Expanding Blaschke Products for the Lee-Yang zeros on the Diamond Hierarchical Lattice.

Pavel Bleher[†], Mikhail Lyubich[‡], and Roland Roeder[†]

IUPUI[†] and Stony Brook University[‡]

Banff May 22th, 2023

https://arxiv.org/pdf/1009.4691.pdf

https://www.sciencedirect.com/science/article/pii/S0021782416300824 + 4 🗇 + 4 = + 4

Ising model

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ● ●

Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

2. Expected properties for the \mathbb{Z}^2 lattice.

Ising model

- 1. Partition Function, Lee-Yang zeros, and thermodynamic limit
- 2. Expected properties for the \mathbb{Z}^2 lattice.
- 3. Hierarchical lattices and the Migdal-Kadanoff RG equations

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Ising model

- 1. Partition Function, Lee-Yang zeros, and thermodynamic limit
- 2. Expected properties for the \mathbb{Z}^2 lattice.
- 3. Hierarchical lattices and the Migdal-Kadanoff RG equations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4. Renormalization Mapping of the Lee-Yang cylinder

Ising model

- 1. Partition Function, Lee-Yang zeros, and thermodynamic limit
- 2. Expected properties for the \mathbb{Z}^2 lattice.
- 3. Hierarchical lattices and the Migdal-Kadanoff RG equations

- 4. Renormalization Mapping of the Lee-Yang cylinder
- Statement of our results

Ising model

- 1. Partition Function, Lee-Yang zeros, and thermodynamic limit
- 2. Expected properties for the \mathbb{Z}^2 lattice.
- 3. Hierarchical lattices and the Migdal-Kadanoff RG equations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 4. Renormalization Mapping of the Lee-Yang cylinder
- Statement of our results
 - 1. Dynamical results

Ising model

- 1. Partition Function, Lee-Yang zeros, and thermodynamic limit
- 2. Expected properties for the \mathbb{Z}^2 lattice.
- 3. Hierarchical lattices and the Migdal-Kadanoff RG equations

- 4. Renormalization Mapping of the Lee-Yang cylinder
- Statement of our results
 - 1. Dynamical results
 - 2. Physical results

Ising model

- 1. Partition Function, Lee-Yang zeros, and thermodynamic limit
- 2. Expected properties for the \mathbb{Z}^2 lattice.
- 3. Hierarchical lattices and the Migdal-Kadanoff RG equations

- 4. Renormalization Mapping of the Lee-Yang cylinder
- Statement of our results
 - 1. Dynamical results
 - 2. Physical results
- Sketch of the proofs

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト の Q @

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n . Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For any configuration of spins $\sigma: V_n \to \{\pm 1\}$, we have:

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For any configuration of spins $\sigma: V_n \to \{\pm 1\}$, we have:

$$I_n(\sigma) = \sum_{(v,w)\in E_n} \sigma(v)\sigma(w)$$
 $M_n(\sigma) = \sum_{v \in V_n} \sigma(v)$

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For any configuration of spins $\sigma: V_n \rightarrow \{\pm 1\}$, we have:

$$I_n(\sigma) = \sum_{(v,w)\in E_n} \sigma(v)\sigma(w)$$
 $M_n(\sigma) = \sum_{v \in V_n} \sigma(v)$

 $I(\sigma)$ is the energy of interaction along edges, and

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For any configuration of spins $\sigma: V_n \to \{\pm 1\}$, we have:

$$I_n(\sigma) = \sum_{(v,w)\in E_n} \sigma(v)\sigma(w)$$
 $M_n(\sigma) = \sum_{v \in V_n} \sigma(v)$

 $I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ .

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

For any configuration of spins $\sigma: V_n \to \{\pm 1\}$, we have:

$$I_n(\sigma) = \sum_{(v,w)\in E_n} \sigma(v)\sigma(w) \qquad M_n(\sigma) = \frac{1}{2}\sum_{(v,w)\in E_n} (\sigma(v) + \sigma(w)).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ .

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

For any configuration of spins $\sigma: V_n \rightarrow \{\pm 1\}$, we have:

$$I_n(\sigma) = \sum_{(v,w)\in E_n} \sigma(v)\sigma(w) \qquad M_n(\sigma) = \frac{1}{2}\sum_{(v,w)\in E_n} (\sigma(v) + \sigma(w)).$$

 $I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ .

The energy of state σ exposed to an external magnetic field *h* is:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A sequence of graphs Γ_n , with vertex set V_n and edge set E_n .

Think of Γ_n as an $n \times n$ square in the \mathbb{Z}^2 lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

For any configuration of spins $\sigma: V_n \rightarrow \{\pm 1\}$, we have:

$$I_n(\sigma) = \sum_{(v,w)\in E_n} \sigma(v)\sigma(w) \qquad M_n(\sigma) = \frac{1}{2}\sum_{(v,w)\in E_n} (\sigma(v) + \sigma(w)).$$

 $I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ .

The energy of state σ exposed to an external magnetic field *h* is:

$$H_n(\sigma) = -J \cdot I(\sigma) - h \cdot M_n(\sigma),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where J > 0.

At equilibrium, a state σ occurs with probability proportional to

$$W_n(\sigma) = e^{-H_n(\sigma)/T}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

where T > 0 is the temperature.

At equilibrium, a state σ occurs with probability proportional to

$$W_n(\sigma) = e^{-H_n(\sigma)/T}$$

where T > 0 is the temperature.

Thus, $P_n(\sigma) = W_n(\sigma)/Z_n(h, T)$, where

$$Z_n(h, T) = \sum_{\sigma} W_n(\sigma) = \sum_{\sigma} e^{-H_n(\sigma)/T}$$

At equilibrium, a state σ occurs with probability proportional to

$$W_n(\sigma) = e^{-H_n(\sigma)/T}$$

where T > 0 is the temperature.

Thus, $P_n(\sigma) = W_n(\sigma)/Z_n(h, T)$, where

$$Z_n(h, T) = \sum_{\sigma} W_n(\sigma) = \sum_{\sigma} e^{-H_n(\sigma)/T}$$

 $Z_n(h, t)$ is called the Partition function.

At equilibrium, a state σ occurs with probability proportional to

$$W_n(\sigma) = e^{-H_n(\sigma)/T}$$

where T > 0 is the temperature.

Thus, $P_n(\sigma) = W_n(\sigma)/Z_n(h, T)$, where

$$Z_n(h, T) = \sum_{\sigma} W_n(\sigma) = \sum_{\sigma} e^{-H_n(\sigma)/T}.$$

 $Z_n(h, t)$ is called the Partition function. It governs the physical properties of the Ising model on Γ_n .

At equilibrium, a state σ occurs with probability proportional to

$$W_n(\sigma) = e^{-H_n(\sigma)/T}$$

where T > 0 is the temperature.

Thus, $P_n(\sigma) = W_n(\sigma)/Z_n(h, T)$, where

$$Z_n(h, T) = \sum_{\sigma} W_n(\sigma) = \sum_{\sigma} e^{-H_n(\sigma)/T}.$$

A D N A B N A B N A B N A B N A C N

 $Z_n(h, t)$ is called the Partition function. It governs the physical properties of the Ising model on Γ_n .

An obvious danger occurs at those values of h, T for which $Z_n(h, T) = 0$.

At equilibrium, a state σ occurs with probability proportional to

$$W_n(\sigma) = e^{-H_n(\sigma)/T}$$

where T > 0 is the temperature.

Thus, $P_n(\sigma) = W_n(\sigma)/Z_n(h, T)$, where

$$Z_n(h, T) = \sum_{\sigma} W_n(\sigma) = \sum_{\sigma} e^{-H_n(\sigma)/T}.$$

 $Z_n(h, t)$ is called the Partition function. It governs the physical properties of the Ising model on Γ_n .

An obvious danger occurs at those values of h, T for which $Z_n(h, T) = 0$. Luckily, this never happens for $h, T \in \mathbb{R}$.

Let $t = e^{-J/T}$ (temperature-like)

Let $t = e^{-J/T}$ (temperature-like) and $z = e^{-h/T}$ (field-like).

Let $t = e^{-J/T}$ (temperature-like) and $z = e^{-h/T}$ (field-like). Then $W(\sigma) = t^{-I(\sigma)}z^{-M(\sigma)}$.

Let
$$t = e^{-J/T}$$
 (temperature-like) and $z = e^{-h/T}$ (field-like).
Then $W(\sigma) = t^{-I(\sigma)} z^{-M(\sigma)}$.
 $Z_n(z, t) = \sum_{\sigma} W(\sigma) = \sum_{\sigma} t^{-I(\sigma)} z^{-M(\sigma)}$

Let
$$t = e^{-J/T}$$
 (temperature-like) and $z = e^{-h/T}$ (field-like).
Then $W(\sigma) = t^{-I(\sigma)}z^{-M(\sigma)}$.
 $Z_n(z,t) = \sum_{\sigma} W(\sigma) = \sum_{\sigma} t^{-I(\sigma)}z^{-M(\sigma)}$
 $= a_d(t)z^d + a_{d-1}(t)z^{d-1} + \dots + a_{1-d}(t)z^{1-d} + a_{-d}(t)z^{-d}$,
where $d = |E_n|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

.

Let
$$t = e^{-J/T}$$
 (temperature-like) and $z = e^{-h/T}$ (field-like).
Then $W(\sigma) = t^{-I(\sigma)}z^{-M(\sigma)}$.
 $Z_n(z,t) = \sum_{\sigma} W(\sigma) = \sum_{\sigma} t^{-I(\sigma)}z^{-M(\sigma)}$
 $= a_d(t)z^d + a_{d-1}(t)z^{d-1} + \dots + a_{1-d}(t)z^{1-d} + a_{-d}(t)z^{-d}$,
where $d = |E_n|$.

Since $I(-\sigma) = I(\sigma)$ and $M(-\sigma) = -M(\sigma)$ we have that Z_n is symmetric under $z \mapsto 1/z$:

Let
$$t = e^{-J/T}$$
 (temperature-like) and $z = e^{-h/T}$ (field-like).
Then $W(\sigma) = t^{-I(\sigma)}z^{-M(\sigma)}$.
 $Z_n(z,t) = \sum_{\sigma} W(\sigma) = \sum_{\sigma} t^{-I(\sigma)}z^{-M(\sigma)}$
 $= a_d(t)z^d + a_{d-1}(t)z^{d-1} + \dots + a_{1-d}(t)z^{1-d} + a_{-d}(t)z^{-d}$,
where $d = |E_n|$.

Since $I(-\sigma) = I(\sigma)$ and $M(-\sigma) = -M(\sigma)$ we have that Z_n is symmetric under $z \mapsto 1/z$:

$$a_i(t)=a_{-i}(t)$$

Let
$$t = e^{-J/T}$$
 (temperature-like) and $z = e^{-h/T}$ (field-like).
Then $W(\sigma) = t^{-I(\sigma)}z^{-M(\sigma)}$.
 $Z_n(z,t) = \sum_{\sigma} W(\sigma) = \sum_{\sigma} t^{-I(\sigma)}z^{-M(\sigma)}$
 $= a_d(t)z^d + a_{d-1}(t)z^{d-1} + \dots + a_{1-d}(t)z^{1-d} + a_{-d}(t)z^{-d}$,
where $d = |E_n|$.

Since $I(-\sigma) = I(\sigma)$ and $M(-\sigma) = -M(\sigma)$ we have that Z_n is symmetric under $z \mapsto 1/z$:

$$a_i(t)=a_{-i}(t)$$

Fundamental symmetry of the Ising model!
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For each $t \in \mathbb{C}^* Z_n(z, t) = 0$ has $2|E_n|$ roots $z_i(t) \in \mathbb{C}$.

For each $t \in \mathbb{C}^*$ $Z_n(z, t) = 0$ has $2|E_n|$ roots $z_i(t) \in \mathbb{C}$. Free energy:

 $F_n(z,t) := -T \log Z_n(z,t) = -T \sum \log |z - z_i(t)| + |E_n|T(\log |z| + \frac{1}{2} \log |t|)$

For each
$$t \in \mathbb{C}^* Z_n(z, t) = 0$$
 has $2|E_n|$ roots $z_i(t) \in \mathbb{C}$.
Free energy:

$$F_n(z,t) := -T \log Z_n(z,t) = -T \sum \log |z - z_i(t)| + |E_n|T(\log |z| + \frac{1}{2} \log |t|)$$

Magnetization:

$$M_n(z,t) := \sum_{\sigma} M(\sigma) P(\sigma)$$

For each
$$t \in \mathbb{C}^* Z_n(z, t) = 0$$
 has $2|E_n|$ roots $z_i(t) \in \mathbb{C}$.
Free energy:

$$F_n(z,t) := -T \log Z_n(z,t) = -T \sum \log |z - z_i(t)| + |E_n|T(\log |z| + \frac{1}{2} \log |t|)$$

Magnetization:

$$M_n(z,t) := \sum_{\sigma} M(\sigma) P(\sigma) = z \sum \frac{1}{z - z_i(t)} - |E_n|$$

Physical values of T > 0 correspond to $t \in (0, 1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in (0, \infty)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Physical values of T > 0 correspond to $t \in (0, 1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in (0, \infty)$.

Theorem (Lee-Yang, 1952)

At any fixed $t \in [0,1]$, then all complex zeros of $Z_n(z,t)$ lie on the unit circle |z| = 1.

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Physical values of T > 0 correspond to $t \in (0, 1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in (0, \infty)$.

Theorem (Lee-Yang, 1952)

At any fixed $t \in [0,1]$, then all complex zeros of $Z_n(z,t)$ lie on the unit circle |z| = 1.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Physical values of T > 0 correspond to $t \in (0, 1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in (0, \infty)$.

Theorem (Lee-Yang, 1952)

At any fixed $t \in [0,1]$, then all complex zeros of $Z_n(z,t)$ lie on the unit circle |z| = 1.

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Extensions of this theorem are contemporary mathematics:

Physical values of T > 0 correspond to $t \in (0, 1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in (0, \infty)$.

Theorem (Lee-Yang, 1952)

At any fixed $t \in [0,1]$, then all complex zeros of $Z_n(z,t)$ lie on the unit circle |z| = 1.

Extensions of this theorem are contemporary mathematics: D. Ruelle. Characterization of Lee-Yang polynomials. *Ann. of Math.* (2010).

Physical values of T > 0 correspond to $t \in (0, 1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in (0, \infty)$.

Theorem (Lee-Yang, 1952)

At any fixed $t \in [0,1]$, then all complex zeros of $Z_n(z,t)$ lie on the unit circle |z| = 1.

Extensions of this theorem are contemporary mathematics:

D. Ruelle. Characterization of Lee-Yang polynomials. Ann. of Math. (2010).

J. Borcea and P. Brändén The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability. *Invent. Math.* (2009).

Actual magnetic material corresponds to the limit $n
ightarrow \infty$

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 ● のへで

Actual magnetic material corresponds to the limit $n
ightarrow \infty$

The thermodynamic limit exists for the sequence Γ_n if

$$\frac{1}{|E_n|}F_n(z,t)\to F(z,t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for any $z \in \mathbb{R}_+$ and $t \in (0, 1)$.

Actual magnetic material corresponds to the limit $n
ightarrow \infty$

The thermodynamic limit exists for the sequence Γ_n if

$$\frac{1}{|E_n|}F_n(z,t)\to F(z,t)$$

for any $z \in \mathbb{R}_+$ and $t \in (0, 1)$.

For each $t \in [0, 1]$ there is a measure μ_t on \mathbb{T} describing the asymptotic distribution of Lee-Yang zeros.

$$F(z,t) = -2T \int_{\mathbb{T}} \log |z-\zeta| d\mu_t(\zeta) + T \log |z| + \frac{1}{2} \log |t|$$

・ロト・4日ト・4日ト・4日・9000

$$F(z,t) = -2T \int_{\mathbb{T}} \log |z - \zeta| d\mu_t(\zeta) + T \log |z| + \frac{1}{2} \log |t|$$
$$M(z,t) = 2z \int_{\mathbb{T}} \frac{d\mu_t(\zeta)}{z - \zeta} - 1$$

・ロト・4日ト・4日ト・4日・9000

$$F(z,t) = -2T \int_{\mathbb{T}} \log |z - \zeta| d\mu_t(\zeta) + T \log |z| + \frac{1}{2} \log |t|$$
$$M(z,t) = 2z \int_{\mathbb{T}} \frac{d\mu_t(\zeta)}{z - \zeta} - 1$$
$$\lim_{z \to 1^+} M(z,t) = \rho_t(0)$$

・ロト・4日ト・4日ト・4日・9000

$$F(z,t) = -2T \int_{\mathbb{T}} \log |z - \zeta| d\mu_t(\zeta) + T \log |z| + \frac{1}{2} \log |t|$$
$$M(z,t) = 2z \int_{\mathbb{T}} \frac{d\mu_t(\zeta)}{z - \zeta} - 1$$
$$\lim_{z \to 1^+} M(z,t) = \rho_t(0) \text{ where } \rho_t(\phi) = 2\pi \frac{d\mu_t(\phi)}{d\phi}, \text{ and } \phi = \arg(z).$$

$$F(z,t) = -2T \int_{\mathbb{T}} \log |z - \zeta| d\mu_t(\zeta) + T \log |z| + \frac{1}{2} \log |t|$$
$$M(z,t) = 2z \int_{\mathbb{T}} \frac{d\mu_t(\zeta)}{z - \zeta} - 1$$
$$\lim_{\to 1^+} M(z,t) = \rho_t(0) \text{ where } \rho_t(\phi) = 2\pi \frac{d\mu_t(\phi)}{d\phi}, \text{ and } \phi = \arg(z).$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = = - のへで

A phase transition occurs at any place where F(z, t) depends non-analytically on (z, t).

z

$$F(z,t) = -2T \int_{\mathbb{T}} \log |z - \zeta| d\mu_t(\zeta) + T \log |z| + \frac{1}{2} \log |t|$$
$$M(z,t) = 2z \int_{\mathbb{T}} \frac{d\mu_t(\zeta)}{z - \zeta} - 1$$
$$\lim_{t \to 1^+} M(z,t) = \rho_t(0) \text{ where } \rho_t(\phi) = 2\pi \frac{d\mu_t(\phi)}{d\phi}, \text{ and } \phi = \arg(z).$$

A phase transition occurs at any place where F(z, t) depends non-analytically on (z, t).

z

E.g. for small t, M(z, t) has a jump of twice $\rho_t(0)$ as z changes from negative to positive.

$$F(z,t) = -2T \int_{\mathbb{T}} \log |z - \zeta| d\mu_t(\zeta) + T \log |z| + \frac{1}{2} \log |t|$$
$$M(z,t) = 2z \int_{\mathbb{T}} \frac{d\mu_t(\zeta)}{z - \zeta} - 1$$
$$\lim_{\phi \to 1^+} M(z,t) = \rho_t(0) \text{ where } \rho_t(\phi) = 2\pi \frac{d\mu_t(\phi)}{d\phi}, \text{ and } \phi = \arg(z).$$

A phase transition occurs at any place where F(z, t) depends non-analytically on (z, t).

z

E.g. for small t, M(z, t) has a jump of twice $\rho_t(0)$ as z changes from negative to positive.

Understanding how the Lee-Yang distributions $\mu_t(\phi)$ vary with t and ϕ is essential to understanding phase transitions of the model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□> ◆□> ◆三> ◆三> ● □ ● ● ●

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

◆□▶ ◆□▶ ▲□▶ ▲□▶ = ●のQの

◆□> ◆□> ◆三> ◆三> ● □ ● ● ●

Zakhar Kabluchko: Lee-Yang zeros for the Curie Weiss model match this conjectureal description. http://arxiv.org/pdf/2203.05533.pdf

イロト イポト イヨト イヨト

э

Hierarchical Lattices

The Diamond Hierarchical Lattice (DHL).

 Γ_n is obtained by replacing each edge of generating graph Γ (a diamond) with a copy of Γ_{n-1} , considering the marked vertices *a* and *b* as the "endpoints" of Γ_{n-1} .

Migdal-Kadanoff Renormalization¹²³

Consider the conditional partition functions:

$$U_{n} := Z_{n} \begin{pmatrix} \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \end{pmatrix}, \quad V_{n} := Z_{n} \begin{pmatrix} \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \end{pmatrix}, \quad W_{n} := Z_{n} \begin{pmatrix} \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \end{pmatrix}$$

The total partition function is equal to $Z_n = U_n + 2V_n + W_n$.

¹A.A. Migdal. Recurrence equations in gauge field theory. *JETP*, (1975). ²L. P. Kadanoff. Notes on Migdal's recursion formulae. *Ann. Phys.*, (1976). ³B. Derrida, L. De Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, *J. Statist. Phys.* (1983).

Migdal-Kadanoff Renormalization¹²³

Consider the conditional partition functions:

$$U_{n} := Z_{n} \begin{pmatrix} \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \end{pmatrix}, \quad V_{n} := Z_{n} \begin{pmatrix} \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \end{pmatrix}, \quad W_{n} := Z_{n} \begin{pmatrix} \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \\ \mathcal{S}^{\mathcal{S}} \oplus \mathcal{S}^{\mathcal{S}} \end{pmatrix}$$

The total partition function is equal to $Z_n = U_n + 2V_n + W_n$. Migdal-Kadanoff RG Equations:

 $U_{n+1} = (U_n^2 + V_n^2)^2, \quad V_{n+1} = V_n^2 (U_n + W_n)^2, \quad W_{n+1} = (V_n^2 + W_n^2)^2.$

¹A.A. Migdal. Recurrence equations in gauge field theory. *JETP*, (1975). ²L. P. Kadanoff. Notes on Migdal's recursion formulae. *Ann. Phys.*, (1976). ³B. Derrida, L. De Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, *J. Statist. Phys.* (1983). MK renormalization in the (z, t) coordinates:

We can lift *R* from the [U : V : W] coordinates (downstairs) to the [z : t : 1] coordiantes upstairs:

MK renormalization in the (z, t) coordinates:

We can lift *R* from the [U : V : W] coordinates (downstairs) to the [z : t : 1] coordiantes upstairs:

The mapping upstairs is:

$$\mathcal{R}(z,t) = \left(\frac{z^2+t^2}{z^{-2}+t^2}, \ \frac{z^2+z^{-2}+2}{z^2+z^{-2}+t^2+t^{-2}}\right).$$

MK renormalization in the (z, t) coordinates:

We can lift *R* from the [U : V : W] coordinates (downstairs) to the [z : t : 1] coordiantes upstairs:

The mapping upstairs is:

$$\mathcal{R}(z,t) = \left(rac{z^2+t^2}{z^{-2}+t^2}, \; rac{z^2+z^{-2}+2}{z^2+z^{-2}+t^2+t^{-2}}
ight).$$

and Ψ is some degree 2 rational map.

Let $\mathcal{C}:=\{(z,t)\;:|z|=1,\;t\in [0,1]\}$ be the Lee-Yang cylinder.

Let $\mathcal{C} := \{(z, t) : |z| = 1, t \in [0, 1]\}$ be the Lee-Yang cylinder. One can check that $\mathcal{R}(\mathcal{C}) = \mathcal{C}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $C := \{(z, t) : |z| = 1, t \in [0, 1]\}$ be the Lee-Yang cylinder. One can check that $\mathcal{R}(C) = C$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\mathcal{S}_n \subset \mathcal{C}$ denote the Lee-Yang zeros for Γ_n .

▶
$$S_0 := \{z^2 + 2tz + 1 = 0\} \cap C.$$

Let $C := \{(z, t) : |z| = 1, t \in [0, 1]\}$ be the Lee-Yang cylinder. One can check that $\mathcal{R}(C) = C$.

Let $\mathcal{S}_n \subset \mathcal{C}$ denote the Lee-Yang zeros for Γ_n .

►
$$S_0 := \{z^2 + 2tz + 1 = 0\} \cap C$$
.

▶ for
$$n \ge 1$$
 we have $S_{n+1} = \mathcal{R}_{|C}^{-1} S_n$.
Renormalization on the Lee-Yang cylinder

Let $\mathcal{C} := \{(z, t) : |z| = 1, t \in [0, 1]\}$ be the Lee-Yang cylinder.

One can check that $\mathcal{R}(\mathcal{C}) = \mathcal{C}$.

Let $S_n \subset C$ denote the Lee-Yang zeros for Γ_n .

►
$$S_0 := \{z^2 + 2tz + 1 = 0\} \cap C$$
.

• for
$$n \ge 1$$
 we have $S_{n+1} = \mathcal{R}_{|\mathcal{C}|}^{-1} S_n$.

It is this recursive relationship between S_{n+1} and S_n that makes a study of the Lee-Yang zeros tractable for hierarchical lattices.

Lee-Yang zeros as pull-backs under ${\mathcal R}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

Lee-Yang zeros as pull-backs under ${\mathcal R}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Lee-Yang zeros as pull-backs under ${\mathcal R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 - のへで

 \mathcal{R} has two points of indeterminacy $\alpha_{\pm} = (\pm i, 1) \in \mathcal{T}$.

 ${\mathcal R}$ has two points of indeterminacy $lpha_{\pm}=(\pm i,1)\in {\mathcal T}.$

Points approaching α_+ or α_- at angle ω with respect to the vertical are mapped by \mathcal{R} to $(2\omega, \sin^2 \omega)$.

 ${\mathcal R}$ has two points of indeterminacy $\alpha_{\pm} = (\pm i, 1) \in {\mathcal T}.$

Points approaching α_+ or α_- at angle ω with respect to the vertical are mapped by \mathcal{R} to $(2\omega, \sin^2 \omega)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \mathcal{R} has two points of indeterminacy $\alpha_{\pm} = (\pm i, 1) \in \mathcal{T}$.

Points approaching α_+ or α_- at angle ω with respect to the vertical are mapped by \mathcal{R} to $(2\omega, \sin^2 \omega)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

 $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

 $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$

• \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

- $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$
- \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.
- ▶ Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B} .

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

- $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$
- \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.
- ▶ Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B} .
- Collapsing intervals $\phi = \pm \pi/2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

- $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$
- \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.
- ▶ Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B} .
- Collapsing intervals $\phi = \pm \pi/2$ and all preimages in $W^{s}(\mathcal{B})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at t = 1:

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

- $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$
- \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.
- ▶ Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B} .
- Collapsing intervals $\phi = \pm \pi/2$ and all preimages in $W^{s}(\mathcal{B})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at t = 1:

$$\blacktriangleright \mathcal{R}|\mathcal{T}: z \mapsto z^2.$$

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

- $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$
- \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.
- ▶ Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B} .
- Collapsing intervals $\phi = \pm \pi/2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at t = 1:

- $\blacktriangleright \mathcal{R}|\mathcal{T}: z \mapsto z^2.$
- \mathcal{T} is non-uniformly transversally superattracting. If $\tau = 1 t$, then $\tau' = O(\tau^2/\cos^2 \phi)$.

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

- $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$
- \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.
- ▶ Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B} .
- Collapsing intervals $\phi = \pm \pi/2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at t = 1:

- $\blacktriangleright \mathcal{R}|\mathcal{T}: z \mapsto z^2.$
- \mathcal{T} is non-uniformly transversally superattracting. If $\tau = 1 t$, then $\tau' = O(\tau^2/\cos^2 \phi)$.
- indeterminate points α_± allow points arbitrarily close to T to be sent arbitrarily close to B under a single iterate.

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at t = 0:

- $\blacktriangleright \mathcal{R}|\mathcal{B}: z \mapsto z^4.$
- \mathcal{B} is transversally superattracting, with $t' = O(t^2)$.
- ▶ Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B} .
- Collapsing intervals $\phi = \pm \pi/2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at t = 1:

- $\blacktriangleright \mathcal{R}|\mathcal{T}: z \mapsto z^2.$
- \mathcal{T} is non-uniformly transversally superattracting. If $\tau = 1 t$, then $\tau' = O(\tau^2/\cos^2 \phi)$.
- indeterminate points α_± allow points arbitrarily close to T to be sent arbitrarily close to B under a single iterate.
- Let W^s(T) be the basin of attraction of T. Has positive Lebesgue measure.

Numerical Experiment

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

э

 $\mathcal{W}^{s}(\mathcal{B})$ is colored blue and $\mathcal{W}^{s}(\mathcal{T})$ is colored orange.

Theorem (Bleher, Lyubich, R) $\mathcal{R}: \mathcal{C} \to \mathcal{C}$ is partially hyperbolic.

Theorem (Bleher, Lyubich, R) $\mathcal{R}: \mathcal{C} \to \mathcal{C}$ is partially hyperbolic.

That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_x \mathcal{C}$ depending continuously on x and invariant under $D\mathcal{R}$:

Theorem (Bleher, Lyubich, R) $\mathcal{R}: \mathcal{C} \to \mathcal{C}$ is partially hyperbolic.

That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_x \mathcal{C}$ depending continuously on x and invariant under $D\mathcal{R}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Bleher, Lyubich, R) $\mathcal{R}: \mathcal{C} \to \mathcal{C}$ is partially hyperbolic.

That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_x \mathcal{C}$ depending continuously on x and invariant under $D\mathcal{R}$:

 Horizontal tangent vectors v ∈ K(x) get exponentially stretched under DRⁿ at a rate that dominates any occasional expansion of tangent vectors in L(x).

Theorem (Bleher, Lyubich, R) $\mathcal{R}: \mathcal{C} \to \mathcal{C}$ is partially hyperbolic.

That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_x \mathcal{C}$ depending continuously on x and invariant under $D\mathcal{R}$:

2. Horizontal tangent vectors $v \in \mathcal{K}(x)$ get exponentially stretched under $D\mathcal{R}^n$ at a rate that dominates any occasional expansion of tangent vectors in L(x).

The idea of this proof that this conefield is invariant seems to play a role in the recent work of Dang-Grigorchuk-Lyubich about the Basilica IMG.

(日) (日) (日) (日) (日) (日) (日) (日)

Proposition (BLR)

 \mathcal{R} has a unique invariant central foliation \mathcal{F}^c .

Proposition (BLR)

 \mathcal{R} has a unique invariant central foliation \mathcal{F}^c . (Obtained by integrating L(x)).

Proposition (BLR)

 \mathcal{R} has a unique invariant central foliation \mathcal{F}^{c} . (Obtained by integrating L(x)).

Proposition (BLR,Kaschner-R)

 \mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition (BLR)

 \mathcal{R} has a unique invariant central foliation \mathcal{F}^{c} . (Obtained by integrating L(x)).

Proposition (BLR,Kaschner-R)

 \mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (BLR)

Almost every point on C is in $W^{s}(T)$ or in $W^{s}(B)$.

Proposition (BLR)

 \mathcal{R} has a unique invariant central foliation \mathcal{F}^{c} . (Obtained by integrating L(x)).

Proposition (BLR,Kaschner-R)

 \mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (BLR)

Almost every point on C is in $W^{s}(T)$ or in $W^{s}(B)$.

▶ W^s(T) has positive measure,

Proposition (BLR)

 \mathcal{R} has a unique invariant central foliation \mathcal{F}^{c} . (Obtained by integrating L(x)).

Proposition (BLR,Kaschner-R)

 \mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (BLR)

Almost every point on C is in $W^{s}(\mathcal{T})$ or in $W^{s}(\mathcal{B})$.

- ▶ W^s(T) has positive measure,
- $\mathcal{W}^{s}(\mathcal{B})$ is open and dense.

Proposition (BLR)

 \mathcal{R} has a unique invariant central foliation \mathcal{F}^{c} . (Obtained by integrating L(x)).

Proposition (BLR,Kaschner-R)

 \mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.

Theorem (BLR)

Almost every point on C is in $W^{s}(\mathcal{T})$ or in $W^{s}(\mathcal{B})$.

- ▶ W^s(T) has positive measure,
- $\mathcal{W}^{s}(\mathcal{B})$ is open and dense.

This is the "intertwined basins" phenomenon studied by Kan-Yorke, Bonifant-Milnor, Ilyashenko-Kleptsyn-Saltykov....

Physical Results

For $t \in [0, 1)$ the holonomy transformation $g_t : \mathcal{B} \to \mathbb{T} \times \{t\}$ obtained by flowing along \mathcal{F}^c .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Physical Results

For $t \in [0, 1)$ the holonomy transformation $g_t : \mathcal{B} \to \mathbb{T} \times \{t\}$ obtained by flowing along \mathcal{F}^c .

Physical Results

For $t \in [0, 1)$ the holonomy transformation $g_t : \mathcal{B} \to \mathbb{T} \times \{t\}$ obtained by flowing along \mathcal{F}^c .

Theorem (BLR)

The asymptotic distribution of Lee-Yang zeros at a temperature $t_0 \in [0, 1)$ is given by under holonomy by $\mu_t = (g_t)_*(\mu_0)$ where μ_0 be the Lebesgue measure on \mathcal{B} .

Geometric view of Lee-Yang distributions for the DHL

▲ロト ▲圖ト ▲ヨト ▲ヨト 三目 - のへで

Geometric view of Lee-Yang distributions for the DHL

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Idea: Map forward a horizontal line $\mathcal{P}_{t_0} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 .

Idea: Map forward a horizontal line $\mathcal{P}_{to} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 . Sends the circle $\mathcal{S}_{to} := \mathcal{P}_{to} \cap \mathcal{C}$ to the circle \mathcal{S}_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idea: Map forward a horizontal line $\mathcal{P}_{t_0} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 . Sends the circle $\mathcal{S}_{t_0} := \mathcal{P}_{t_0} \cap \mathcal{C}$ to the circle \mathcal{S}_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Idea: Map forward a horizontal line $\mathcal{P}_{t_0} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 . Sends the circle $\mathcal{S}_{t_0} := \mathcal{P}_{t_0} \cap \mathcal{C}$ to the circle \mathcal{S}_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idea: Map forward a horizontal line $\mathcal{P}_{t_0} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 . Sends the circle $\mathcal{S}_{t_0} := \mathcal{P}_{t_0} \cap \mathcal{C}$ to the circle \mathcal{S}_0 .

Use complex extension to prove that $\pi \circ \mathcal{R}^n : \mathcal{S}_{t_0} \to \mathcal{S}_0$ is expanding.

Idea: Map forward a horizontal line $\mathcal{P}_{t_0} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 . Sends the circle $\mathcal{S}_{t_0} := \mathcal{P}_{t_0} \cap \mathcal{C}$ to the circle \mathcal{S}_0 .

Use complex extension to prove that $\pi \circ \mathcal{R}^n : \mathcal{S}_{t_0} \to \mathcal{S}_0$ is expanding.

Problem controlling the degrees of the curves $\mathcal{R}^n(\mathcal{P}_{t_0})$:

Idea: Map forward a horizontal line $\mathcal{P}_{t_0} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 . Sends the circle $\mathcal{S}_{t_0} := \mathcal{P}_{t_0} \cap \mathcal{C}$ to the circle \mathcal{S}_0 .

Use complex extension to prove that $\pi \circ \mathcal{R}^n : \mathcal{S}_{t_0} \to \mathcal{S}_0$ is expanding.

Problem controlling the degrees of the curves $\mathcal{R}^{n}(\mathcal{P}_{t_{0}})$: deg $(\mathcal{R}^{n}(\mathcal{P}_{t_{0}})) > 4^{n}$, but only wraps around the cylinder 4^{n} times.

Idea: Map forward a horizontal line $\mathcal{P}_{t_0} := \{t = t_0\}$ under \mathcal{R}^n , then project vertically onto \mathcal{P}_0 . Sends the circle $\mathcal{S}_{t_0} := \mathcal{P}_{t_0} \cap \mathcal{C}$ to the circle \mathcal{S}_0 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Use complex extension to prove that $\pi \circ \mathcal{R}^n : \mathcal{S}_{t_0} \to \mathcal{S}_0$ is expanding.

Problem controlling the degrees of the curves $\mathcal{R}^{n}(\mathcal{P}_{t_{0}})$: deg $(\mathcal{R}^{n}(\mathcal{P}_{t_{0}})) > 4^{n}$, but only wraps around the cylinder 4^{n} times. Algebraic instability: $4^{n} < \deg(\mathcal{R}^{n}) < (\deg(\mathcal{R}))^{n} = 6^{n}$.

Recall the a semiconjugacy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Recall the a semiconjugacy

where

$$R: [U:V:W] \to [(U^2+V^2)^2:V^2(U+W)^2:(V^2+W^2)^2].$$

Recall the a semiconjugacy

where

$$R: [U:V:W] \to [(U^2+V^2)^2:V^2(U+W)^2:(V^2+W^2)^2].$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 Ψ induces a conjugacy⁴ between $\mathcal{R} : \mathcal{C} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{C}$, where $\mathcal{C} = \Psi(\mathcal{C})$ is some appropriate Möbius band.

Recall the a semiconjugacy

where

$$R: [U:V:W] \to [(U^2+V^2)^2:V^2(U+W)^2:(V^2+W^2)^2].$$

 Ψ induces a conjugacy⁴ between $\mathcal{R} : \mathcal{C} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{C}$, where $\mathcal{C} = \Psi(\mathcal{C})$ is some appropriate Möbius band.

R is algebraically stable, satisfying $\deg(R^n) = (\deg R)^n = 4^n$.

Recall the a semiconjugacy

where

$$R: [U:V:W] \to [(U^2+V^2)^2:V^2(U+W)^2:(V^2+W^2)^2].$$

 Ψ induces a conjugacy⁴ between $\mathcal{R} : \mathcal{C} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{C}$, where $\mathcal{C} = \Psi(\mathcal{C})$ is some appropriate Möbius band.

R is algebraically stable, satisfying $deg(R^n) = (deg R)^n = 4^n$.

Coincides with degree of $R^n : C \to C$, it is "safer" to work with R.

⁴except on \mathcal{B} , where it is 2 - 1.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = = - のへで

Recall the a semiconjugacy

where

$$R: [U:V:W] \to [(U^2+V^2)^2:V^2(U+W)^2:(V^2+W^2)^2].$$

 Ψ induces a conjugacy⁴ between $\mathcal{R} : \mathcal{C} \to \mathcal{C}$ and $R : \mathcal{C} \to \mathcal{C}$, where $\mathcal{C} = \Psi(\mathcal{C})$ is some appropriate Möbius band.

R is algebraically stable, satisfying $deg(R^n) = (deg R)^n = 4^n$.

Coincides with degree of $R^n : C \to C$, it is "safer" to work with R. Original idea actually works in these coordinates!

Affine coordinates u = U/V, w = W/V:

Affine coordinates u = U/V, w = W/V: The Mobius band C is the closure of

$$C_0 = \{(u, w) \in \mathbb{C}^2 : w = \overline{u}, |u| \ge 1\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

in \mathbb{CP}^2 .

Affine coordinates u = U/V, w = W/V: The Mobius band C is the closure of

$$\mathcal{C}_0 = \{(u,w) \in \mathbb{C}^2: \; w = ar{u}, \; |u| \geq 1\}.$$

in \mathbb{CP}^2 .

Let $T = \{(u, \bar{u}) : |u| = 1\}$ be the "top" circle of *C*, while B be the slice of *C* at infinity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Affine coordinates u = U/V, w = W/V: The Mobius band *C* is the closure of

$$C_0 = \{(u, w) \in \mathbb{C}^2 : w = \bar{u}, |u| \ge 1\}.$$

in \mathbb{CP}^2 .

Let $T = \{(u, \bar{u}) : |u| = 1\}$ be the "top" circle of *C*, while B be the slice of *C* at infinity.

Horizontal line \mathcal{P}_{t_0} becomes conic $P_{t_0} := \{uv = t_0^{-2}\} = \Psi(\mathcal{P}_{t_0}).$

Affine coordinates u = U/V, w = W/V: The Mobius band C is the closure of

$$C_0 = \{(u, w) \in \mathbb{C}^2 : w = \overline{u}, |u| \ge 1\}.$$

in \mathbb{CP}^2 .

Let $T = \{(u, \bar{u}) : |u| = 1\}$ be the "top" circle of *C*, while B be the slice of *C* at infinity.

Horizontal line \mathcal{P}_{t_0} becomes conic $P_{t_0} := \{uv = t_0^{-2}\} = \Psi(\mathcal{P}_{t_0}).$

Horizontal line \mathcal{P}_0 becomes line at infinity $P_0 := \{V = 0\} = \Psi(\mathcal{P}_0).$

Affine coordinates u = U/V, w = W/V: The Mobius band C is the closure of

$$C_0 = \{(u, w) \in \mathbb{C}^2 : w = \overline{u}, |u| \ge 1\}.$$

in \mathbb{CP}^2 .

Let $T = \{(u, \bar{u}) : |u| = 1\}$ be the "top" circle of *C*, while B be the slice of *C* at infinity.

Horizontal line \mathcal{P}_{t_0} becomes conic $P_{t_0} := \{uv = t_0^{-2}\} = \Psi(\mathcal{P}_{t_0}).$

Horizontal line \mathcal{P}_0 becomes line at infinity $P_0 := \{V = 0\} = \Psi(\mathcal{P}_0).$

Horizontal circle S_{t_0} becomes $S_{t_0} = \{|u| = t_0^{-1}\} = \Psi(S_{t_0})$.

Affine coordinates u = U/V, w = W/V: The Mobius band *C* is the closure of

$$C_0 = \{(u, w) \in \mathbb{C}^2 : w = \bar{u}, |u| \ge 1\}.$$

in \mathbb{CP}^2 .

Let $T = \{(u, \bar{u}) : |u| = 1\}$ be the "top" circle of *C*, while B be the slice of *C* at infinity.

Horizontal line \mathcal{P}_{t_0} becomes conic $P_{t_0} := \{uv = t_0^{-2}\} = \Psi(\mathcal{P}_{t_0}).$

Horizontal line \mathcal{P}_0 becomes line at infinity $P_0 := \{V = 0\} = \Psi(\mathcal{P}_0).$

Horizontal circle S_{t_0} becomes $S_{t_0} = \{|u| = t_0^{-1}\} = \Psi(S_{t_0})$.

Vertical projection π becomes radial projection pr(u, w) = w/u out to the line at infinity P_0 .

Affine coordinates u = U/V, w = W/V: The Mobius band *C* is the closure of

$$C_0 = \{(u, w) \in \mathbb{C}^2 : w = \bar{u}, |u| \ge 1\}.$$

in \mathbb{CP}^2 .

Let $T = \{(u, \bar{u}) : |u| = 1\}$ be the "top" circle of *C*, while B be the slice of *C* at infinity.

Horizontal line \mathcal{P}_{t_0} becomes conic $P_{t_0} := \{uv = t_0^{-2}\} = \Psi(\mathcal{P}_{t_0}).$

Horizontal line \mathcal{P}_0 becomes line at infinity $P_0 := \{V = 0\} = \Psi(\mathcal{P}_0).$

Horizontal circle S_{t_0} becomes $S_{t_0} = \{|u| = t_0^{-1}\} = \Psi(S_{t_0})$.

Vertical projection π becomes radial projection pr(u, w) = w/u out to the line at infinity P_0 .

We will show that $\operatorname{pr} \circ R^n : P_{t_0} \to P_0$ expands that circle S_{t_0} .

Suffices to parameterize P_{t_0} by $\Psi: \mathcal{P}_{t_0} \to P_{t_0}$ and show that

Suffices to parameterize P_{t_0} by $\Psi: \mathcal{P}_{t_0} \to P_{t_0}$ and show that

$$\operatorname{pr} \circ R^n \circ \Psi : \mathcal{P}_{t_0} \to P_0$$

expands that circle S_{t_0} .

Suffices to parameterize P_{t_0} by $\Psi: \mathcal{P}_{t_0} \to P_{t_0}$ and show that

$$\operatorname{pr} \circ R^n \circ \Psi : \mathcal{P}_{t_0} \to P_0$$

expands that circle S_{t_0} .

We have:

$$\psi_n(z) := \operatorname{pr} \circ R^n \circ \Psi(z, t_0) = \frac{W_n(z, t_0)}{U_n(z, t_0)},$$

where W_n and U_n are the conditional partition functions from the derivation of R.

Suffices to parameterize P_{t_0} by $\Psi: \mathcal{P}_{t_0} \to P_{t_0}$ and show that

$$\operatorname{pr} \circ R^n \circ \Psi : \mathcal{P}_{t_0} \to P_0$$

expands that circle S_{t_0} .

We have:

$$\psi_n(z) := \operatorname{pr} \circ R^n \circ \Psi(z, t_0) = \frac{W_n(z, t_0)}{U_n(z, t_0)},$$

where W_n and U_n are the conditional partition functions from the derivation of R.

Claim: $\psi_n : \mathbb{C} \to \mathbb{C}$ is an Blaschke product preserving the unit disc \mathbb{D} , expanding the circle $\mathbb{T} = \partial \mathbb{D}$ by a factor of 2^{n+1} .

$$U_n(z,t) = \sum_{\sigma(a)=\sigma(b)=+1} W(\sigma) = \sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma)} z^{-M(\sigma)}$$
$$= a_d^+(t) z^d + \dots + a_{-d}^+(t) z^{-d},$$

$$U_n(z,t) = \sum_{\sigma(a)=\sigma(b)=+1} W(\sigma) = \sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma)} z^{-M(\sigma)}$$
$$= a_d^+(t) z^d + \dots + a_{-d}^+(t) z^{-d},$$

$$\begin{aligned} \mathcal{W}_n(z,t) &= \sum_{\sigma(a)=\sigma(b)=-1} \mathcal{W}(\sigma) = \sum_{\sigma(a)=\sigma(b)=-1} t^{-l(\sigma)} z^{-M(\sigma)} \\ &= a_d^{-}(t) z^d + \dots + a_{-d}^{-}(t) z^{-d}. \end{aligned}$$

$$U_n(z,t) = \sum_{\sigma(a)=\sigma(b)=+1} W(\sigma) = \sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma)} z^{-M(\sigma)}$$

= $a_d^+(t) z^d + \dots + a_{-d}^+(t) z^{-d},$

$$\begin{aligned} \mathcal{W}_n(z,t) &= \sum_{\sigma(a)=\sigma(b)=-1} \mathcal{W}(\sigma) = \sum_{\sigma(a)=\sigma(b)=-1} t^{-l(\sigma)} z^{-M(\sigma)} \\ &= a_d^{-}(t) z^d + \dots + a_{-d}^{-}(t) z^{-d}. \end{aligned}$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1/z$ becomes:

$$a_i^+(t) = a_{-i}^-(t)$$
 for each $i = -d \dots d$

$$U_n(z,t) = \sum_{\sigma(a)=\sigma(b)=+1} W(\sigma) = \sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma)} z^{-M(\sigma)}$$

= $a_d^+(t) z^d + \dots + a_{-d}^+(t) z^{-d},$

$$\begin{aligned} \mathcal{W}_n(z,t) &= \sum_{\sigma(\mathfrak{o})=\sigma(b)=-1} \mathcal{W}(\sigma) = \sum_{\sigma(\mathfrak{o})=\sigma(b)=-1} t^{-l(\sigma)} z^{-M(\sigma)} \\ &= a_d^{-}(t) z^d + \dots + a_{-d}^{-}(t) z^{-d}. \end{aligned}$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1/z$ becomes:

$$a_i^+(t) = a_{-i}^-(t)$$
 for each $i = -d \dots d$

2. Since Γ_n has valence 2^n at marked vertices *a* and *b* we have

$$a_i^-(t) = 0$$
 for $i < -4^n + 2^{n+1}$

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$U_n(z,t) = \sum_{\sigma(a)=\sigma(b)=+1} W(\sigma) = \sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma)} z^{-M(\sigma)}$$

= $a_d^+(t) z^d + \dots + a_{-d}^+(t) z^{-d},$

$$\begin{aligned} \mathcal{W}_n(z,t) &= \sum_{\sigma(\vartheta)=\sigma(b)=-1} \mathcal{W}(\sigma) = \sum_{\sigma(\vartheta)=\sigma(b)=-1} t^{-l(\sigma)} z^{-M(\sigma)} \\ &= a_d^{-}(t) z^d + \dots + a_{-d}^{-}(t) z^{-d}. \end{aligned}$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1/z$ becomes:

$$a_i^+(t) = a_{-i}^-(t)$$
 for each $i = -d \dots d$

2. Since Γ_n has valence 2^n at marked vertices *a* and *b* we have

$$a_i^-(t) = 0$$
 for $i < -4^n + 2^{n+1}$

Reason for 2: With -1 spins at the marked vertices a, b, we can't get more than $4^n - 2^{n+1}$ edges with ++, so $M(\sigma) \leq 4^n - 2^{n+1}$.

Factor $U_n(z) \equiv U_n(z, t_0)$ and $W_n(z) \equiv W_n(z, t_0)$ as
Factor
$$U_n(z) \equiv U_n(z, t_0)$$
 and $W_n(z) \equiv W_n(z, t_0)$ as
 $W_n(z) = z^{-4^n+2^{n+1}} \prod (z - b_i)$

Factor
$$U_n(z) \equiv U_n(z, t_0)$$
 and $W_n(z) \equiv W_n(z, t_0)$ as
 $W_n(z) = z^{-4^n+2^{n+1}} \prod (z - b_i)$
 $U_n(z) = z^{-4^n} \prod (1 - b_i z)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Factor
$$U_n(z) \equiv U_n(z, t_0)$$
 and $W_n(z) \equiv W_n(z, t_0)$ as
 $W_n(z) = z^{-4^n + 2^{n+1}} \prod (z - b_i)$
 $U_n(z) = z^{-4^n} \prod (1 - b_i z) = z^{-4^n} \prod (1 - \overline{b_i} z)$

Factor
$$U_n(z) \equiv U_n(z, t_0)$$
 and $W_n(z) \equiv W_n(z, t_0)$ as
 $W_n(z) = z^{-4^n + 2^{n+1}} \prod (z - b_i)$
 $U_n(z) = z^{-4^n} \prod (1 - b_i z) = z^{-4^n} \prod (1 - \overline{b_i} z)$

We find that

$$\psi_n(z) = \frac{W_n(z)}{U_n(z)} = z^{2^{n+1}} \prod \frac{z - b_i}{1 - \overline{b_i} z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a Blaschke product with 2^{n+1} zeros at z = 0.

Factor
$$U_n(z) \equiv U_n(z, t_0)$$
 and $W_n(z) \equiv W_n(z, t_0)$ as
 $W_n(z) = z^{-4^n + 2^{n+1}} \prod (z - b_i)$
 $U_n(z) = z^{-4^n} \prod (1 - b_i z) = z^{-4^n} \prod (1 - \overline{b_i} z)$

We find that

$$\psi_n(z) = \frac{W_n(z)}{U_n(z)} = z^{2^{n+1}} \prod \frac{z - b_i}{1 - \overline{b_i} z}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

is a Blaschke product with 2^{n+1} zeros at z = 0. Are the other zeros b_i within the unit disc \mathbb{D} ?

Factor
$$U_n(z) \equiv U_n(z, t_0)$$
 and $W_n(z) \equiv W_n(z, t_0)$ as
 $W_n(z) = z^{-4^n + 2^{n+1}} \prod (z - b_i)$
 $U_n(z) = z^{-4^n} \prod (1 - b_i z) = z^{-4^n} \prod (1 - \overline{b_i} z)$

We find that

$$\psi_n(z) = \frac{W_n(z)}{U_n(z)} = z^{2^{n+1}} \prod \frac{z - b_i}{1 - \overline{b_i} z}$$

is a Blaschke product with 2^{n+1} zeros at z = 0. Are the other zeros b_i within the unit disc \mathbb{D} ? If yes, then $\psi_n(z)$ is a Blaschke product that expands the circle \mathbb{T} by at least 2^{n+1}

Factor
$$U_n(z) \equiv U_n(z, t_0)$$
 and $W_n(z) \equiv W_n(z, t_0)$ as
 $W_n(z) = z^{-4^n + 2^{n+1}} \prod (z - b_i)$
 $U_n(z) = z^{-4^n} \prod (1 - b_i z) = z^{-4^n} \prod (1 - \overline{b_i} z)$

We find that

$$\psi_n(z) = \frac{W_n(z)}{U_n(z)} = z^{2^{n+1}} \prod \frac{z - b_i}{1 - \overline{b_i} z}$$

is a Blaschke product with 2^{n+1} zeros at z = 0. Are the other zeros b_i within the unit disc \mathbb{D} ? If yes, then $\psi_n(z)$ is a Blaschke product that expands the circle \mathbb{T} by at least 2^{n+1} so we'd be done!

Lee-Yang Theorem with Boundary conditions

S is the vertices in red.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Bleher, Lyubich, R)

Consider a ferromagnetic Ising model on a connected graph Γ and let $\sigma_S \equiv -1$ on a nonempty subset S of the vertex set V.

Lee-Yang Theorem with Boundary conditions

S is the vertices in red.

Theorem (Bleher, Lyubich, R)

Consider a ferromagnetic Ising model on a connected graph Γ and let $\sigma_S \equiv -1$ on a nonempty subset S of the vertex set V. Then, for any temperature $t \in (0,1)$ the Lee-Yang zeros $z_i^-(t)$ of the conditional partition function $Z_{\Gamma \mid \sigma_S}$ lie inside the open disc \mathbb{D} .

Thank you for listening!

Pavel Bleher, Mikhail Lyubich, and Roland Roeder. *Lee-Yang Zeros for the DHL and 2D Rational Dynamics, I. Foliation of the Physical Cylinder.* Journal de Mathématiques Pures et Appliquées, 107(5): 491-590, 2017.

For those who like joint spectra:

Pavel Bleher, Mikhail Lyubich, and Roland Roeder. *Lee-Yang-Fisher zeros for DHL and 2D rational dynamics, II. Global Pluripotential Interpretation.* Journal of Geometric Analysis, 30(1): 777-833, 2020.