Expanding Blaschke Products for the Lee-Yang zeros on the Diamond Hierarchical Lattice.

Pavel Bleher ${ }^{\dagger}$, Mikhail Lyubich ${ }^{\ddagger}$, and Roland Roeder ${ }^{\dagger}$

IUPUI ${ }^{\dagger}$ and Stony Brook University \ddagger

Banff
May 22th, 2023

https://arxiv.org/pdf/1009.4691.pdf
https://www.sciencedirect.com/science/article/pii/S0021782416300824

Outline

Outline

- Ising model

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.
3. Hierarchical lattices and the Migdal-Kadanoff RG equations

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.
3. Hierarchical lattices and the Migdal-Kadanoff RG equations
4. Renormalization Mapping of the Lee-Yang cylinder

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.
3. Hierarchical lattices and the Migdal-Kadanoff RG equations
4. Renormalization Mapping of the Lee-Yang cylinder

- Statement of our results

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.
3. Hierarchical lattices and the Migdal-Kadanoff RG equations
4. Renormalization Mapping of the Lee-Yang cylinder

- Statement of our results

1. Dynamical results

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.
3. Hierarchical lattices and the Migdal-Kadanoff RG equations
4. Renormalization Mapping of the Lee-Yang cylinder

- Statement of our results

1. Dynamical results
2. Physical results

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.
3. Hierarchical lattices and the Migdal-Kadanoff RG equations
4. Renormalization Mapping of the Lee-Yang cylinder

- Statement of our results

1. Dynamical results
2. Physical results

- Sketch of the proofs

Ising model—a description of magnetic materials

Ising model—a description of magnetic materials
A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}.

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V_{n} \rightarrow\{ \pm 1\}$, we have:

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V_{n} \rightarrow\{ \pm 1\}$, we have:

$$
I_{n}(\sigma)=\sum_{(v, w) \in E_{n}} \sigma(v) \sigma(w) \quad M_{n}(\sigma)=\sum_{v \in V_{n}} \sigma(v)
$$

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V_{n} \rightarrow\{ \pm 1\}$, we have:

$$
I_{n}(\sigma)=\sum_{(v, w) \in E_{n}} \sigma(v) \sigma(w) \quad M_{n}(\sigma)=\sum_{v \in V_{n}} \sigma(v)
$$

$I(\sigma)$ is the energy of interaction along edges, and

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V_{n} \rightarrow\{ \pm 1\}$, we have:

$$
I_{n}(\sigma)=\sum_{(v, w) \in E_{n}} \sigma(v) \sigma(w) \quad M_{n}(\sigma)=\quad \sum_{v \in V_{n}} \sigma(v)
$$

$I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ.

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V_{n} \rightarrow\{ \pm 1\}$, we have:

$$
I_{n}(\sigma)=\sum_{(v, w) \in E_{n}} \sigma(v) \sigma(w) \quad M_{n}(\sigma)=\frac{1}{2} \sum_{(v, w) \in E_{n}}(\sigma(v)+\sigma(w)) .
$$

$I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ.

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V_{n} \rightarrow\{ \pm 1\}$, we have:

$$
I_{n}(\sigma)=\sum_{(v, w) \in E_{n}} \sigma(v) \sigma(w) \quad M_{n}(\sigma)=\frac{1}{2} \sum_{(v, w) \in E_{n}}(\sigma(v)+\sigma(w)) .
$$

$I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ.

The energy of state σ exposed to an external magnetic field h is:

Ising model—a description of magnetic materials

A sequence of graphs Γ_{n}, with vertex set V_{n} and edge set E_{n}. Think of Γ_{n} as an $n \times n$ square in the \mathbb{Z}^{2} lattice in the plane.

Describe finer and finer approximations to our magnetic material. Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V_{n} \rightarrow\{ \pm 1\}$, we have:

$$
I_{n}(\sigma)=\sum_{(v, w) \in E_{n}} \sigma(v) \sigma(w) \quad M_{n}(\sigma)=\frac{1}{2} \sum_{(v, w) \in E_{n}}(\sigma(v)+\sigma(w))
$$

$I(\sigma)$ is the energy of interaction along edges, and $M(\sigma)$ is the total magnetic moment of σ.

The energy of state σ exposed to an external magnetic field h is:

$$
H_{n}(\sigma)=-J \cdot I(\sigma)-h \cdot M_{n}(\sigma)
$$

where $J>0$.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W_{n}(\sigma)=e^{-H_{n}(\sigma) / T}
$$

where $T>0$ is the temperature.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W_{n}(\sigma)=e^{-H_{n}(\sigma) / T}
$$

where $T>0$ is the temperature.
Thus, $P_{n}(\sigma)=W_{n}(\sigma) / Z_{n}(h, T)$, where

$$
Z_{n}(h, T)=\sum_{\sigma} W_{n}(\sigma)=\sum_{\sigma} e^{-H_{n}(\sigma) / T}
$$

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W_{n}(\sigma)=e^{-H_{n}(\sigma) / T}
$$

where $T>0$ is the temperature.
Thus, $P_{n}(\sigma)=W_{n}(\sigma) / Z_{n}(h, T)$, where

$$
Z_{n}(h, T)=\sum_{\sigma} W_{n}(\sigma)=\sum_{\sigma} e^{-H_{n}(\sigma) / T}
$$

$Z_{n}(h, t)$ is called the Partition function.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W_{n}(\sigma)=e^{-H_{n}(\sigma) / T}
$$

where $T>0$ is the temperature.
Thus, $P_{n}(\sigma)=W_{n}(\sigma) / Z_{n}(h, T)$, where

$$
Z_{n}(h, T)=\sum_{\sigma} W_{n}(\sigma)=\sum_{\sigma} e^{-H_{n}(\sigma) / T} .
$$

$Z_{n}(h, t)$ is called the Partition function.
It governs the physical properties of the Ising model on Γ_{n}.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W_{n}(\sigma)=e^{-H_{n}(\sigma) / T}
$$

where $T>0$ is the temperature.
Thus, $P_{n}(\sigma)=W_{n}(\sigma) / Z_{n}(h, T)$, where

$$
Z_{n}(h, T)=\sum_{\sigma} W_{n}(\sigma)=\sum_{\sigma} e^{-H_{n}(\sigma) / T} .
$$

$Z_{n}(h, t)$ is called the Partition function.
It governs the physical properties of the Ising model on Γ_{n}.
An obvious danger occurs at those values of h, T for which $Z_{n}(h, T)=0$.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W_{n}(\sigma)=e^{-H_{n}(\sigma) / T}
$$

where $T>0$ is the temperature.
Thus, $P_{n}(\sigma)=W_{n}(\sigma) / Z_{n}(h, T)$, where

$$
Z_{n}(h, T)=\sum_{\sigma} W_{n}(\sigma)=\sum_{\sigma} e^{-H_{n}(\sigma) / T} .
$$

$Z_{n}(h, t)$ is called the Partition function.
It governs the physical properties of the Ising model on Γ_{n}.
An obvious danger occurs at those values of h, T for which $Z_{n}(h, T)=0$. Luckily, this never happens for $h, T \in \mathbb{R}$.

Change of variables

Let $t=e^{-J / T}$ (temperature-like)

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma)} z^{-M(\sigma)}$.

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma)} z^{-M(\sigma)}$.

$$
Z_{n}(z, t)=\sum_{\sigma} W(\sigma)=\sum_{\sigma} t^{-I(\sigma)} z^{-M(\sigma)}
$$

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma)} z^{-M(\sigma)}$.

$$
\begin{aligned}
Z_{n}(z, t)= & \sum_{\sigma} W(\sigma)=\sum_{\sigma} t^{-l(\sigma)} z^{-M(\sigma)} \\
= & a_{d}(t) z^{d}+a_{d-1}(t) z^{d-1}+\cdots+a_{1-d}(t) z^{1-d}+a_{-d}(t) z^{-d} \\
& \text { where } d=\left|E_{n}\right| .
\end{aligned}
$$

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma)} z^{-M(\sigma)}$.

$$
\begin{aligned}
Z_{n}(z, t)= & \sum_{\sigma} W(\sigma)=\sum_{\sigma} t^{-I(\sigma)} z^{-M(\sigma)} \\
= & a_{d}(t) z^{d}+a_{d-1}(t) z^{d-1}+\cdots+a_{1-d}(t) z^{1-d}+a_{-d}(t) z^{-d} \\
& \text { where } d=\left|E_{n}\right| .
\end{aligned}
$$

Since $I(-\sigma)=I(\sigma)$ and $M(-\sigma)=-M(\sigma)$ we have that Z_{n} is symmetric under $z \mapsto 1 / z$:

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma)} z^{-M(\sigma)}$.

$$
\begin{aligned}
Z_{n}(z, t)= & \sum_{\sigma} W(\sigma)=\sum_{\sigma} t^{-I(\sigma)} z^{-M(\sigma)} \\
= & a_{d}(t) z^{d}+a_{d-1}(t) z^{d-1}+\cdots+a_{1-d}(t) z^{1-d}+a_{-d}(t) z^{-d} \\
& \text { where } d=\left|E_{n}\right| .
\end{aligned}
$$

Since $I(-\sigma)=I(\sigma)$ and $M(-\sigma)=-M(\sigma)$ we have that Z_{n} is symmetric under $z \mapsto 1 / z$:

$$
a_{i}(t)=a_{-i}(t)
$$

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma)} z^{-M(\sigma)}$.

$$
\begin{aligned}
Z_{n}(z, t)= & \sum_{\sigma} W(\sigma)=\sum_{\sigma} t^{-l(\sigma)} z^{-M(\sigma)} \\
= & a_{d}(t) z^{d}+a_{d-1}(t) z^{d-1}+\cdots+a_{1-d}(t) z^{1-d}+a_{-d}(t) z^{-d} \\
& \text { where } d=\left|E_{n}\right| .
\end{aligned}
$$

Since $I(-\sigma)=I(\sigma)$ and $M(-\sigma)=-M(\sigma)$ we have that Z_{n} is symmetric under $z \mapsto 1 / z$:

$$
a_{i}(t)=a_{-i}(t)
$$

Fundamental symmetry of the Ising model!

Thermodynamic quantities in terms of zeros of $Z_{n}(z, t)$.

For each $t \in \mathbb{C}^{*} Z_{n}(z, t)=0$ has $2\left|E_{n}\right|$ roots $z_{i}(t) \in \mathbb{C}$.

Thermodynamic quantities in terms of zeros of $Z_{n}(z, t)$.

For each $t \in \mathbb{C}^{*} Z_{n}(z, t)=0$ has $2\left|E_{n}\right|$ roots $z_{i}(t) \in \mathbb{C}$.
Free energy:
$F_{n}(z, t):=-T \log Z_{n}(z, t)=-T \sum \log \left|z-z_{i}(t)\right|+\left|E_{n}\right| T\left(\log |z|+\frac{1}{2} \log |t|\right)$

Thermodynamic quantities in terms of zeros of $Z_{n}(z, t)$.

For each $t \in \mathbb{C}^{*} Z_{n}(z, t)=0$ has $2\left|E_{n}\right|$ roots $z_{i}(t) \in \mathbb{C}$.
Free energy:
$F_{n}(z, t):=-T \log Z_{n}(z, t)=-T \sum \log \left|z-z_{i}(t)\right|+\left|E_{n}\right| T\left(\log |z|+\frac{1}{2} \log |t|\right)$
Magnetization:

$$
M_{n}(z, t):=\sum_{\sigma} M(\sigma) P(\sigma)
$$

Thermodynamic quantities in terms of zeros of $Z_{n}(z, t)$.

For each $t \in \mathbb{C}^{*} Z_{n}(z, t)=0$ has $2\left|E_{n}\right|$ roots $z_{i}(t) \in \mathbb{C}$.
Free energy:
$F_{n}(z, t):=-T \log Z_{n}(z, t)=-T \sum \log \left|z-z_{i}(t)\right|+\left|E_{n}\right| T\left(\log |z|+\frac{1}{2} \log |t|\right)$

Magnetization:

$$
M_{n}(z, t):=\sum_{\sigma} M(\sigma) P(\sigma)=z \sum \frac{1}{z-z_{i}(t)}-\left|E_{n}\right|
$$

The Lee-Yang Theorem

Physical values of $T>0$ correspond to $t \in(0,1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in(0, \infty)$.

The Lee-Yang Theorem

Physical values of $T>0$ correspond to $t \in(0,1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in(0, \infty)$.

Theorem (Lee-Yang, 1952)
At any fixed $t \in[0,1]$, then all complex zeros of $Z_{n}(z, t)$ lie on the unit circle $|z|=1$.

The Lee-Yang Theorem

Physical values of $T>0$ correspond to $t \in(0,1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in(0, \infty)$.

Theorem (Lee-Yang, 1952)
At any fixed $t \in[0,1]$, then all complex zeros of $Z_{n}(z, t)$ lie on the unit circle $|z|=1$.

The Lee-Yang Theorem

Physical values of $T>0$ correspond to $t \in(0,1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in(0, \infty)$.

Theorem (Lee-Yang, 1952)
At any fixed $t \in[0,1]$, then all complex zeros of $Z_{n}(z, t)$ lie on the unit circle $|z|=1$.

Extensions of this theorem are contemporary mathematics:

The Lee-Yang Theorem

Physical values of $T>0$ correspond to $t \in(0,1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in(0, \infty)$.

Theorem (Lee-Yang, 1952)
At any fixed $t \in[0,1]$, then all complex zeros of $Z_{n}(z, t)$ lie on the unit circle $|z|=1$.

Extensions of this theorem are contemporary mathematics:
D. Ruelle. Characterization of Lee-Yang polynomials. Ann. of Math. (2010).

The Lee-Yang Theorem

Physical values of $T>0$ correspond to $t \in(0,1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in(0, \infty)$.

Theorem (Lee-Yang, 1952)
At any fixed $t \in[0,1]$, then all complex zeros of $Z_{n}(z, t)$ lie on the unit circle $|z|=1$.

Extensions of this theorem are contemporary mathematics:
D. Ruelle. Characterization of Lee-Yang polynomials. Ann. of Math. (2010).
J. Borcea and P. Brändén The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability. Invent. Math. (2009).

Actual magnetic material corresponds to the limit $n \rightarrow \infty$

Actual magnetic material corresponds to the limit $n \rightarrow \infty$

The thermodynamic limit exists for the sequence Γ_{n} if

$$
\frac{1}{\left|E_{n}\right|} F_{n}(z, t) \rightarrow F(z, t)
$$

for any $z \in \mathbb{R}_{+}$and $t \in(0,1)$.

Actual magnetic material corresponds to the limit $n \rightarrow \infty$

The thermodynamic limit exists for the sequence Γ_{n} if

$$
\frac{1}{\left|E_{n}\right|} F_{n}(z, t) \rightarrow F(z, t)
$$

for any $z \in \mathbb{R}_{+}$and $t \in(0,1)$.
For each $t \in[0,1]$ there is a measure μ_{t} on \mathbb{T} describing the asymptotic distribution of Lee-Yang zeros.

Phase transitions in terms of Lee-Yang distribution

$$
F(z, t)=-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t|
$$

Phase transitions in terms of Lee-Yang distribution

$$
\begin{aligned}
F(z, t) & =-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t| \\
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}
\end{aligned}
$$

Phase transitions in terms of Lee-Yang distribution

$$
\begin{aligned}
F(z, t) & =-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t| \\
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1
\end{aligned}
$$

$$
\lim _{z \rightarrow 1^{+}} M(z, t)=\rho_{t}(0)
$$

Phase transitions in terms of Lee-Yang distribution

$$
\begin{aligned}
F(z, t) & =-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t| \\
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1 \\
\lim _{z \rightarrow 1^{+}} M(z, t) & =\rho_{t}(0) \text { where } \rho_{t}(\phi)=2 \pi \frac{d \mu_{t}(\phi)}{d \phi}, \text { and } \phi=\arg (z) .
\end{aligned}
$$

Phase transitions in terms of Lee-Yang distribution

$$
\begin{aligned}
F(z, t) & =-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t| \\
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1 \\
\lim _{z \rightarrow 1^{+}} M(z, t) & =\rho_{t}(0) \text { where } \rho_{t}(\phi)=2 \pi \frac{d \mu_{t}(\phi)}{d \phi}, \text { and } \phi=\arg (z) .
\end{aligned}
$$

A phase transition occurs at any place where $F(z, t)$ depends non-analytically on (z, t).

Phase transitions in terms of Lee-Yang distribution

$$
\begin{aligned}
F(z, t) & =-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t| \\
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1 \\
\lim _{z \rightarrow 1^{+}} M(z, t) & =\rho_{t}(0) \text { where } \rho_{t}(\phi)=2 \pi \frac{d \mu_{t}(\phi)}{d \phi}, \text { and } \phi=\arg (z) .
\end{aligned}
$$

A phase transition occurs at any place where $F(z, t)$ depends non-analytically on (z, t).
E.g. for small $t, M(z, t)$ has a jump of twice $\rho_{t}(0)$ as z changes from negative to positive.

Phase transitions in terms of Lee-Yang distribution

$$
\begin{aligned}
F(z, t) & =-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t| \\
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1 \\
\lim _{z \rightarrow 1^{+}} M(z, t) & =\rho_{t}(0) \text { where } \rho_{t}(\phi)=2 \pi \frac{d \mu_{t}(\phi)}{d \phi}, \text { and } \phi=\arg (z) .
\end{aligned}
$$

A phase transition occurs at any place where $F(z, t)$ depends non-analytically on (z, t).
E.g. for small $t, M(z, t)$ has a jump of twice $\rho_{t}(0)$ as z changes from negative to positive.

Understanding how the Lee-Yang distributions $\mu_{t}(\phi)$ vary with t and ϕ is essential to understanding phase transitions of the model.

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

ϕ

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Now, we have a nice interval around $\phi=0$ with $\rho_{t}(\phi) \equiv 0$. Causes $M(z, t)$ to be differentiable at $z=1$ (and hence everywhere).

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Zakhar Kabluchko: Lee-Yang zeros for the Curie Weiss model match this conjectureal description. http://arxiv.org/pdf/2203.05533.pdf

Hierarchical Lattices

The Diamond Hierarchical Lattice (DHL).
Γ_{n} is obtained by replacing each edge of generating graph Γ (a diamond) with a copy of Γ_{n-1}, considering the marked vertices a and b as the "endpoints" of Γ_{n-1}.

Migdal-Kadanoff Renormalization ${ }^{123}$

Consider the conditional partition functions:

The total partition function is equal to $Z_{n}=U_{n}+2 V_{n}+W_{n}$.

[^0]
Migdal-Kadanoff Renormalization ${ }^{123}$

Consider the conditional partition functions:

The total partition function is equal to $Z_{n}=U_{n}+2 V_{n}+W_{n}$.
Migdal-Kadanoff RG Equations:
$U_{n+1}=\left(U_{n}^{2}+V_{n}^{2}\right)^{2}, \quad V_{n+1}=V_{n}^{2}\left(U_{n}+W_{n}\right)^{2}, \quad W_{n+1}=\left(V_{n}^{2}+W_{n}^{2}\right)^{2}$.

[^1]
MK renormalization in the (z, t) coordinates:

We can lift R from the $[U: V: W]$ coordinates (downstairs) to the [z:t:1] coordiantes upstairs:

$$
\begin{array}{rlr}
\mathbb{C} \mathbb{P}^{2} & \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow \Psi & & \tag{1}\\
\downarrow & & \downarrow \\
\mathbb{C P}^{2} & \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

MK renormalization in the (z, t) coordinates:

We can lift R from the $[U: V: W]$ coordinates (downstairs) to the [$z: t: 1]$ coordiantes upstairs:

The mapping upstairs is:

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

MK renormalization in the (z, t) coordinates:

We can lift R from the $[U: V: W]$ coordinates (downstairs) to the [z:t:1] coordiantes upstairs:

The mapping upstairs is:

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right)
$$

and Ψ is some degree 2 rational map.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.
One can check that $\mathcal{R}(\mathcal{C})=\mathcal{C}$.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.
One can check that $\mathcal{R}(\mathcal{C})=\mathcal{C}$.
Let $\mathcal{S}_{n} \subset \mathcal{C}$ denote the Lee-Yang zeros for Γ_{n}.

- $\mathcal{S}_{0}:=\left\{z^{2}+2 t z+1=0\right\} \cap \mathcal{C}$.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.
One can check that $\mathcal{R}(\mathcal{C})=\mathcal{C}$.
Let $\mathcal{S}_{n} \subset \mathcal{C}$ denote the Lee-Yang zeros for Γ_{n}.

- $\mathcal{S}_{0}:=\left\{z^{2}+2 t z+1=0\right\} \cap \mathcal{C}$.
- for $n \geq 1$ we have $\mathcal{S}_{n+1}=\mathcal{R}_{\mid C}^{-1} \mathcal{S}_{n}$.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.
One can check that $\mathcal{R}(\mathcal{C})=\mathcal{C}$.
Let $\mathcal{S}_{n} \subset \mathcal{C}$ denote the Lee-Yang zeros for Γ_{n}.

- $\mathcal{S}_{0}:=\left\{z^{2}+2 t z+1=0\right\} \cap \mathcal{C}$.
- for $n \geq 1$ we have $\mathcal{S}_{n+1}=\mathcal{R}_{\mid C}^{-1} \mathcal{S}_{n}$.

It is this recursive relationship between \mathcal{S}_{n+1} and \mathcal{S}_{n} that makes a study of the Lee-Yang zeros tractable for hierarchical lattices.

Lee-Yang zeros as pull-backs under \mathcal{R}

Lee-Yang zeros as pull-backs under \mathcal{R}

Lee-Yang zeros as pull-backs under \mathcal{R}

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.
Points approaching α_{+}or α_{-}at angle ω with respect to the vertical are mapped by \mathcal{R} to $\left(2 \omega, \sin ^{2} \omega\right)$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.
Points approaching α_{+}or α_{-}at angle ω with respect to the vertical are mapped by \mathcal{R} to $\left(2 \omega, \sin ^{2} \omega\right)$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.
Points approaching α_{+}or α_{-}at angle ω with respect to the vertical are mapped by \mathcal{R} to $\left(2 \omega, \sin ^{2} \omega\right)$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.
- Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B}.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.
- Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B}.
- Collapsing intervals $\phi= \pm \pi / 2$ and all preimages in $W^{s}(\mathcal{B})$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.
- Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B}.
- Collapsing intervals $\phi= \pm \pi / 2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at $t=1$:

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.
- Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B}.
- Collapsing intervals $\phi= \pm \pi / 2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at $t=1$:

- $\mathcal{R} \mid \mathcal{T}: z \mapsto z^{2}$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.
- Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B}.
- Collapsing intervals $\phi= \pm \pi / 2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at $t=1$:

- $\mathcal{R} \mid \mathcal{T}: z \mapsto z^{2}$.
- \mathcal{T} is non-uniformly transversally superattracting. If $\tau=1-t$, then $\tau^{\prime}=O\left(\tau^{2} / \cos ^{2} \phi\right)$.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.
- Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B}.
- Collapsing intervals $\phi= \pm \pi / 2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at $t=1$:

- $\mathcal{R} \mid \mathcal{T}: z \mapsto z^{2}$.
- \mathcal{T} is non-uniformly transversally superattracting. If $\tau=1-t$, then $\tau^{\prime}=O\left(\tau^{2} / \cos ^{2} \phi\right)$.
- indeterminate points $\alpha_{ \pm}$allow points arbitrarily close to \mathcal{T} to be sent arbitrarily close to \mathcal{B} under a single iterate.

Basic properties of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

Let $\mathcal{B} \subset \mathcal{C}$ be the circle at $t=0$:

- $\mathcal{R} \mid \mathcal{B}: z \mapsto z^{4}$.
- \mathcal{B} is transversally superattracting, with $t^{\prime}=O\left(t^{2}\right)$.
- Basin of attraction $W^{s}(\mathcal{B})$ is an open neighborhood of \mathcal{B}.
- Collapsing intervals $\phi= \pm \pi / 2$ and all preimages in $W^{s}(\mathcal{B})$.

Let $\mathcal{T} \subset \mathcal{C}$ be the circle at $t=1$:

- $\mathcal{R} \mid \mathcal{T}: z \mapsto z^{2}$.
- \mathcal{T} is non-uniformly transversally superattracting. If $\tau=1-t$, then $\tau^{\prime}=O\left(\tau^{2} / \cos ^{2} \phi\right)$.
- indeterminate points $\alpha_{ \pm}$allow points arbitrarily close to \mathcal{T} to be sent arbitrarily close to \mathcal{B} under a single iterate.
- Let $W^{s}(\mathcal{T})$ be the basin of attraction of \mathcal{T}. Has positive Lebesgue measure.

Numerical Experiment

$\mathcal{W}^{s}(\mathcal{B})$ is colored blue and $\mathcal{W}^{s}(\mathcal{T})$ is colored orange.

Dynamical results I

Theorem (Bleher, Lyubich, R)
$\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ is partially hyperbolic.

Dynamical results I

Theorem (Bleher, Lyubich, R)
$\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ is partially hyperbolic.
That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_{x} \mathcal{C}$ depending continuously on x and invariant under $D \mathcal{R}$:

Dynamical results I

Theorem (Bleher, Lyubich, R)
$\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ is partially hyperbolic.
That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_{x} \mathcal{C}$ depending continuously on x and invariant under $D \mathcal{R}$:

Dynamical results I

Theorem (Bleher, Lyubich, R)
$\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ is partially hyperbolic.
That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_{x} \mathcal{C}$ depending continuously on x and invariant under $D \mathcal{R}$:

2. Horizontal tangent vectors $v \in \mathcal{K}(x)$ get exponentially stretched under $D \mathcal{R}^{n}$ at a rate that dominates any occasional expansion of tangent vectors in $L(x)$.

Dynamical results I

Theorem (Bleher, Lyubich, R)
$\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ is partially hyperbolic.
That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_{x} \mathcal{C}$ depending continuously on x and invariant under $D \mathcal{R}$:

2. Horizontal tangent vectors $v \in \mathcal{K}(x)$ get exponentially stretched under $D \mathcal{R}^{n}$ at a rate that dominates any occasional expansion of tangent vectors in $L(x)$.

The idea of this proof that this conefield is invariant seems to play a role in the recent work of Dang-Grigorchuk-Lyubich about the Basilica IMG.

Dynamical results II

Proposition (BLR)

\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.

Dynamical results II

Proposition (BLR)

\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}. (Obtained by integrating $L(x)$).

Dynamical results II

Proposition (BLR)

\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.
(Obtained by integrating $L(x)$).

Proposition (BLR,Kaschner-R)
\mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.

Dynamical results II

Proposition (BLR)

\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.
(Obtained by integrating $L(x)$).
Proposition (BLR,Kaschner-R)
\mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.
Theorem (BLR)
Almost every point on \mathcal{C} is in $\mathcal{W}^{s}(\mathcal{T})$ or in $\mathcal{W}^{s}(\mathcal{B})$.

Dynamical results II

Proposition (BLR)

\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.
(Obtained by integrating $L(x)$).

Proposition (BLR,Kaschner-R)

\mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.
Theorem (BLR)
Almost every point on \mathcal{C} is in $\mathcal{W}^{s}(\mathcal{T})$ or in $\mathcal{W}^{s}(\mathcal{B})$.

- $\mathcal{W}^{s}(\mathcal{T})$ has positive measure,

Dynamical results II

Proposition (BLR)

\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.
(Obtained by integrating $L(x)$).

Proposition (BLR,Kaschner-R)

\mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.
Theorem (BLR)
Almost every point on \mathcal{C} is in $\mathcal{W}^{s}(\mathcal{T})$ or in $\mathcal{W}^{s}(\mathcal{B})$.

- $\mathcal{W}^{s}(\mathcal{T})$ has positive measure,
- $\mathcal{W}^{s}(\mathcal{B})$ is open and dense.

Dynamical results II

Proposition (BLR)

\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.
(Obtained by integrating $L(x)$).
Proposition (BLR,Kaschner-R)
\mathcal{F}^{c} has C^{∞} (but not real analytic) regularity within $\mathcal{W}^{s}(\mathcal{B})$.
Theorem (BLR)
Almost every point on \mathcal{C} is in $\mathcal{W}^{s}(\mathcal{T})$ or in $\mathcal{W}^{s}(\mathcal{B})$.

- $\mathcal{W}^{s}(\mathcal{T})$ has positive measure,
- $\mathcal{W}^{s}(\mathcal{B})$ is open and dense.

This is the "intertwined basins" phenomenon studied by Kan-Yorke, Bonifant-Milnor, llyashenko-Kleptsyn-Saltykov....

Physical Results

For $t \in[0,1)$ the holonomy transformation $g_{t}: \mathcal{B} \rightarrow \mathbb{T} \times\{t\}$ obtained by flowing along \mathcal{F}^{c}.

Physical Results

For $t \in[0,1)$ the holonomy transformation $g_{t}: \mathcal{B} \rightarrow \mathbb{T} \times\{t\}$ obtained by flowing along \mathcal{F}^{c}.

Physical Results

For $t \in[0,1)$ the holonomy transformation $g_{t}: \mathcal{B} \rightarrow \mathbb{T} \times\{t\}$ obtained by flowing along \mathcal{F}^{c}.

Theorem (BLR)

The asymptotic distribution of Lee-Yang zeros at a temperature $t_{0} \in[0,1)$ is given by under holonomy by $\mu_{t}=\left(g_{t}\right)_{*}\left(\mu_{0}\right)$ where μ_{0} be the Lebesgue measure on \mathcal{B}.

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}.

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Use complex extension to prove that $\pi \circ \mathcal{R}^{n}: \mathcal{S}_{t_{0}} \rightarrow \mathcal{S}_{0}$ is expanding.

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Use complex extension to prove that $\pi \circ \mathcal{R}^{n}: \mathcal{S}_{t_{0}} \rightarrow \mathcal{S}_{0}$ is expanding.
Problem controlling the degrees of the curves $\mathcal{R}^{n}\left(\mathcal{P}_{t_{0}}\right)$:

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Use complex extension to prove that $\pi \circ \mathcal{R}^{n}: \mathcal{S}_{t_{0}} \rightarrow \mathcal{S}_{0}$ is expanding.
Problem controlling the degrees of the curves $\mathcal{R}^{n}\left(\mathcal{P}_{t_{0}}\right)$: $\operatorname{deg}\left(\mathcal{R}^{n}\left(\mathcal{P}_{t_{0}}\right)\right)>4^{n}$, but only wraps around the cylinder 4^{n} times.

Proof of horizontal expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Use complex extension to prove that $\pi \circ \mathcal{R}^{n}: \mathcal{S}_{t_{0}} \rightarrow \mathcal{S}_{0}$ is expanding.
Problem controlling the degrees of the curves $\mathcal{R}^{n}\left(\mathcal{P}_{t_{0}}\right)$: $\operatorname{deg}\left(\mathcal{R}^{n}\left(\mathcal{P}_{t_{0}}\right)\right)>4^{n}$, but only wraps around the cylinder 4^{n} times.
Algebraic instability: $4^{n}<\operatorname{deg}\left(\mathcal{R}^{n}\right)<(\operatorname{deg}(\mathcal{R}))^{n}=6^{n}$.

Proof of horizontal expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{ccc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow \Psi & & \downarrow \psi \\
\downarrow^{*} & & \downarrow \\
\mathbb{C P}^{2} \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

Proof of horizontal expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{ccc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow^{*} & & \downarrow^{*} \\
\mathbb{C P}^{2} \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

where

$$
R:[U: V: W] \rightarrow\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right]
$$

${ }^{4}$ except on \mathcal{B}, where it is 2-1.

Proof of horizontal expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{ccc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow^{*} & & \downarrow^{*} \\
\mathbb{C P}^{2} \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

where

$$
R:[U: V: W] \rightarrow\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right]
$$

Ψ induces a conjugacy ${ }^{4}$ between $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ and $R: C \rightarrow \mathcal{C}$, where $C=\Psi(\mathcal{C})$ is some appropriate Möbius band.

Proof of horizontal expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{ccc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow^{*} & & \downarrow^{*} \\
\mathbb{C P}^{2} \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

where

$$
R:[U: V: W] \rightarrow\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right]
$$

Ψ induces a conjugacy ${ }^{4}$ between $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ and $R: C \rightarrow C$, where $C=\Psi(\mathcal{C})$ is some appropriate Möbius band.
R is algebraically stable, satisfying $\operatorname{deg}\left(R^{n}\right)=(\operatorname{deg} R)^{n}=4^{n}$.

[^2]
Proof of horizontal expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{ccc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow^{*} & & \downarrow^{*} \\
\mathbb{C P}^{2} \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

where

$$
R:[U: V: W] \rightarrow\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right]
$$

Ψ induces a conjugacy ${ }^{4}$ between $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ and $R: C \rightarrow C$, where $C=\Psi(\mathcal{C})$ is some appropriate Möbius band.
R is algebraically stable, satisfying $\operatorname{deg}\left(R^{n}\right)=(\operatorname{deg} R)^{n}=4^{n}$.
Coincides with degree of $R^{n}: C \rightarrow C$, it is "safer" to work with R.

[^3]
Proof of horizontal expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{cc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} \mathbb{C P}^{2} \\
\downarrow^{*} & \\
\mathbb{C P}^{2} \xrightarrow{R} & \downarrow^{*} \\
\mathbb{C P}^{2}
\end{array}
$$

where

$$
R:[U: V: W] \rightarrow\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right]
$$

Ψ induces a conjugacy ${ }^{4}$ between $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ and $R: C \rightarrow C$, where $C=\Psi(\mathcal{C})$ is some appropriate Möbius band.
R is algebraically stable, satisfying $\operatorname{deg}\left(R^{n}\right)=(\operatorname{deg} R)^{n}=4^{n}$.
Coincides with degree of $R^{n}: C \rightarrow C$, it is "safer" to work with R. Original idea actually works in these coordinates!
${ }^{4}$ except on \mathcal{B}, where it is 2-1.

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:
The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:
The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Let $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ be the "top" circle of C, while B be the slice of C at infinity.

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:
The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Let $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ be the "top" circle of C, while B be the slice of C at infinity.

Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:
The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Let $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ be the "top" circle of C, while B be the slice of C at infinity.

Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:
The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Let $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ be the "top" circle of C, while B be the slice of C at infinity.

Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.
Horizontal circle $\mathcal{S}_{t_{0}}$ becomes $S_{t_{0}}=\left\{|u|=t_{0}^{-1}\right\}=\Psi\left(\mathcal{S}_{t_{0}}\right)$.

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:
The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\}
$$

in $\mathbb{C P}^{2}$.
Let $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ be the "top" circle of C, while B be the slice of C at infinity.
Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.
Horizontal circle $\mathcal{S}_{t_{0}}$ becomes $S_{t_{0}}=\left\{|u|=t_{0}^{-1}\right\}=\Psi\left(\mathcal{S}_{t_{0}}\right)$.
Vertical projection π becomes radial projection $\operatorname{pr}(u, w)=w / u$ out to the line at infinity P_{0}.

Proof of horizontal expansion, part III

Affine coordinates $u=U / V, w=W / V$:
The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\}
$$

in $\mathbb{C P}^{2}$.
Let $\mathrm{T}=\{(u, \bar{u}):|u|=1\}$ be the "top" circle of C, while B be the slice of C at infinity.

Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.
Horizontal circle $\mathcal{S}_{t_{0}}$ becomes $S_{t_{0}}=\left\{|u|=t_{0}^{-1}\right\}=\Psi\left(\mathcal{S}_{t_{0}}\right)$.
Vertical projection π becomes radial projection $\operatorname{pr}(u, w)=w / u$ out to the line at infinity P_{0}.

We will show that pro $R^{n}: P_{t_{0}} \rightarrow P_{0}$ expands that circle $S_{t_{0}}$.

Proof of horizontal expansion, part IV

Suffices to parameterize $P_{t_{0}}$ by $\Psi: \mathcal{P}_{t_{0}} \rightarrow P_{t_{0}}$ and show that

Proof of horizontal expansion, part IV

Suffices to parameterize $P_{t_{0}}$ by $\Psi: \mathcal{P}_{t_{0}} \rightarrow P_{t_{0}}$ and show that

$$
\operatorname{pr} \circ R^{n} \circ \Psi: \mathcal{P}_{t_{0}} \rightarrow P_{0}
$$

expands that circle $\mathcal{S}_{t_{0}}$.

Proof of horizontal expansion, part IV

Suffices to parameterize $P_{t_{0}}$ by $\Psi: \mathcal{P}_{t_{0}} \rightarrow P_{t_{0}}$ and show that

$$
\operatorname{pr} \circ R^{n} \circ \Psi: \mathcal{P}_{t_{0}} \rightarrow P_{0}
$$

expands that circle $\mathcal{S}_{t_{0}}$.
We have:

$$
\psi_{n}(z):=\operatorname{pr} \circ R^{n} \circ \Psi\left(z, t_{0}\right)=\frac{W_{n}\left(z, t_{0}\right)}{U_{n}\left(z, t_{0}\right)}
$$

where W_{n} and U_{n} are the conditional partition functions from the derivation of R.

Proof of horizontal expansion, part IV

Suffices to parameterize $P_{t_{0}}$ by $\Psi: \mathcal{P}_{t_{0}} \rightarrow P_{t_{0}}$ and show that

$$
\operatorname{pr} \circ R^{n} \circ \Psi: \mathcal{P}_{t_{0}} \rightarrow P_{0}
$$

expands that circle $\mathcal{S}_{t_{0}}$.
We have:

$$
\psi_{n}(z):=\operatorname{pr} \circ R^{n} \circ \Psi\left(z, t_{0}\right)=\frac{W_{n}\left(z, t_{0}\right)}{U_{n}\left(z, t_{0}\right)}
$$

where W_{n} and U_{n} are the conditional partition functions from the derivation of R.

Claim: $\psi_{n}: \mathbb{C} \rightarrow \mathbb{C}$ is an Blaschke product preserving the unit disc \mathbb{D}, expanding the circle $\mathbb{T}=\partial \mathbb{D}$ by a factor of 2^{n+1}.

Conditional partition functions and their symmetries

$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d},
\end{aligned}
$$

Conditional partition functions and their symmetries

$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-I(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d}, \\
W_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=-1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=-1} t^{-l(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{-}(t) z^{d}+\cdots+a_{-d}^{-}(t) z^{-d} .
\end{aligned}
$$

Conditional partition functions and their symmetries

$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d}, \\
W_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=-1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=-1} t^{-l(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{-}(t) z^{d}+\cdots+a_{-d}^{-}(t) z^{-d} .
\end{aligned}
$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1 / z$ becomes:

$$
a_{i}^{+}(t)=a_{-i}^{-}(t) \quad \text { for each } i=-d \ldots d
$$

Conditional partition functions and their symmetries

$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-I(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d}, \\
W_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=-1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=-1} t^{-I(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{-}(t) z^{d}+\cdots+a_{-d}^{-}(t) z^{-d} .
\end{aligned}
$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1 / z$ becomes:

$$
a_{i}^{+}(t)=a_{-i}^{-}(t) \quad \text { for each } i=-d \ldots d
$$

2. Since Γ_{n} has valence 2^{n} at marked vertices a and b we have

$$
a_{i}^{-}(t)=0 \quad \text { for } i<-4^{n}+2^{n+1}
$$

Conditional partition functions and their symmetries

$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-I(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d}, \\
W_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=-1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=-1} t^{-I(\sigma)} z^{-M(\sigma)} \\
& =a_{d}^{-}(t) z^{d}+\cdots+a_{-d}^{-}(t) z^{-d} .
\end{aligned}
$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1 / z$ becomes:

$$
a_{i}^{+}(t)=a_{-i}^{-}(t) \quad \text { for each } i=-d \ldots d
$$

2. Since Γ_{n} has valence 2^{n} at marked vertices a and b we have

$$
a_{i}^{-}(t)=0 \quad \text { for } i<-4^{n}+2^{n+1}
$$

Reason for 2: With -1 spins at the marked vertices a, b, we can't get more than $4^{n}-2^{n+1}$ edges with ++ , so $M(\sigma) \leq 4^{n}-2^{n+1}$

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
W_{n}(z)=z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right)
$$

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)
\end{aligned}
$$

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

We find that

$$
\psi_{n}(z)=\frac{W_{n}(z)}{U_{n}(z)}=z^{2^{n+1}} \prod \frac{z-b_{i}}{1-\overline{b_{i}} z}
$$

is a Blaschke product with 2^{n+1} zeros at $z=0$.

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

We find that

$$
\psi_{n}(z)=\frac{W_{n}(z)}{U_{n}(z)}=z^{2^{n+1}} \prod \frac{z-b_{i}}{1-\overline{b_{i}} z}
$$

is a Blaschke product with 2^{n+1} zeros at $z=0$.
Are the other zeros b_{i} within the unit disc \mathbb{D} ?

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

We find that

$$
\psi_{n}(z)=\frac{W_{n}(z)}{U_{n}(z)}=z^{2^{n+1}} \prod \frac{z-b_{i}}{1-\overline{b_{i}} z}
$$

is a Blaschke product with 2^{n+1} zeros at $z=0$.
Are the other zeros b_{i} within the unit disc \mathbb{D} ?
If yes, then $\psi_{n}(z)$ is a Blaschke product that expands the circle \mathbb{T} by at least 2^{n+1}

Proof of horizontal expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

We find that

$$
\psi_{n}(z)=\frac{W_{n}(z)}{U_{n}(z)}=z^{2^{n+1}} \prod \frac{z-b_{i}}{1-\overline{b_{i}} z}
$$

is a Blaschke product with 2^{n+1} zeros at $z=0$.
Are the other zeros b_{i} within the unit disc \mathbb{D} ?
If yes, then $\psi_{n}(z)$ is a Blaschke product that expands the circle \mathbb{T} by at least 2^{n+1}
so we'd be done!

Lee-Yang Theorem with Boundary conditions

S is the vertices in red.

Theorem (Bleher, Lyubich, R)
Consider a ferromagnetic lsing model on a connected graph 「 and let $\sigma_{S} \equiv-1$ on a nonempty subset S of the vertex set V.

Lee-Yang Theorem with Boundary conditions

S is the vertices in red.

Theorem (Bleher, Lyubich, R)
Consider a ferromagnetic Ising model on a connected graph 「 and let $\sigma_{S} \equiv-1$ on a nonempty subset S of the vertex set V.
Then, for any temperature $t \in(0,1)$ the Lee-Yang zeros $z_{i}^{-}(t)$ of the conditional partition function $Z_{\Gamma \mid \sigma_{S}}$ lie inside the open disc \mathbb{D}.

Thank you for listening!

Pavel Bleher, Mikhail Lyubich, and Roland Roeder. Lee-Yang Zeros for the DHL and 2D Rational Dynamics, I. Foliation of the Physical Cylinder. Journal de Mathématiques Pures et Appliquées, 107(5): 491-590, 2017.

For those who like joint spectra:
Pavel Bleher, Mikhail Lyubich, and Roland Roeder. Lee-Yang-Fisher zeros for DHL and 2D rational dynamics, II. Global Pluripotential Interpretation. Journal of Geometric Analysis, 30(1): 777-833, 2020.

[^0]: ${ }^{1}$ A.A. Migdal. Recurrence equations in gauge field theory. JETP, (1975).
 ${ }^{2}$ L. P. Kadanoff. Notes on Migdal's recursion formulae. Ann. Phys., (1976).
 ${ }^{3}$ B. Derrida, L. De Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, J. Statist. Phys. (1983).

[^1]: ${ }^{1}$ A.A. Migdal. Recurrence equations in gauge field theory. JETP, (1975).
 ${ }^{2}$ L. P. Kadanoff. Notes on Migdal's recursion formulae. Ann. Phys., (1976).
 ${ }^{3}$ B. Derrida, L. De Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, J. Statist. Phys. (1983).

[^2]: ${ }^{4}$ except on \mathcal{B}, where it is $2-1$.

[^3]: ${ }^{4}$ except on \mathcal{B}, where it is 2-1.

