
Given a linear subspace $B \subsetneq \mathbb{R}[X]$, $L: B \rightarrow \mathbb{R}$ and $K \subseteq X(\mathbb{R}[\underline{X}])$ closed, does there exist a nonnegative Radon measure μ supported on K s.t.

$$
L(b)=\int_{X(\mathbb{R}[X])} \hat{b}(\alpha) \mu(d \alpha), \forall b \in B ?
$$

General setting

- $A=$ unital commutative \mathbb{R}-algebra
- $X(A)=\operatorname{Hom}(A ; \mathbb{R})$ character space of A
- For $a \in A$ the Gelfand transform $\hat{a}: X(A) \rightarrow \mathbb{R}$ is $\hat{a}(\alpha):=\alpha(a)$, $\forall \alpha \in X(A)$.
- $X(A)$ is given the weakest topology $\omega_{X(A)}$ s.t. all â, $a \in A$ are continuous.

The general B-truncated $K-M P$
Given a linear subspace $B \subsetneq A$,
$L: B \rightarrow \mathbb{R}$ linear and $K \subseteq X(A)$ closed, does there exist a nonnegative
Radon measure μ supported on K s.t.

$$
L(b)=\int_{X(A)} \hat{b}(\alpha) \mu(d \alpha), \quad \forall b \in B ?
$$

Searching solvability criteria in this general setting....

The general B-truncated K-moment problem
Let A be unital commutative \mathbb{R}-algebra. Given a linear subspace $B \subseteq A, L: B \rightarrow \mathbb{R}$ linear and $K \subset X(A)$ closed, $\exists \mu$ Radon supported on K s.t. $L(b)=\int_{K} \hat{b} d \mu, \forall b \in B$?

Searching solvability criteria in this general setting....

The general B-truncated K-moment problem
Let A be unital commutative \mathbb{R}-algebra. Given a linear subspace $B \subseteq A, L: B \rightarrow \mathbb{R}$ linear and $K \subset X(A)$ closed, $\exists \mu$ Radon supported on K s.t. $L(b)=\int_{K} \hat{b} d \mu, \forall b \in B$?

Standing on the shoulders of giants...

Full d-dim. KMP:
$A=B=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$

$$
\frac{\text { Riesz-Haviland theorem (1923, } d=1 ; 1936, d \geq 2 \text {) }}{\qquad L\left(\operatorname{Pos}_{\mathbb{R}[X]}(K)\right) \subseteq[0, \infty) \Leftrightarrow \exists K \text {-representing }} \begin{array}{r}
\text { measure for } L .
\end{array}
$$

Searching solvability criteria in this general setting....

The general B-truncated K-moment problem

Let A be unital commutative \mathbb{R}-algebra. Given a linear subspace $B \subseteq A, L: B \rightarrow \mathbb{R}$ linear and $K \subset X(A)$ closed, $\exists \mu$ Radon supported on K s.t. $L(b)=\int_{K} \hat{b} d \mu, \forall b \in B$?

Standing on the shoulders of giants...

Full d-dim. KMP:
$A=B=\mathbb{R}\left[X_{\mathbf{1}}, \ldots, X_{d}\right]$

$$
\frac{\text { Riesz-Haviland theorem (1923, } d=1 ; 1936, d \geq 2)}{L\left(\operatorname{Pos}_{\mathbb{R}[X]}(K)\right) \subseteq[0, \infty) \Leftrightarrow \exists K \text {-representing }} \text { measure for } L . ~
$$

> Truncated Riesz-Haviland thm (Tchakaloff 1957)
> $L\left(\operatorname{Pos}_{\mathbb{R}[\underline{X}]_{n}}(K)\right) \subseteq[0, \infty) \Leftrightarrow \exists K$-representing measure for L.

Searching solvability criteria in this general setting....

The general B-truncated K-moment problem

Let A be unital commutative \mathbb{R}-algebra. Given a linear subspace $B \subseteq A, L: B \rightarrow \mathbb{R}$ linear and $K \subset X(A)$ closed, $\exists \mu$ Radon supported on K s.t. $L(b)=\int_{K} \hat{b} d \mu, \forall b \in B$?

Standing on the shoulders of giants.

Full d - dim. KMP:
$A=B=\mathbb{R}\left[X_{\mathbf{1}}, \ldots, X_{d}\right]$

$$
\text { Riesz-Haviland theorem (1923, } d=1 ; 1936, d \geq 2 \text {) }
$$

$$
L\left(\operatorname{Pos}_{\mathbb{R}[X]}(K)\right) \subseteq[0, \infty) \Leftrightarrow \exists \underset{\text { measure for } L .}{ } \begin{aligned}
& \text {-representing }
\end{aligned}
$$

Searching solvability criteria in this general setting....

The general B-truncated K-moment problem

Let A be unital commutative \mathbb{R}-algebra. Given a linear subspace $B \subseteq A, L: B \rightarrow \mathbb{R}$ linear and $K \subset X(A)$ closed, $\exists \mu$ Radon supported on K s.t. $L(b)=\int_{K} \hat{b} d \mu, \forall b \in B$?

Standing on the shoulders of giants.

Riesz-Haviland theorem (1923, $d=1 ; 1936, d \geq 2$)

$$
L\left(\operatorname{Pos}_{\mathbb{R}[X]}(K)\right) \subseteq[0, \infty) \Leftrightarrow \exists K \text {-representing }
$$ measure for L.

Searching solvability criteria in this general setting....

The general B-truncated K-moment problem

Let A be unital commutative \mathbb{R}-algebra. Given a linear subspace $B \subseteq A, L: B \rightarrow \mathbb{R}$ linear and $K \subset X(A)$ closed, $\exists \mu$ Radon supported on K s.t. $L(b)=\int_{K} \hat{b} d \mu, \forall b \in B$?
$\operatorname{Pos}_{B}(K):=\{b \in B: \hat{b} \geq 0$ on $K\} \rightsquigarrow L$ is K-positive if $L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0,+\infty)$
Standing on the shoulders of giants...

	Truncated Riesz-Haviland thm (Tchakaloff 1957)
$\begin{aligned} & \text { Truncated } d \text {-dim. KMP: } \\ & A=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right] \\ & B=\mathbb{R}\left[X_{\mathbf{1}}, \ldots, X_{d}\right]_{n} \end{aligned}$	$L\left(\operatorname{Pos}_{\mathbb{R}[X]_{n}}(K)\right) \subseteq[0, \infty) \Leftrightarrow \exists \underset{ }{ } \begin{aligned} & \text { m-reasuresenting for } L . \end{aligned}$
	Truncated Riesz-Haviland thm (Curto,Fialkow 2008)
	$\begin{aligned} & L\left(\operatorname{Pos}_{\mathbb{R}[X]_{2 n+i}}(K)\right) \subseteq[0, \infty), \\ & \quad i \in\{0,1\} \\ & + \\ & \exists \bar{L} \text { extension of } L \text { to } \mathbb{R}[X]_{2_{n+2}} \end{aligned} \quad \begin{gathered} \text { measure for } L \text {. } \\ \text { s.t. } \bar{L}\left(\operatorname{Pos}_{\mathbb{R}[X]_{2 n+2}}(K)\right) \subseteq[0, \infty) \end{gathered}$

Our first goal

finding an analogue of Riesz-Haviland thm for the general B-truncated $K-M P$!

Our generalized Riesz-Haviland theorem: the compact case

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

Our generalized Riesz-Haviland theorem: the compact case

Thm (*) (Curto, Ghasemi, I., Kuhlmann)

Let (\mathcal{A}, ρ) be a seminormed algebra, $\mathcal{B} \subseteq \mathcal{A}$ linear subsp, S quadratic module, and $\ell: \mathcal{B} \longrightarrow \mathbb{R}$ linear.

$$
\exists D>0: \ell(g) \leq D\|g\|_{s ; \rho}, \forall g \in \mathcal{B}
$$

$\exists\left(\mathfrak{s p}{ }_{\rho}(\mathcal{A}) \cap \mathcal{K}_{S}\right)$ - representing meas. for L

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

Notation

- $S \subseteq A$ quadratic module, i.e. $1 \in S, S+S \subseteq S$ and $a^{2} S \subseteq S$ for all $a \in A$
- $\|g\|_{S ; \rho}:=\inf _{h \in S} \rho(g+h)$
- $\mathfrak{s p}_{\rho}(\mathcal{A}):=\{\alpha \in X(\mathcal{A}): \alpha$ is ρ-continuous $\}$ Gelfand spectrum
- $\mathcal{K}_{S}:=\{\alpha \in X(\mathcal{A}): \alpha(s) \geq 0, \forall s \in S\}$

Our generalized Riesz-Haviland theorem: the compact case

Choquet's Lemma (Choquet, 1969)

Let C convex cone in a real vector space V $W \subseteq V$ linear subsp, $L: W \longrightarrow \mathbb{R}$ linear

$$
\begin{gathered}
L(W \cap C) \subseteq[0, \infty) \\
\Downarrow
\end{gathered}
$$

$\exists \bar{L}$ lin. extension of L to $(W+C) \cap(W-C)$ s.t. $\bar{L}((W+C) \cap(W-C) \cap C) \subseteq[0, \infty)$.

Thm (*) (Curto, Ghasemi, I., Kuhlmann)

Let (\mathcal{A}, ρ) be a seminormed algebra, $\mathcal{B} \subseteq \mathcal{A}$ linear subsp, S quadratic module, and $\ell: \mathcal{B} \longrightarrow \mathbb{R}$ linear.

$$
\exists D>0: \ell(g) \leq D\|g\|_{s_{;} \rho}, \forall g \in \mathcal{B}
$$

$\exists\left(\mathfrak{s p}{ }_{\rho}(\mathcal{A}) \cap \mathcal{K}_{S}\right)$ - representing meas. for L

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

Notation

- $S \subseteq A$ quadratic module, i.e. $1 \in S, S+S \subseteq S$ and $a^{2} S \subseteq S$ for all $a \in A$
- $\|g\|_{S ; \rho}:=\inf _{h \in S} \rho(g+h)$
- $\mathfrak{s p}_{\rho}(\mathcal{A}):=\{\alpha \in X(\mathcal{A}): \alpha$ is ρ-continuous $\}$ Gelfand spectrum
- $\mathcal{K}_{S}:=\{\alpha \in X(\mathcal{A}): \alpha(s) \geq 0, \forall s \in S\}$

Applications to finite dimensional truncated $K-M P s$

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

Taking in our theorem

- $A=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]$
- $B=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right]_{n}$
- $q:=1 \in \mathbb{R}\left[X_{1}, \ldots, X_{d}\right]_{n}$

Truncated Riesz-Haviland theorem (Tchakaloff 1957)

Let $d, n \in \mathbb{N}, K \subseteq \mathbb{R}^{d}$ compact, and $L: \mathbb{R}\left[X_{1}, \ldots, X_{d}\right]_{n} \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{\mathbb{R}[\underline{X}]_{n}}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

Applications to finite dimensional truncated $K-M P s$

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

- $A=\mathbb{R}[X, Y]$
- $B=\operatorname{span}\left\{X^{i} Y^{j}: 0 \leq i \leq n_{1}, 0 \leq j \leq n_{2}\right\}$
- $q:=1 \in B$

Rectangular truncated K-MP (Putinar 1990)

Let $n_{1}, n_{2} \in \mathbb{N}, K \subseteq \mathbb{R}^{2}$ compact and $L: \operatorname{span}\left\{X^{i} Y^{j}: 0 \leq i \leq n_{1}, 0 \leq j \leq n_{2}\right\} \rightarrow \mathbb{R}$ linear.
L is K-positive $\Longleftrightarrow \exists K$ - repr. meas. for L

Applications to finite dimensional truncated $K-$ MPs

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

$C=\left\{1, X, X Y, X^{2} Y, X^{3} Y\right\}$
A set C of monomials in $\mathbb{R}[X, Y]$ is connected if every monomial in C is the endpoint of a staircase path starting at 1 .

- $A=\mathbb{R}[X, Y]$
- $B=\operatorname{span}(C)$
- $q:=1 \in B$

Sparse truncated K-MP (Laurent, Mourrain 2009)

Let C be a finite and connected set of monomials in $\mathbb{R}[X, Y], K \subseteq \mathbb{R}^{2}$ compact and $L: \operatorname{span}(C) \rightarrow \mathbb{R}$ linear.
L is K-positive $\Longleftrightarrow \exists K$ - repr. meas. for L

Applications to finite dimensional truncated $K-$ MPs

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

$$
\begin{aligned}
& \text { - } A=\mathbb{R}[X, Y] \\
& \text { - } B=\operatorname{span}(C) \\
& q:=1 \in B
\end{aligned}
$$

Sparse hybrid truncated $K-M P$

Let C be a (not necessarily finite) connected set of monomials in $\mathbb{R}[X, Y], K \subseteq \mathbb{R}^{2}$ compact and $L: \operatorname{span}(C) \rightarrow \mathbb{R}$ linear.
L is K-positive $\Longleftrightarrow \exists K$-repr. meas. for L

Applications to infinite dimensional truncated $K-$ MPs

applications in statistical mechanics \rightsquigarrow truncated MP for random measures
\rightsquigarrow truncated $K-\mathrm{MP}$ for K subset of signed measures on X Hausdorff locally compact

Applications to infinite dimensional truncated $K-M P s$

applications in statistical mechanics \rightsquigarrow truncated MP for random measures
\rightsquigarrow truncated $K-\mathrm{MP}$ for K subset of signed measures on X Hausdorff locally compact

Can we embed such a K in a character space of some algebra?

Applications to infinite dimensional truncated $K-$ MPs

applications in statistical mechanics \rightsquigarrow truncated MP for random measures
\rightsquigarrow truncated $K-M P$ for K subset of signed measures on X Hausdorff locally compact

Can we embed such a K in a character space of some algebra?

- $\mathcal{M}(X):=$ space of all signed Radon measures supported in X
- $\tau:=$ vague topology on $\mathcal{M}(X)$,

Applications to infinite dimensional truncated $K-$ MPs

applications in statistical mechanics \rightsquigarrow truncated MP for random measures
\rightsquigarrow truncated $K-\mathrm{MP}$ for K subset of signed measures on X Hausdorff locally compact

Can we embed such a K in a character space of some algebra?

- $\mathcal{M}(X):=$ space of all signed Radon measures supported in X
- $\tau:=$ vague topology on $\mathcal{M}(X)$,
$=$ weakest topology making all $\nu \mapsto \int_{X} f d \nu$ continuous for all $f \in C_{c}(X)$.

Applications to infinite dimensional truncated $K-$ MPs

applications in statistical mechanics \rightsquigarrow truncated MP for random measures

\rightsquigarrow truncated $K-\mathrm{MP}$ for K subset of signed measures on X Hausdorff locally compact

Can we embed such a K in a character space of some algebra?

- $\mathcal{M}(X):=$ space of all signed Radon measures supported in X
- $\tau:=$ vague topology on $\mathcal{M}(X)$,
$=$ weakest topology making all $\nu \mapsto \int_{X} f d \nu$ continuous for all $f \in C_{c}(X)$.
- $\forall \nu \in \mathcal{M}(X), f_{n} \in C_{c}\left(X^{n}\right), f_{n} \nu^{\otimes n}:=\int_{X^{n}} f_{n}\left(x_{1}, \ldots, x_{n}\right) \nu^{\otimes n}\left(d x_{1}, \ldots, d x_{n}\right)$.

Applications to infinite dimensional truncated $K-$ MPs

applications in statistical mechanics \rightsquigarrow truncated MP for random measures
\rightsquigarrow truncated $K-\mathrm{MP}$ for K subset of signed measures on X Hausdorff locally compact

Can we embed such a K in a character space of some algebra?

- $\mathcal{M}(X):=$ space of all signed Radon measures supported in X
- $\tau:=$ vague topology on $\mathcal{M}(X)$,
$=$ weakest topology making all $\nu \mapsto \int_{X} f d \nu$ continuous for all $f \in C_{c}(X)$.
- $\forall \nu \in \mathcal{M}(X), f_{n} \in C_{c}\left(X^{n}\right), f_{n} \nu^{\otimes n}:=\int_{X^{n}} f_{n}\left(x_{1}, \ldots, x_{n}\right) \nu^{\otimes n}\left(d x_{1}, \ldots, d x_{n}\right)$.
- $\mathscr{P}:=$ polynomials in the variable ν in $\mathcal{M}(X)$ and coefficients in $C_{c}(X)$, i.e.

$$
a \in \mathscr{P} \rightsquigarrow a(\nu):=\sum_{j=0}^{N} f_{j} \nu^{\otimes j}, N \in \mathbb{N}_{0}, f_{0} \in \mathbb{R}, f_{j} \in C_{c}\left(X^{j}\right)
$$

Applications to infinite dimensional truncated $K-$ MPs

applications in statistical mechanics
\rightsquigarrow truncated MP for random measures
\rightsquigarrow truncated $K-M P$ for K subset of signed measures on X Hausdorff locally compact

Can we embed such a K in a character space of some algebra?

- $\mathcal{M}(X):=$ space of all signed Radon measures supported in X
- $\tau:=$ vague topology on $\mathcal{M}(X)$,
$=$ weakest topology making all $\nu \mapsto \int_{X} f d \nu$ continuous for all $f \in C_{c}(X)$.
- $\forall \nu \in \mathcal{M}(X), f_{n} \in C_{c}\left(X^{n}\right), f_{n} \nu^{\otimes n}:=\int_{X^{n}} f_{n}\left(x_{1}, \ldots, x_{n}\right) \nu^{\otimes n}\left(d x_{1}, \ldots, d x_{n}\right)$.
- $\mathscr{P}:=$ polynomials in the variable ν in $\mathcal{M}(X)$ and coefficients in $C_{c}(X)$, i.e.

$$
a \in \mathscr{P} \rightsquigarrow a(\nu):=\sum_{j=0}^{N} f_{j} \nu^{\otimes j}, N \in \mathbb{N}_{0}, f_{0} \in \mathbb{R}, f_{j} \in C_{c}\left(X^{j}\right)
$$

$(\mathcal{M}(X), \tau)$ is topologically embedded in $\left(X(\mathscr{P}), \omega_{X(\mathscr{P})}\right)$

Applications to infinite dimensional truncated $K-M P s$

Taking

- $A:=\mathscr{P}$
- $K \subset \mathcal{M}(X) \subset X(\mathscr{P})$
- $B:=\mathscr{P}_{N}:=$ polynomials in \mathscr{P} of degree N
- $q:=1 \in \mathscr{P}_{N}$

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact, $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { repres. meas. for } L
$$

\Downarrow

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let $K \subset \mathcal{M}(X)$ be compact, $N \in \mathbb{N}$ and $L: \mathscr{P}_{N} \rightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{\mathscr{P}_{N}}(K)\right) \subseteq[0,+\infty) \Longleftrightarrow \exists K-\text { representing measure for } L .
$$

Applications to infinite dimensional truncated $K-M P s$

Taking

- $A:=\mathscr{P}$
- $K \subset \mathcal{M}(X) \subset X(\mathscr{P})$
- $B:=\mathscr{P}_{N}:=$ polynomials in \mathscr{P} of degree N
- $q:=1 \in \mathscr{P}_{N}$

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ compact, $B \subseteq A$ linear subspace s.t. $\exists q \in B$ with $\hat{q}>0$ on K, and $L: B \longrightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0, \infty) \Longleftrightarrow \exists K-\text { repres. meas. for } L
$$

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)

Let $K \subset \mathcal{M}(X)$ be compact, $N \in \mathbb{N}$ and $L: \mathscr{P}_{N} \rightarrow \mathbb{R}$ linear.

$$
L\left(\operatorname{Pos}_{\mathscr{P}_{N}}(K)\right) \subseteq[0,+\infty) \Longleftrightarrow \exists K-\text { representing measure for } L
$$

\rightarrow generalizes some results in Kuna, Lebowitz, Speer 2011 for compact subsets of

$$
\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X, I \subseteq \mathbb{N} \text { with either }|I|<\infty \text { or } I=\mathbb{N}\right\} \subset \mathcal{M}(X)
$$

Our generalized Riesz-Haviland theorem: the non-compact case

Theorem (Curto, Ghasemi, I., Kuhlmann, 2023)
Let A be a unital commutative \mathbb{R}-algebra, $K \subseteq X(A)$ non-compact and closed, $B \subseteq A$ linear subspace s.t.
(1) $\exists q \in A \backslash B$ s.t. $\hat{q} \geq 1$ on K
(2) $1 \in B_{q}:=\operatorname{Span}(B \cup\{q\})$
(3) B_{q} generates A
(4) $\forall b \in B, \sup _{\alpha \in K}\left|\frac{\hat{b}(\alpha)}{\hat{q}(\alpha)}\right|<\infty$
and let $L: B \longrightarrow \mathbb{R}$ be linear.

$$
\begin{array}{ll}
L\left(\operatorname{Pos}_{B}(K)\right) \subseteq[0,+\infty) \\
+ & \Longleftrightarrow \quad \exists K \text {-representing measure for } L \\
\exists \bar{L} \text { extension of } L \text { to } B_{q} & \text { i.e. } L(b)=\int \hat{b} d \nu, \quad \forall b \in B \\
\text { s.t. } \bar{L}\left(\operatorname{Pos}_{B_{q}}(K)\right) \subseteq[0, \infty)
\end{array} \quad
$$

Proof's idea

- From \bar{L} construct a \widetilde{K}-positive linear functional \tilde{L} on a subspace of an algebra $\mathcal{B} \subset \mathcal{C}_{b}(K)$, where \widetilde{K} is the Hausdorff compactification of K
- use our result in the compact case to show \exists a \widetilde{K}-representing measure for L
- show that the representing measure is actually supported in K

Applications to finite dimensional truncated $K-M P s$

To apply our result to $A=\mathbb{R}[X], B=\mathbb{R}[X]_{2 n+i}$ with $i \in\{0,1\}, K \subseteq \mathbb{R}^{d}$ non-cmpt, we need to find q s.t.
(1) $\exists q \in A \backslash B$ s.t. $\hat{q} \geq 1$ on K
(2) $1 \in B_{q}:=\operatorname{Span}(B \cup\{q\})$
(3) B_{q} generates A
(4) $\forall b \in B, \sup _{\alpha \in K}\left|\frac{\hat{b}(\alpha)}{\hat{q}(\alpha)}\right|<\infty$

Applications to finite dimensional truncated $K-M P s$

To apply our result to $A=\mathbb{R}[\underline{X}], B=\mathbb{R}[\underline{X}]_{2 n+i}$ with $i \in\{0,1\}, K \subseteq \mathbb{R}^{d}$ non-cmpt, we need to find q s.t.
(1) $\exists q \in A \backslash B$ s.t. $\hat{q} \geq 1$ on K
(2) $1 \in B_{q}:=\operatorname{Span}(B \cup\{q\})$
$1 \in \mathbb{R}[\underline{X}]_{2 n+i}$ and $\mathbb{R}[\underline{X}]_{2 n+i}$ generates $\mathbb{R}[\underline{X}] \Longrightarrow(2)$, (3) hold for all q !

Applications to finite dimensional truncated $K-M P s$

To apply our result to $A=\mathbb{R}[\underline{X}], B=\mathbb{R}[\underline{X}]_{2 n+i}$ with $i \in\{0,1\}, K \subseteq \mathbb{R}^{d}$ non-cmpt, we need to find q s.t.
(1) $\exists q \in A \backslash B$ s.t. $\hat{q} \geq 1$ on K
(2) $1 \in B_{q}:=\operatorname{Span}(B \cup\{q\})$
(3) B_{q} generates A
(4) $\forall b \in B, \sup _{\alpha \in K}\left|\frac{\hat{b}(\alpha)}{\hat{q}(\alpha)}\right|<\infty$
$1 \in \mathbb{R}[\underline{X}]_{2 n+i}$ and $\mathbb{R}[\underline{X}]_{2 n+i}$ generates $\mathbb{R}[\underline{X}] \Longrightarrow$ (2), (3) hold for all q !

Lemma

Let $\mathcal{P} \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{d}\right]_{k}$. Then $\exists p$ with $\operatorname{deg}(p)=\left\{\begin{array}{ll}k+1 & \text { when } k \text { is odd } \\ k+2 & \text { when } k \text { is even }\end{array}\right.$ s.t. $p \geq 1$ on \mathbb{R}^{d} and $\sup _{\underline{y} \in \mathbb{R}^{d}}\left|\frac{f(\underline{y})}{p(\underline{y})}\right|<\infty, \forall f \in \mathcal{P}$.

Applications to finite dimensional truncated $K-M P s$

To apply our result to $A=\mathbb{R}[\underline{X}], B=\mathbb{R}[\underline{X}]_{2 n+i}$ with $i \in\{0,1\}, K \subseteq \mathbb{R}^{d}$ non-cmpt, we need to find q s.t.
(1) $\exists q \in A \backslash B$ s.t. $\hat{q} \geq 1$ on K
(2) $1 \in B_{q}:=\operatorname{Span}(B \cup\{q\})$
(3) B_{q} generates A
(4) $\forall b \in B, \sup _{\alpha \in K}\left|\frac{\hat{b}(\alpha)}{\hat{q}(\alpha)}\right|<\infty$
$1 \in \mathbb{R}[\underline{X}]_{2 n+i}$ and $\mathbb{R}[\underline{X}]_{2 n+i}$ generates $\mathbb{R}[\underline{X}] \Longrightarrow(2)$, (3) hold for all q !

Lemma

Let $\mathcal{P} \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{d}\right]_{k}$. Then $\exists p$ with $\operatorname{deg}(p)=\left\{\begin{array}{ll}k+1 & \text { when } k \text { is odd } \\ k+2 & \text { when } k \text { is even }\end{array}\right.$ s.t. $p \geq 1$ on \mathbb{R}^{d} and $\sup _{\underline{y} \in \mathbb{R}^{d}}\left|\frac{f(\underline{y})}{p(\underline{y})}\right|<\infty, \forall f \in \mathcal{P}$.

$$
\mathcal{P}=B \Longrightarrow \text { (1) and (4) hold for } q:=p \in \mathbb{R}[\underline{X}]_{2 n+2}!
$$

Applications to finite dimensional truncated $K-M P s$

To apply our result to $A=\mathbb{R}[\underline{X}], B=\mathbb{R}[\underline{X}]_{2 n+i}$ with $i \in\{0,1\}, K \subseteq \mathbb{R}^{d}$ non-cmpt, we need to find q s.t.
(1) $\exists q \in A \backslash B$ s.t. $\hat{q} \geq 1$ on K
(2) $1 \in B_{q}:=\operatorname{Span}(B \cup\{q\})$
(3) B_{q} generates A
(4) $\forall b \in B, \sup _{\alpha \in K}\left|\frac{\hat{b}(\alpha)}{\hat{q}(\alpha)}\right|<\infty$
$1 \in \mathbb{R}[\underline{X}]_{2 n+i}$ and $\mathbb{R}[\underline{X}]_{2 n+i}$ generates $\mathbb{R}[\underline{X}] \Longrightarrow(2)$, (3) hold for all q !

Lemma

Let $\mathcal{P} \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{d}\right]_{k}$. Then $\exists p$ with $\operatorname{deg}(p)= \begin{cases}k+1 & \text { when } k \text { is odd } \\ k+2 & \text { when } k \text { is even }\end{cases}$
s.t.
$p \geq 1$ on \mathbb{R}^{d} and $\sup _{\underline{y} \in \mathbb{R}^{d}}\left|\frac{f(\underline{y})}{p(\underline{y})}\right|<\infty, \forall f \in \mathcal{P}$.

$$
\mathcal{P}=B \Longrightarrow \text { (1) and (4) hold for } q:=p \in \mathbb{R}[\underline{X}]_{2 n+2}!
$$

Improved version of truncated Riesz-Haviland thm (Curto, Fialkow, 2008)

Let $K \subseteq \mathbb{R}^{d}$ be non-compact, $n \in \mathbb{N}$, and $L: \mathbb{R}[\underline{X}]_{2 n+i} \rightarrow \mathbb{R}$ with $i \in\{0,1\}$.

$$
\begin{gathered}
L\left(\operatorname{Pos}_{\mathbb{R}[X]_{2 n+i}}(K)\right) \subseteq[0,+\infty) \\
+
\end{gathered}
$$

$\exists K$-representing measure for L.
$\exists \bar{L}$ extension of L to B_{p}
s.t. $\bar{L}\left(\operatorname{Pos}_{B_{p}}(K)\right) \subseteq[0, \infty)$

Applications to finite dimensional truncated $K-M P s$

With the same technique

- we find a suitable p for the rectangular and the sparse connected

Applications to finite dimensional truncated $K-M P s$

With the same technique

- we find a suitable p for the rectangular and the sparse connected
- we do NOT find a suitable p for the hybrid situation as K is non-compact and degree unbounded in some directions!

Applications to finite dimensional truncated $K-M P s$

With the same technique

- we find a suitable p for the rectangular and the sparse connected
- we do NOT find a suitable p for the hybrid situation as K is non-compact and degree unbounded in some directions!
BUT if we balance unboundedness and compactness...

Applications to finite dimensional truncated $K-$ MPs

With the same technique

- we find a suitable p for the rectangular and the sparse connected
- we do NOT find a suitable p for the hybrid situation as K is non-compact and degree unbounded in some directions!
BUT if we balance unboundedness and compactness...

Theorem (Curto, Ghasemi, I. Kuhlmann, 2023)

Let
$A:=\mathbb{R}[\underline{X}, \underline{Y}]$ with $\underline{X} \equiv\left(X_{1}, \ldots, X_{d}\right)$ and $\underline{Y} \equiv\left(Y_{1}, \ldots, Y_{s}\right)$,
$K:=K_{1} \times K_{2} \subseteq \mathbb{R}^{d} \times \mathbb{R}^{s}$, with K_{1} compact in \mathbb{R}^{d} and K_{2} non-compact in \mathbb{R}^{s}
$B:=\mathbb{R}[\underline{X}][\underline{Y}]_{2 n-1}$
$L: B \rightarrow \mathbb{R}$ linear
$p \in \mathbb{R}[\underline{X}][\underline{Y}]_{2 n}$
$L\left(\operatorname{Pos}_{\mathbb{R}[X][Y]_{2 n-1}}(K)\right) \subseteq[0,+\infty) \Longleftrightarrow \exists K$-representing measure for L.
$\exists \bar{L}$ extension of L to B_{p}
s.t. $\bar{L}\left(\operatorname{Pos}_{B_{p}}(K)\right) \subseteq[0, \infty)$

Applications to infinite dimensional truncated $K-M P$:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$

Applications to infinite dimensional truncated $K-M P$:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$
CASE 1: X compact

Applications to infinite dimensional truncated $K-\mathrm{MP}$:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$

CASE 1: X compact

Applying our result in the non-compact case for:

- $A:=\mathscr{P}$
- $K:=\mathcal{N}(X) \subseteq \mathcal{M}(X) \subseteq X(\mathscr{P})$
- $B:=\mathscr{P}_{2}:=$ polynomials in \mathscr{P} of degree 2
- $q:=1+\mathbb{1}_{X}^{\otimes 3} \eta^{\otimes 3} \Rightarrow$ PROBLEM: $B_{q}=\operatorname{span}\{B \cup\{q\}\}$ does not generate \mathscr{P} !

Applications to infinite dimensional truncated $K-$ MP:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$

CASE 1: X compact

Applying our result in the non-compact case for:

- $A:=\langle\mathcal{R}\rangle$ where

$$
\mathcal{R}:=\left\{f_{0}+f_{1} \eta+f_{2} \eta^{\otimes 2}+f_{3} \mathbb{I}_{X}^{\otimes 3} \eta^{\otimes 3}: f_{0}, f_{3} \in \mathbb{R}, f_{1} \in \mathcal{C}_{c}(X), f_{2} \in \mathcal{C}_{c}\left(X^{2}\right)\right\}
$$

- $K:=\mathcal{N}(X) \subseteq \mathcal{M}(X) \subseteq X(\mathscr{P}) \subseteq X(\langle\mathcal{R}\rangle)$
- $B:=\mathscr{P}_{2}:=$ polynomials in \mathscr{P} of degree $2 \subseteq\langle\mathcal{R}\rangle$
- $q:=1+\mathbb{1}_{X}^{\otimes 3} \eta^{\otimes 3} \Rightarrow B_{q}=\operatorname{span}\{B \cup\{q\}\}=\mathcal{R}$ generates A !

Applications to infinite dimensional truncated $K-$ MP:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$
CASE 1: X compact
Applying our result in the non-compact case for:

- $A:=\langle\mathcal{R}\rangle$ where

$$
\mathcal{R}:=\left\{f_{0}+f_{1} \eta+f_{2} \eta^{\otimes 2}+f_{3} \mathbb{1}_{X}^{\otimes 3} \eta^{\otimes 3}: f_{0}, f_{3} \in \mathbb{R}, f_{1} \in \mathcal{C}_{c}(X), f_{2} \in \mathcal{C}_{c}\left(X^{2}\right)\right\}
$$

- $K:=\mathcal{N}(X) \subseteq \mathcal{M}(X) \subseteq X(\mathscr{P}) \subseteq X(\langle\mathcal{R}\rangle)$
- $B:=\mathscr{P}_{2}:=$ polynomials in \mathscr{P} of degree $2 \subseteq\langle\mathcal{R}\rangle$
- $q:=1+\mathbb{1}_{X}^{\otimes 3} \eta^{\otimes 3} \Rightarrow B_{q}=\operatorname{span}\{B \cup\{q\}\}=\mathcal{R}$ generates A !

Theorem (Kuna, Lebowitz, Speer, 2011)

Let X be compact and $L: \mathscr{P}^{(2)} \rightarrow \mathbb{R}$ be linear and $\mathcal{N}(X)$-positive.
$(\exists \mathcal{N}(X)$-repr. measure for $L) \Longleftrightarrow\binom{\exists R>0$ s.t. $\forall q_{f_{0}, f_{1}, f_{2}, f_{3}} \in \operatorname{Pos}_{\mathcal{R}}(\mathcal{N}(X))}{,L\left(f_{0}+f_{1} \eta+f_{2} \eta^{\otimes 2}\right)+f_{3} R \geq 0}$.

Applications to infinite dimensional truncated $K-M P$:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$

Applications to infinite dimensional truncated $K-M P$:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$

CASE 2: X non-compact

Applications to infinite dimensional truncated $K-$ MP:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$

CASE 2: X non-compact

Applying our result in the non-compact case for:

- $A:=\left\langle\mathcal{R}_{\Gamma}\right\rangle$ where $0<\Gamma \in \mathcal{C}_{0}(X)$ and

$$
\mathcal{R}_{\Gamma}:=\left\{f_{0}+f_{1} \eta+f_{2} \eta^{\otimes 2}+f_{3} \Gamma^{\otimes 3} \eta^{\otimes 3}: f_{0}, f_{3} \in \mathbb{R}, f_{1} \in \mathcal{C}_{c}(X), f_{2} \in \mathcal{C}_{c}\left(X^{2}\right)\right\}
$$

- $K=\mathcal{N}(X) \subseteq \mathcal{M}(X) \subseteq X(\mathscr{P}) \subseteq X(\mathscr{P}) \times \mathbb{R} \cong X\left(\left\langle\mathcal{R}_{\Gamma}\right\rangle\right)$
- $B:=\mathscr{P}_{2}:=$ polynomials in \mathscr{P} of degree $2 \subseteq\left\langle\mathcal{R}_{\Gamma}\right\rangle$
- $q:=1+\Gamma^{\otimes 3} \eta^{\otimes 3} \Rightarrow B_{q}=\operatorname{span}\{B \cup\{q\}\}=\mathcal{R}_{\Gamma}$

Applications to infinite dimensional truncated $K-$ MP:

applications in statistical mechanics \rightsquigarrow truncated $\mathcal{N}(X)-\mathrm{MP}$
$\mathcal{N}(X):=\left\{\sum_{i \in I} \delta_{x_{i}}: x_{i} \in X\right.$, with either $|I|<\infty$ or $\left.I=\mathbb{N}\right\}$ is non-compact in $\mathcal{M}(X)$

CASE 2: X non-compact

Applying our result in the non-compact case for:

- $A:=\left\langle\mathcal{R}_{\Gamma}\right\rangle$ where $0<\Gamma \in \mathcal{C}_{0}(X)$ and

$$
\mathcal{R}_{\Gamma}:=\left\{f_{0}+f_{1} \eta+f_{2} \eta^{\otimes 2}+f_{3} \Gamma^{\otimes 3} \eta^{\otimes 3}: f_{0}, f_{3} \in \mathbb{R}, f_{1} \in \mathcal{C}_{c}(X), f_{2} \in \mathcal{C}_{c}\left(X^{2}\right)\right\}
$$

- $K=\mathcal{N}(X) \subseteq \mathcal{M}(X) \subseteq X(\mathscr{P}) \subseteq X(\mathscr{P}) \times \mathbb{R} \cong X\left(\left\langle\mathcal{R}_{\Gamma}\right\rangle\right)$
- $B:=\mathscr{P}_{2}:=$ polynomials in \mathscr{P} of degree $2 \subseteq\left\langle\mathcal{R}_{\Gamma}\right\rangle$
- $q:=1+\Gamma^{\otimes 3} \eta^{\otimes 3} \Rightarrow B_{q}=\operatorname{span}\{B \cup\{q\}\}=\mathcal{R}_{\Gamma}$

Theorem (Kuna, Lebowitz, Speer, 2011)

Let X be compact and $L: \mathscr{P}^{(2)} \rightarrow \mathbb{R}$ be linear and $\mathcal{N}(X)$-positive.

$$
(\exists \mathcal{N}(X) \text {-repr. measure for } L) \Longleftrightarrow\left(\begin{array}{c}
\exists R>0 \text { and } 0<\Gamma \in \mathcal{C}_{0}(X) \text { s.t. } \\
\forall q_{f_{0}, f_{1}, f_{2}, f_{3}}^{\Gamma} \in \operatorname{Pos}_{\mathcal{R}_{\Gamma}}(\mathcal{N}(X)), \\
L\left(f_{0}+f_{1} \eta+f_{2} \eta^{\otimes 2}\right)+f_{3} R \geq 0 .
\end{array}\right)
$$

Final remarks and open problems

Further remarks on our results

- they open the way towards a more systematic approach to truncated MP in infinite dimensional settings, for which very few results are known
- they produce new insights also in the finite dimensional case
- they do not yield very concrete solutions but are certainly a first step toward more concrete ones

Open questions

- Can we identify classes of supports or of algebras for which the assumptions of our generalized Riesz-Haviland theorem can be simplified?
- When the starting algebra is a topological one, can we make our criteria more concrete?

Thank you for your attention

For more details see:R. Curto, M. Ghasemi, M. Infusino, S. Kuhlmann, The truncated moment problem on unital commutative real algebras, to appear in Journal of Operator Theory, 2023
\square R. Curto, M. Infusino, The realizability problem as a special case of truncated infinite-dimensional moment problem, https://arxiv.org/abs/2305.10343

